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ANNOTATION 
I 

The work ffHelicopters (Calculat ion and Design)" i s  published i n  three f 

volumes. 
V01.1 - Aerodynamics; 
Vol.11 - Vibrations and Dynamic Strength; 
Vol.111 - Design. 

The first volume i s  devoted t o  ways of developing hel icopters ,  t he  basic  
p r inc ip l e s  of t h e i r  design, and t h e  p o s i t i o n  occupied by he l icopters  among other  
means of av ia t ion  not requiring a i r f i e l d s .  Various theo r i e s  of r o t o r s  and cor
responding methods of determining t h e i r  aerodynamic c h a r a c t e r i s t i c s  are pre
sented: t h e  c l a s s i c a l  theory of a r o t o r  wi th  hinged blades i n  the  general  case 
of cu rv i l i nea r  f l i g h t  of t h e  hel icopter ;  t h e  momentum theory of an i d e a l  r o t o r  
and i ts  appl ica t ion  t o  t h e  energy method of ca lcu la t ion ;  t he  c l a s s i c a l  theory 
when using methods of numerical quadrature; t h e  vortex theory and methods of 
experimental determination of r o t o r  performance i n  f l i g h t  t e s t s  and i n  wind 
tunnels. Various methods of aerodynamic ca l cu la t ion  of a he l icopter  and t h e  
theory of blade f l u t t e r  a r e  presented i n  d e t a i l .  T h i s  volume gives an account 
of methods of ca lcu la t ing  f l u t t e r  i n  hovering and i n  forward f l i g h t .  Pa r t i cu la r  
a t t e n t i o n  i s  devoted t o  considerat ion of f r i c t i o n  i n  t h e  axial hinges of t h e  hub 
and t o  t h e  t r a n s f e r  of blade v ibra t ions  through t h e  automatic p i t c h  cont ro l  
mechanism. Experimental inves t iga t ions  of f l u t t e r  a r e  described. 

The book i s  intended f o r  engineers of design of f ices ,  s c i e n t i f i c  workers, 
graduate students, and teachers  of higher i n s t i t u t e s  of learning.  It might be 
useful  t o  engineers of he l icopter  manufacturers and t o  s tudents  f o r  fur ther ing  
t h e i r  knowledge of t h e  aerodynamics and mechanical s t rength  of hel icopters .  
Maqy sec t ions  of t h e  book w i l l  be a usefu l  t o o l  a l s o  t o  f l i g h t  and technica l  
s t a f f s  of he l icopter  f l i g h t  units. 

Numbers i n  t h e  margin ind ica t e  pagination i n  the  o r i g i n a l  fore ign  text. 
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PREFACE L2 

The present  book generalizes t h e  experience of t h e  s c i e n t i f i c  work and 
p r a c t i c a l  design a c t i v i t y  of engineers of one of t h e  Soviet teams working on t h e  
development of helicopters.  

Twenty years ago, when t h e  team had j u s t  set out on t h e i r  work, everything
i n  this f i e l d  seemed t o  have been already long discovered and invented. 

Those t o  whom belongs c r e d i t  f o r  t h e  o r i g i n a l  i deas  and designs of rotary-
wing a i r c r a f t  - Leonard0 da Vinci, M.V.Lomonosov, N.Ye .Zhukovskiy (Joukowski), 
B.N.Yurtyev, and others  - had long ago proposed almost a l l  of t h e  ex i s t ing  de
s igns of helicopters.  Designers, s c i e n t i s t s ,  and inventors i n  various countries 
bu i l t  dozens of hel icopter  models which successfully rose i n t o  t h e  air. However, 
not one of t hese  ro toc ra f t  was  suitable f o r  p r a c t i c a l  use, large-scale produc
t ion,  o r  regular  service.  

A very d i f f i c u l t  problem t h a t  required considerable and tedious work re
mained unsolved, namely, t he  problem of developing hel icopters  which would find 
p r a c t i c a l  use i n  everyday l i f e .  

To solve this problem we had a t  our disposal  an important s c i e n t i f i c  basis 
i n  the  form of c l a s s i c a l  works, t h e  s tud ie s  of t h e  Central  Aero-Qdrodynamic 
I n s t i t u t e  (TsAGI), and of fo re ign  s c i e n t i s t s .  However, t e s t i n g  of each new air
c r a f t  confronted design engineers with new acute problems and forced them t o  
work out many t h e o r e t i c a l  problems t o  f i n d  the  proper method of solving spec i f i c  
design problems. 

This volume discusses t h e  basic  problems of t h e  theory, calculation, and 
design of hel icopters  worked out by t h e  team and representing t h e  vi ta l  i n t e r e s t s  
of i t s  design a c t i v i t y .  

The f a c t  t h a t  some of t h e  authors had occasion t o  p a r t i c i p a t e  i n  applying 
t h e  c l a s s i c a l  r o t o r  theory t o  t h e  ca l cu la t ion  and design of t h e  f irst  autogiros, 
i n  the o r i g i n a l  experimental work on models and on fu l l - sca l e  r o t o r s  i n  wind 
tunnels, i n  developing methods of aerodynamic calculat ion of helicopters,  and 
then  - f o r  more than Pj years  - i n  designing an e n t i r e  family of hel icopters  of 
t h e  same configuration i n  a l l  weight classes,  offers  an opportunity t o  e lucidate  
t h e  basic  problems of t h e  theory and calculat ion of hel icopters  t h a t  have b e e n h  
checked out by pract ice .  

A s  e a r l y  as 1948 t h e r e  was  not a s ing le  hel icopter  i n  se rv i ce  i n  our 
country. Now thousands of such machines created by various design teams assist 
people i n  many areas of t h e i r  l i f e  and a c t i v i t y .  

Engineers and designers working on t h e  design o r  construction of heli
copters, p i l o t s  and technicians,  students of a i r  academies who are studying o r  
are i n t e r e s t e d  i n  hel icopters  will find useful  information i n  this book. 
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Engineering, espec ia l ly  a i r c r a f t  engineering, i s  rap id ly  becoming obsolete. 
However, it i s  hoped t h a t  t h e  general  methods of approach t o  t h e  development of 
a new type of a i r c r a f t ,  as presented i n  this book, W i l l  ou t l ive  todayts heli
copter models. 

M . M i l t  
1L 


Chapter I of Vol.1, Sections 1and 2 of Chapter 11, and Section 2 of Chap
t e r  I11 w e r e  wr i t t en  by M.L.Mi l t ;  Chapter IV and Section 5 of Chapter I1 were 
wr i t t en  by A.V.Nekrasov; t h e  remaining Sections of Chapters I1 and I11 and a l so  
Subsections 19-28 of Section 2 of Chapter I1w e r e  wr i t t en  by A.S.Braverman. 

I n  preparing t h e  manuscript, t h e  authors were a s s i s t ed  by engineers F.L. 
Zarzhevskaya, R. L.Kreyer, and L.G.Rudnitskiy. 

Reviewer  R.A.Mikheyev made many valuable coments.  

The authors express t h e i r  s incere  g ra t i t ude  t o  these  coworkers. 
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NOTATIONS Lz 
Ae-rsyngnic Character is t ics  

cy = angle of a t t ack  of ro to r ;  
a, = angle of a t t ack  of blade section; 
cyo = angle of zero l i f t  of blade p r o f i l e ;  
Acy = downwash angle of flow; 

a, = 	 dcv = c; = tangent of angle of slope of t h e  l i f t  curved a  with respect t o  angle of a t t ack  of t h e  p r o f i l e ;  

CP = tan”’ -	u x  = inflow angle i n  blade section; 
U Y  

= c i r cu la t ion  i n  blade section; 
M = Mach number of blade section; 

M, = average Mach number with respect t o  azimuth, 

i n  t i p  sect ion of blade (MO = 2%); 

M,, = f l i g h t  Mach number (Mf l  = 4); 
C

T, t = 2= t h r u s t  and coeff ic ient  of t h r u s t  of ro to r  
0 

/ T ) *(t = Q POTP( w R ) ~  i s  
CH, h = 2= longi tudinal  force and coe f f i c i en t  of longi
0 

Ht u d i n a l  force of r o t o r  (h = 
Q ~ ~ I T R ~ ( U I R ) ~  

S, s = -	c, 
= la teral  force and coeff ic ient  of l a t e r a l  force 

0 
Sof r o t o r  (s = -2 ponR2(wR)’ ); 

-mM,, m, = 2 = torque and torque coe f f i c i en t  of r o t o r  
0 

Mt 


N = power of motor (of r o t o r  i n  Chapt.11); 
CY, t, = 2 = l i f t  and l i f t  coe f f i c i en t  of r o t o r
0 

Y \ 

( t Y  = 5 ~ T T R ~ ( W R ) ”h 

x i i i  



X, t, = -	CX = propulsive force  and coef f ic ien t  of pro- /6
(5 

puls ive  force  of r o t o r  \ t ,  = 
$ ~ O - T T R ~ ( W R ) ~  

1 X -); 
\ 

cy ,  cXp = 	coe f f i c i en t s  of l i f t  and p r o f i l e  drag of 
blade sec t ion  ( a i r f o i l )  re fe r red  t o  dynamic 
pressure pv2 ;  

B = coef f ic ien t  of t i p  losses ;  

Veloci t ies  

wR = angular ve loc i ty ;  

V, (7 = -)V 
WR / 

= path  ve loc i ty  of he l icopter  f l i g h t ;
\ 

V,, V,, V, = horizontal ,  ve r t i ca l ,  and l a t e r a l  components 
of f l i g h t  veloci ty;  

v, (7= 2)O R  = induced veloci ty;  

I-
=U, 	 : U = u\r e l a t i v e  ve loc i ty  of flow pas t  a blade 

/ w R  element; 

- u x  - u \
U,, U,, (u. = -, U, = A)= hor izonta l  and v e r t i c a l  components of re lawR wR ’ t i v e  ve loc i ty  of flow p a s t  a blade element; 

h = coef f ic ien t  of f law;  
p, = c h a r a c t e r i s t i c  ( coe f f i c i en t )  of ro to r  per

f ormance . 
Geometric Charac te r i s t ics  

D = diameter of ro to r ;  
R = radius  of ro tor ;  
F = disk area; 
r = radius  of r o t o r  blade sec t ion  iF = 2)-

R / ’  
I  b - ’ 

b = blade chord , b  = -R 9 ’==); b 

zb = number of blades;  
z ,  = number of r o t o r s ;  

o =  zbb0*7 = load f a c t o r  of ro to r ;
TTR 

th.h, t V e h  = distance from axis  of r o t a t i o n  of ro to r  t o  
t h e  horizontal  ( f lapping)  and v e r t i c a l  
(drag) hinges, respect ively;  

c = thickness of p r o f i l e  section, c = 2; 
.~ b
$ = f lapping angle of blade; 



a,, b, = coef f ic ien ts  of flapping; 
cp, cpo = blade angle (p i tch) ;  angle between chord of blade 

p r o f i l e  and plane of rotat ion;  
N., 11 = angles of def lec t ion  of automatic p i t c h  controlmecha

n i s m ;  N. with index = mutual influence coeff ic ient  of 
l i f t i n g  elements; 

�lo = blade angle at F = 0.7 f o r  @ = N. = 7 = 0; 
�I1, � l a  = components of change of blade angle r e l a t ive  t o  the  

plane of rotat ion,  due t o  def lec t ion  of t he  automatic 
p i t c h  cont ro l  mechanism; 

v = change of blade angle due t o  e l a s t i c  deformation of 
blade. 



HELICOPTERS; CALCULATION AND DESIGN. V0L.I: AEEODYNAMICS L2 
M. L.Milt, Editor 

ABSTRACT. A r e v i e w  of t h e  h i s t o r i c a l  development of Russian 
and Western helicopters,  i n  s i z e  and l i f t  capacity, f o r  c i v i l  
and m i l i t a r y  purposes i s  followed by de ta i l ed  discussions on 
r o t o r  aerodynamics f o r  various angles of a t tack,  blade se t t i ng ,  
f lapping angle, center-of-pressure posi t ion,  blade vibrat ion 
(natural ,  forced, harmonic, e t c  .), and other  r o t o r  parameters 
i n  t h e i r  inf luence on r o t o r  rpm and c r a f t  s t a b i l i t y .  Formulas 
are given f o r  t h e  forces  and moments of r o t o r  damping i n  hover
i n g  and forward f l i g h t ;  f o r  t h e  r e d i s t r i b u t i o n  of aerodynamic 
forces  over t h e  r o t o r  d i sk  due t o  flapping; f o r  cycl ic  p i t c h  
change of r o t o r s  with var iable  and constant p i t ch .  The theory 
of an i d e a l  hel icopter  i s  developed on the  basis of optimum 
blade p r o f i l e ,  prevention of r o t o r  p r o f i l e  losses ,  and proper 
balancing. F l u t t e r  i n  hovering and forward f l i g h t  i s  calcu
lated,  with emphasis on f r i c t i o n  i n  the axial  hub hinges and 
t r a n s f e r  of xibrat ions through t h e  automatic p i t c h  control.  

CHAPTER I 

EVOLUTIONAL HISTORY OF HELICOPTERS AND BASIC 
DESIGN PFUNCIPUS 

(Select ion of Parameters and Configuration) 

Section 1. Evolution of t he  Hel icmter  Industry 

Designing i s  always directed toward t h e  future .  However, f o r  a better 
p i c t u r e  of t h e  p o t e n t i a l i t i e s  of t h e  f u t u r e  development of helicopters it i s  
use fu l  t o  attempt t o  understand t h e  basic  t rends of t h e i r  evolution from p a s t  
experience. Naturally, we are not i n t e re s t ed  here i n  t h e  prehis tory of heli
copter construction, which we w i l l  only b r i e f l y  mention, but  i n  i t s  h i s to ry  from 
the  t i m e  when t h e  hel icopter  as a new type of a i r c r a f t  became useful f o r  p rac t i 
c a l  application. 

The wri t ings of Leonard0 da Vinci going back t o  l.483 contained the  f irst  
mention of an apparatus with a v e r t i c a l  rotor,  a hel icopter .  The first s tage of 
evolution ranges from t h e  model of a hel icopter  developed by M.V.Lomonosov i n  
17% through a long series of designs, models, and even ful l -scale  apparatus 
which w e r e  not destined t o  rise i n t o  the  air, t o  t h e  construction of t h e  worldts 
first hel icopter  which, i n  1907, was able t o  become airborne. T h i s  four-rotor 
hel icopter  w a s  constructed by t h e  French designers Breguet and Riche. I n  1923, 
a passenger became airborne f o r  t h e  first time i n  the  USA i n  a hel icopter  de
signed by de Bothezat. The first world a l t i t u d e  record of a hel icopter  of 18 m 
was  set  i n  1930 on t h e  I t a l i a n  coaxial  hel icopter  by dtdscanio. 
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In Russia, a single-rotor he l icopter  was buil t  i n  1911, on t h e  basis of 
t h e  s c i e n t i f i c  research by N.Ye.Zhukovskiy devoted t o  hel icopter  ro tors ,  by a 
group of his students  headed by B.N.Yur'yev. The configurations of this machine 
represent t h e  basic  scheme of t h e  single-rotor he l icopters  used widely at 
present .  B.N.Yurtyev was able t o  resume this work only i n  192.5. I n  1932, a 
group of engineers headed by A.M.Cheremukhin constructed t h e  hel icopter  TsAGI 
1-EA (Fig.l.1) which reached an a l t i t u d e  of 600 m and stayed i n  t h e  air f o r  
le min, which - f o r  t h a t  time - was an  outstanding achievement. It su f f i ces  t o  
say t h a t  t h e  o f f i c i a l  a l t i t u d e  record establ ished three years la te r  on Breguetts 
new coaxial  hel icopter  was only 180 m. 

A t  this time the re  was a pause i n  t h e  development of hel icopters .  A new 
branch of rotary-wing a i r c r a f t  came t o  t h e  foref ront ,  known as autogiros.  The 
idea  of t h e  autogiro,  as an a i r c r a f t  with a ro t a ry  wing ( f r e e l y  ro ta t ing  air
f o i l )  never los ing  speed, occurred t o  t h e  young Spanish engineer Juan de l a  
Cierva i n  the  1920s. A t  t h a t  time, conventional a i r c r a f t  whose development had 
been vigorous during t h e  years of World War I and which, by then, carr ied 
armament and thus  had grea te r  wing loading w e r e  troubled by a new problem of 

/8 
spin,  i.e., s t a l l i n g .  It appeared simpler t o  develop a safe and su f f i c i en t ly  
perfected autogiro than  t o  bui ld  a helicopter.  The rotor ,  freely ro t a t ing  due 
t o  t h e  r e l a t i v e  flow, eliminated t h e  need f o r  complex reduction gearing and 
transmissions. The hinged attachment of t h e  r o t o r  blades t o  t h e  hub used on 
autogiros  gave far g rea t e r  s t rength  t o  t h e  blades and higher s tabi l i ty  t o  t h e  
autogiro.  Final&, engine failure ceased t o  be a threat, as had been the  case 
i n  t h e  first hel icopters ;  t he  autogiro, with autorotat ing blades, had no d i f f i 
cu l ty  i n  landing a t  low speed. 

.-_ -. . . . ..... .. . . . - .. . 

Fig.l.l Helicopter TsAGI 1-EX. 

Cierva, working i n  England, created severa l  autogiro designs, t he  best 
known of which was  the C-30 autogiro which was  produced as a p i l o t  series. 
Autogiros w e r e  a l s o  bu i l t  i n  t h e  USA by t h e  P i t c a i r n  and Kellett Companies and 
i n  the  Soviet  Union at TsAGI by t h e  designers I.P.Bratukhin, V.A.Kuznetsov, 
N.I.Kamov, ,N.K.Skrzhinskiy, M.L.Mil,, and others.  

The f ly ing  speed of Soviet autogiros i n  1937 reached 260 km/hr. The A-7 
autogiros designed by N.I.Kamov were used a t  t h e  f r o n t  during t h e  first year of 
World War 11. 
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The great  l i f t  capacity of t h e  r o t a t i n g  r o t o r  gave t h e  autogiro a shor t  
ground run. Even though, a mechanical d r ive  from the  engine, f o r  spinning t h e  
r o t o r  before takeoff,  was  used i n  this design t o  f u r t h e r  shorten the  takeoff 
run. I n  t h e  design of t h e  B r i t i s h  C-4.0 autogiro t h e  r o t o r  was given a spin-up 
before f l i g h t  t o  an rpm such that, a t  t h e  i n s t a n t  of disengagement from t h e  
engine - which, i n  forward f l i g h t ,  ro t a t ed  t h e  p rope l l e r  - t h e  machine, due t o  
t h e  marked increase i n  p i t ch ,  took off  without a run, r i s i n g  v e r t i c a l l y  i n t o  t h e  
air. 

Only one s t ep  remained f o r  t h e  development of a t r u e  helicopter.  And this 
step,  as i s  always t h e  case i n  technology, was  made almost simultaneously i n  
various countries.  T h i s  was  t h e  beginning of t h e  present development s tage of 
hel icopters .  It was started by f l i g h t s ' o f  t h e  FW-61 hel icopter  designed by 
Professor Focke i n  G e r m a n y  (1937), t h e  VS-300 hel icopter  designed by Sikorsky 
i n  the  USA (1939), and t h e  Wmegalf hel icopter  designed by 1.P.Bratukhin i n  the 
USSR (1940). All t h ree  of t hese  hel icopters  used a hinged r o t o r  capable of 
autorotation, which had already become standard f o r  autogiros.  

World War I1 somewhat delayed t h e  development of hel icopters .  They w e r e  
s t i l l  unsuitable f o r  p r a c t i c a l  use, and t h e  ways and means f o r  experimental 
s tud ie s  w e r e  l imited.  After t h e  end of t h e  w a r  (1946 and 1947), large numbers 
of designers and inventors invaded this new and promising area of development of 
av ia t ion  engineering. Within a short  time, l i t e r a l l y  dozens of new hel icopter  Lp 
designs were created. T h i s  was a contest  of t h e  most diverse  schemes and con
f igurat ions,  generally of t h e  single- o r  two-seater type and used mainly f o r  
experimental purposes. Mi l i t a ry  agencies w e r e  t h e  only users of this expensive 
and complex equipment. The f irst  hel icopters  i n  various countries were used as 
l i a i s o n  and reconnaissance m i l i t a r y  a i r c r a f t .  

I n  t h e  development of helicopters,  j u s t  as i n  many other  areas of tech
nology, one can c l e a r l y  d i s t ingu i sh  two t rends of development: t h e  quant i ta t ive 
t rend concerned with s i z e  of t h e  machine and t h e  almost simultaneous qua l i t a t ive  
t rend concerned with improvement of t h e  c r a f t  within a c e r t a i n  s i z e  o r  weight 
class. The former t rend represents  development with respect t o  l i f t  capacity 
and t h e  second with respect t o  improvement of t h e  t a c t i c a l  o r  economic f ea tu res  
of helicopters.  

1. Development of He-licapters i n  Size 

A study of foreign hel icopters  i nd ica t e s  t h a t  t h e  use of helicopters f o r  
landing Marines from ships  was the determining f a c t o r  i n  t h e  f u r t h e r  development 
of m i l i t a r y  hel icopters  as troop c a r r i e r s .  The American landing of troops i n  
S-55 hel icopters  at Inchon during' t h e  Korean War (1951) was a t y p i c a l  example 
of this trend. 

The s i z e  range of t h e  assault hel icopters  was predicatedon bulk and weight 
of ground t ransportat ion means used by t h e  troops and t o  be dropped by air. It 
i s  a known f a c t  t h a t  conventional weapons - mainly ar t i l lery - transported by 
prime movers are close i n  weight t o  t h e  weight of t h e  prime movers themselves. 
Thus, t h e  l i f t  capacity of t h e  first t ransport  hel icopters  i n  armies of other  
countr ies  was 1200 - 1600 kg ( t h e  weight of a l i g h t  military t ruck used as 
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prime mover together with t h e  respective weapons). Subsequently, t he  required
l i f t  capacity of hel icopters  was  increased t o  6 - 8 tons which, i n  accordance 
with military technique, was based on automobile c a r r i e r s  with a l i f t  capacity 
of 3 - 4 tons.  Sti l l  later, f o r  example i n  p r o j e c t s  developed by Sikorskg Air
c r a f t ,  the  l i f t  capacity of hel icopters  rose t o  20 - 25 tons  and f i n a l l y  t o  
36 - 40 tons. Such weights correspond t o  t h e  weight of l i g h t  and medium tanks 
or of self-propelled landing c ra f t .  Whether.this development trend i n  s i z e  in
crease wi l l  ever come t o  an end depends on the  constantly changing m i l i t a r y  
planning. Artillery systems are being l a r g e l y  replaced by missiles, f o r  which 
reason the  foreign press  of ten  mentions t h e  need t o  t ranspor t  missi les  o r  miss i le  
systems, t he  prime f a c t o r  i n  determining t h e  s i z e  of modern helicopters.  

In  the  attempt t o  s ing le  out t h e  main t rend of fu ture  hel icopter  develop
ment, a f t e r  successively out l ining the  c rea t ion  of new types of machines i n  the 
f e w  designer firms t h a t  have been successful  i n  developing experimental models 
i n t o  p r a c t i c a l  prototypes and i n  s t a r t i n g  p i l o t  s e r i e s ,  i t  wi l l  be found t h a t  

increase i n  the lift capacity oft h e  major development was toward an helicopters.  

USA-C h a r a c t e r i s t i c s  

M i  -1 
--- .. . 

Year o f  product ion 1948 1962 P r o j e c t  

L i f t  c a p a c i t y ,  i n  0 .3  5-6 20 
ton- f o r c e  

I n c r e a s e  o v e r  p r e v i o u s  4 3 
model 

F l y i n g  weight,  2 . 3  17.0 -
ton- f o r c e  

TABLE 1.1 
.. -.. - -

H e l i c o p t e r s  

USSR 
~ 

Mi-4 Mi-6 	 S-51 S-58 
_.. 1 . .  

1952 1957 1946 1956 
1.2-1.6 8-12 0 .3  1.2 

4 7 3 

7.2 39-41 2 6 

Table 1.1gives data  characterizing t h e  development of t he  l i f t  capacity 
of single-rotor hel icopters  of t he  same configuration by two a i r c r a f t  construc
t i o n  departments - helicopters M i - 1  (Fig.l.2), Mi-& (Figol.3), Mi-6 (Fig.l.&), 
Mi-10 (Hg.l .5),  S-51 (Fig.l.6), S-58 (Fig.l.7), and S-64 ( f iga l*8) .  

A s  we see from Table 1.1, the  l i f t  capacity increases  severalfold w i t h  
each prototype. 

However, it i s  easy t o  show tha t  an increase i n  s i z e  and weight of heli
copters i s  impossible without a qua l i ta t ive  improvement of t he  engines used /10
(reduction i n  weight p e r  u n i t  horsepower and increase i n  econony, i .e. ,  decrease 
i n  f u e l  consumption). 

Actually, an increase i n  f ly ing  weight i s  possible  e i t h e r  by increasing t h e  
ro to r  span o r  t he  i n s t a l l e d  power, or both f ac to r s  
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G=T= (kqND)". .  

The weight of t h e  engine is  proport ional  t o  t h e  first power of i ts  output, 
w h i l e  t h e  weight of t h e  machine itsew increases  only i n  proportion t o  t h e  2/3 
power. 

Fig.l.2 M i - 1  Helicopter. 

Thus, a hel icopter  with a l a rge r  power-to-weight r a t i o  w i l l  have a rela
t i v e l y  grea te r  design weight, owing t o  t h e  power p lan t .  

In  l i k e  manner t h e  weight of t he  blade and, accordingly, the  weight of t h e  
l i f t i n g  system change i n  proportion t o  the  t h i r d  power of t h e  diameter, whereas 
t h e  weight of t h e  he l icopter  again changes only i n  proport ion t o  t h e  2/3 power. 
Here also,  t he  weight of the  l i f t i n g  system of a l a r g e r  hel icopter  proves t o  be 
r e l a t i v e l y  greater .  Thus, on increasing t h e  s i z e  of a hel icopter  i t s  load 
r a t i o ,  i .e. ,  t h e  r a t i o  of usefu l  load t o  f ly ing  weight, should be decreased, if 
t he re  i s  no weight improvement i n  engines, blade design, reduction gears, o r  
transmissions. Actually, i n  the  1930s papers were published t h a t  demonstrated 
t h e  uselessness of developing hel icopters  with a power grea te r  than 500 hp, 
s ince  an increase i n  power would not lead t o  an increase i n  useful  load. /13
According t o  technica l  spec i f ica t ions  of t h a t  time, t h e  weight of ro tors ,  reduc
t i o n  gears, and of t h e  e n t i r e  machine as a whole increased w i t h  increasing power 
more rapidly than t h e  l i f t .  

However, i n  developing a new mi l i t a ry  - and espec ia l ly  a new general-
purpose - helicopter,  t h e  designer w i l l  not t o l e r a t e  a lowering of t h e  achieved 
level of load r a t i o .  

Thus, a quantitative^^ development with respect  t o  s i z e  i s  impossible w i t h 
out  a qua l i ta t ive  development; i n  f a c t ,  it always i s  concurrent with t h e  qualita
t i v e  advance of technology. 

The development of hel icopters  l a r g e r  than t h e  first two- o r  three-place 
models took p lace  i n  a comparatively shor t  time, s ince  t h e  un i t  weight of p i s ton
engines always decreased with an increase i n  power. But i n  1953, a f t e r  develap
ment of t h e  l3-ton Sikorsky S-56 hel icopter  (Fig.l.10) with two 2300-h~ p i s ton  
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F'ig.l.3 Mi-4 Helicopter. 

Fig.l.4 Mi-6 Helicopter. 

F'ig.l.5 Mi-10 Helicopter. 
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f ig . l .6  S - 5 l  Helicopter. 

Fig.l.7 S-58 Helicopter. 

Fig.l.8 S-64. Helicopter. 
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engines, the s i z e  series of hel icopters  i n  t h e  West was  discontinued and only 
i n  the  USSR was it possible ,  i n  195'7, t o  develop the  Mi-6 hel icopter  with a 
f ly ing  weight of 40 tons  by using turboprop engines. 

2. Qualitative DeveloDmenLof Helicopters 

In t h e  middle of t he  1950s, t he  r e l i a b i l i t y  of hel icopters  became appreci
ably grea te r  so t h a t  a l s o  t h e i r  use p o t e n t i a l i t i e s  f o r  t h e  nat ional  economy in
creased. T h i s  moved problems of economy i n t o  the  foreground. 

The operating cost  p e r  hour of a hel icopter  plays a decis ive ro le  i n  
whether t o  use them for geological surveys, i n  agr icul ture ,  or f o r  transporting 
passengers. Amortization, i.e., t he  p r i c e  of a hel icopter  divided by i t s  
service l i fe ,  cons t i tu tes  a la rge  po r t ion  of t h e  cost .  The service l i f e  of t h e  
hel icopter  i s  determined by the  du rab i l i t y  of i t s  components. The problem of 
increasing t h e  fa t igue  s t rength  of blades, shaf t s ,  transmissions, ro tor  hubs, 
and other  units of t h e  hel icopter  became a prime problem, which hel icopter  de

s igners  are s t i l l  studying a t  
present .  Today, a l i f e  of 1000 
hours i s  no longer a r a r i t y  f o r  
series-produced hel icopters  and 
there  are no grounds t o  doubt i ts  
fu r the r  increase.  When using 
hel icopters  i n  transportation, 
t he  concepts of cost  pe r  ton-mile 
of t he  transported load and t h e  
cost  p e r  passenger-mile become 
decisive.  T h i s  i s  the hourly op
era t ing  cos t  divided by hourly 
productivity,  i .e. ,  by the  product 
of the  weight of t he  payload and 
t h e  cruis ing speed. 

Since t h e  construction weight 
la rge ly  determines the  p r i c e  of a 
helicopter,  t h e  d i r ec t  r e l a t ion  
between economy and load r a t i o  of 
t h e  hel icopter  i s  obvious. Flying 
speed a l s o  acqvilres a new ro le .  

1945 1950 1955 1960 1965 
"his automaticallS. leads t o  

Fig.l.9 Size Evolution of Helicopters. the  idea of developing hel icopters  
with higher economic indexes. The 
development of turboprop engines 

with an appreciably smaller un i t  weight t han  p i s t o n  engines made it possible  t o  
produce hel icopters  with a l a rge r  load r a t i o  w h i l e  re ta ining,  i n  each weight 
category, t he  r o t o r  dimensions. 

GeneralQ, replacement of p i s ton  engines by turboprop engines not o d y  
results i n  a decrease i n  r e l a t i v e  weight of t h e  power p lan t  but a l so  i n  some 
increase i n  power; produces a dua l  e f f ec t  and a l s o  leads t o  an appreciable 
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increase i n  cruis ing speeds. 

In t h e  diagram (Fig.l.9) we t raced these  quant i ta t ive  and qua l i t a t ive  de
velopment t rends  of t h e  most common hel icopters  produced by t h e  three design 
engineering departments. Given are t h e  s ingle-rotor  hel icopters  designed by 
Sikorsky Aircraf t  (USA), t h e  s ingle-rotor  Soviet  hel icopters ,  and t h e  fore- & 
and-aft hel icopters  of t h e  Piasecki  Aircraf t  Corporation, which subsequently 
became t h e  Vertol LEV. of Boeing. 

-@ > . * .  

Fig.l.10 S-56 Helicopter. 

Thus, t he  s i z e  development t rend  on the  bas i s  of p i s ton  engines (solid 
l i n e s  i n  F'ig.l.9) was terminated as e a r l y  as 1953. Then, as turboprop engines 
of t he  necessary s i z e  were developed over a period of f i v e  t o  t e n  years, second-
generation he l icopters  appeared (poin ts  r e fe r r ing  t o  these i n  the  diagrams a re  
connected w i t h  t h e  o r i g i n a l  models by the  broken l i n e  of qua l i t a t ive  develop
ment). 

Thus, t he  he l icopters  S-55, S-58, and S-56 with p i s ton  engines served 
as prototypes, ec t ive ly ,  f o r  t h e  turboprop machines S-61 (Fig.l.ll), s-62 

/16 
and S-65 (Fig.l:;3. The same holds f o r  t he  fore-and-aft he l icopters  of t h e  
Vertol  Div. of Boeing V-lO7 and vB.l& 1tChinook" (Fig.l.13). 

The Soviet turboprop he l icopters  Mi-2 ( f ige l .&)  and M i - 8  (Fig.l.15) a l s o  
cons t i t u t e  a fu r the r  development of t h e  well-known he l icopters  M i - 1  and Mi-&. 

The unusually long serv ice  l i f e  of hel icopters  i s  striking i n  comparison 
with airplanes.  Almost a l l  p i s t o n  hel icopters  shown i n  the diagram (wi th . the  
exception of t h e  experimental he l icopters  XL16 and S-56) were  i n  production and 
service before t h e  appearance of t h e i r  second turboprop generation, and t h e  Mi-1 
hel icopter  has managed t o  s t a y  i n  production f o r  15 years  and i s  approaching 
t h e  record longevity of t h e  E-2 airplane.  

We can assume t h a t  t h e  weight categories  of he l icopters  indicated i n  
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Fig.1.U S-61Helicopter. 

Fig .1.12 ,%65 Helicopter. 

. .  , ....I 


Fig.l.13 Chinook Helicopter. 
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Table 1.2 have become establ ished by now. 

What w i l l  be t h e  f u t u r e  development of helicopters? /18 
The process of developing a new generation of helicopters,  on t h e  basis of 

improved turboprop engines, i s  now being completed i n  t h e  l i g h t e s t  category of 
helicopters.  The l a g  i n  this weight category can be a t t r i b u t e d  t o  d i f f i c u l t i e s  

Fig .le& Mi-2 Helicopter. 

Fig.l.15 Mi-8 Helicopter. 

i n  developing a l i g h t e r  and simultaneously more economic low-power turboprop 
engine i n  comparison with p i s t o n  engines. I n  t h e  end, such an engine was de
veloped i n  the  USA by t h e  Allison Company - this was t h e  T-63 weighing only
174 l b s  at a power of 315 hp and a consumption of 280 gm/hp-hr. The award i n  
the  competition f o r  a l i g h t  three- o r  four-place m i l i t a r y  hel icopter  i n  the  USA 
was made t o  t h e  Hughes Aircraf t  Compaw, which created t h e  UH-6A hel icopter
(Fig.l.16) weighing only 2680 l b s  at a n  empty weight of about 1340 lbs ;  this is 
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Fig.l.16 Hughes Helicopter UH-6A. 

8’ip. lOl7 Fairchi ld  Hiller Helicopter FH-ll00. 

an appreciable technica l  achievement which required a number of new design solu
t ions,  i n  p a r t i c u l a r  t h e  use of a rotor with an  e l a s t i c  spr ing re ten t ion  of t he  
blades instead of t h e  conventional hinge attachment. T h i s  hel icopter  has a high 
load r a t i o  (50%) combined with a high cruis ing speed (213 km/hr), f o r  a l i g h t  
machine. The Fairchi ld  K U e r  F’H-llOO i s  a l s o  i n  this c l a s s  (Fig.l.17). It i s  
obvious t h a t  these  hel icopters  considerably ou t s t r ip  t h e  l i g h t  l i a i s o n  recon
naissance a i r c r a f t  of World War 11, both with respect t o  speed and l i f t  capacity 
and, furthermore, have t h e  grea t  advantage of v e r t i c a l  takeoff and landing.
Thus, t h e  decis ion made i n  a number of countries t o  replace l i g h t  reconnaissance 
aircraft by hel icopters  i s  not surprising. 
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TABLE 1.2 

~ - _._-

C h a r a c t e r i s t i c s  L i g h t  L i g h t  
Medium 

1.ia i  son 1 Mult i - 1 T>i:i:rt
Transport 

I 
purpose  

L i f t  c a p a c i t y  or 2-4 per- 1 ton or I 3 ton o r  6-8 ton 20 ton 40 tonnumber o f  p l a c e s  10-12 per- '25 30 per
s o n s  [ - s o n s  

FI i g h  t weight  1.5-2 ton 3.5-4 ton 10-12 ton 20-40 to] 

Of course, a new generation of l i g h t  hel icopters  Will a l s o  be developed i n  
other  countries of t h e  world. In  France, this i s  being done on t h e  basis of t h e  
3.50-hp Turbomecca-Oredon-I11 engine. I n  West Germany, t h e  %&ow Conipaqy i s  
working on such a machine. 

Thus, i n  speaking of t h e  qua l i t a t ive  development trend of helicopters,  i t  
i s  obvious from the  foregoing t h a t  each new generation of engines gives rise t o  
a new generation of hel icopters  i n  a l l  weight categories, simultaneously having 
g rea t e r  econow and better f l i g h t  performance data.  T h i s  l i n e  of development 
probably has no upper limit. 

As regards t h e  s i z e  evolution of helicopters,  no machine with a l i f t  capaci
t y  of 20 tons (see Table 1.2) has been developed as yet .  

According t o  a request f o r  proposals, announced i n  the  USA, firms such as 
W a n ,  Fairchi ld  Hiller, and Sikorsky Aircraf t  are working on t h e  development of 
a hel icopter  with a l i f t  capacity of 20 tons. I n  West Germany, t he  Bzlkow 
Company i s  working on a hel icopter  with a 40-ton l i f t  capacity. Below, we w i l l  
r e v i e w  the  possible  ways of developing heavy and superheavy helicopters.  

3 .  Speci=al-Pumose Helicopters /19 
It i s  necessary t o  mention a l s o  t h e  development of various models of 

special-purpose hel icopters  w i th in  t h e  indicated weight categories.  I n  this 
connection, l e t  us make a brief remark on t h e  new concept of using hel icopters  
i n  t h e  Army which has r ecen t ly  developed i n  t h e  West - especial ly  i n  the  USA 
nameb, t h e  c rea t ion  of so-called airborne mobile troops. 

I n  this instance, hel icopters  are used i n  place of motorized t ransport  f o r  
a l l  types of troop movement. The B e n  11Iroquois11 hel icopter  UH-ID (Fig.l.l8) i s  
p a r t i c u l a r l y  adapted f o r  t ransport ing troops by platoons (11-12men). 

Z g h t  reconnaissance three- o r  four-place armed hel icopters  (Hughes heli
copters OH-6A); f l y i n g  i n  f r o n t  of battle formations, are a l s o  a necessity.  
Finally,  regular  troop-carrier hel icopters  of various classes,  supplying t h e  
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means of ground f i r e  support such as a r t i l l e r y ,  rockets, and tanks, take over 
t h e  t a s k  of troop movements. 

Also used i n  r e a l i z a t i o n  of this concept are hel icopters  for air  support of 
infantry,  cons t i tu t ing  a unique type of assault hel icopters .  Ordinary heli
copters armed with radio-controlled missiles and weapons a r e  present ly  used for 
this purpose. 

F’ig.l.18 Bell llIroquois11 Helicopter UH-LD. 

Such an airborne mobile d iv is ion  is supplied from the air by airplanes and 
hel icopters  of the  Air Force Materiel Command. 

It i s  not d i f f i c u l t  t o  detect  behind this concept pas t  mi l i ta ry  experience, 
wherein any new type of t ranspor ta t ion  t h a t  became accessible engendered a new 
type of troops. Beginning w i t h  cavalry, we r e c a l l  the  bicycle and motorcycle 
units of World W a r  I, and t h e  motorized infantry,  motorized divis ions,  and air
borne troops of World War 11. 

It is  c l ea r  by now t h a t  this concept i s  f inding followers i n  many western 
countries 

Thus, the  12-place SA-330 (F’ig.l.19) hel icopter  ordered by t he  French Army 
corresponds t o  t h e  11-place Iroquois hel icopter  (USA). A similar machine i s  
being designed a l so  i n  West Germany. 

The need t o  r e t a i n  the  c l a s s  of 10-to 12-phce l i g h t  t ransport  hel icopters  
i s  confirmed a l so  by the  p r a c t i c a l  experience with the  12-place Mi-4 helicopters 
i n  the  nat ional  economy. It i s  obvious tha t  t h e  development of more economic 
(for a i r l i n e s )  30-place Mi-8 helicopters does not i n t e r f e r e  with the  advantage
of using t h e  10-place hel icopters  i n  the na t iona l  economy for geology and other  
purposes. 



-.c 

4. Compound Helicopters with Additional Wines_  - Rotocraft /20 
O f  considerable i n t e r e s t  was t h e  appearance of compound hel icopters  which 

use propel le rs  f o r  forward f l i gh t ,  as autogiros did earlier. Such are the  
Rotodyne Ferry designed by Hislop and especial ly  the  ro tocraf t  of t he  Soviet 
designer N.I.Kamov. 

In 1964, world records f o r  machines of this type w e r e  set on t h e  ro tocraf t  
Ka-22: speed 360 km/hr, l i f t  capacity 16 tons. 
focused a t t en t ion  of t h e  hel icopter  world, after 20 years, on t h e  side-by-side 

N.I.Kamov*s ro toc ra f t  again 

configuration which had been successful ly  developed by Focke i n  Germany and by 
1.P.Bratukhin i n  the USSR. T h i s  machine reca l led  t h e  great  advantages of t h e  
side-by-side configuration i n  f ly ing  range and l i f t  capacity with a running 
takeoff which must be accounted f o r  i n  a successful design. 

f ig.l-19 SA-330 Helicopter. 

A fu r the r  development of compound hel icopters  with propel le r  i s  represented 
by the  hel icopter  prototype with addi t iona l  tu rboje t  engines now being proposed 
i n  the West f o r  mi l i ta ry  purposes. 

An in t e re s t ing  rototype of an assault hel icopter  i s  the  Lockheed composite 
hel icopter  (fig.l.207 . T h i s  two-place experimental machine, i n  addi t ion t o  the  
main 55C-hp turboshaft engine dr iving a four-blade rotor with e l a s t i c  blade re
tention, uses a turbofan engine mounted on a small wing and permitt ing rev-up 
t o  426 km/hr when b r i e f l y  cut  i n  during f l i g h t .  

The successful development of dual-flow turbofan engines, e s p e c i a l b  with 
a la rge  bypass r a t io ,  may lead t o  t h e  development of models which, a t  cruis ing 
speed, would have a spec i f i c  consumption of t h e  order of C, = 0.5 kg/kg hr.  
Since 

c,= 75rl 
v R’ 

it i s  not d i f f i c u l t  t o  ca lcu la te  t ha t ,  i n  this case, t h e  consumption p e r  horse
power of an equivalent propel le r  engine at a propel le r  e f f ic iency  of 0.75 and a 
f ly ing  speed of 150 m/sec i s  only about 200 gm/(hp hr). 
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If we a l s o  t ake  i n t o  account t h e  small weight of such a motor i n  comparison 
with t h e  weight of a turboprop engine, i t  becomes clear t h a t  t h e  use of turbofan 
engines of this type can be economics- advantageous even a t  lower cruis ing & 
speeds and may lead t o  t h e  development of compound hel icopters  with an auxiliary 
t h r u s t  engine and Wing f o r  passenger t r anspor t  between urban centers  a t  cruis ing 
speeds of t h e  order of 350 - 4.50 km/hr. A t  t h e  same time, such hel icopters  may 
f i n d  mi l i t a ry  use as fire-support c r a f t  f o r  troops. 

Fig.1.20 Lockheed Helicopter S 5 l A .  

In analyzing t h e  ways and means of hel icopter  development, one cannot side
s t ep  t h e  question of v e r t i c a l  takeoff a i r c r a f t .  W i l l  t h e  development trend and 
use of hel icopters  come t o  an abrupt end with t h e  appearance of such c r a f t ,  as 
had been t h e  case with autogiros when hel icopters  came i n t o  being? 

Section 2. 	 The Helicopter C g r i p e V - e r t L c a l  Takeoff 
and LandinR and Short Takeoff and Landing 
Aircraf t  

When t a lk ing  of t h e  prospects of hel icopter  engineering development, one 
must study t h e  problem of t h e  p o s s i b i l i t y  of coexistence of hel icopter  and 
v e r t i c a l  takeoff a i r c r a f t .  Do hel icopters  have a future? O r  are t h e  potenti
al i t ies of t h e  hel icopter  exhausted? Can t h e  hel icopter  successfully compete 
with v e r t i c a l  takeoff a i r c r a f t ?  W i l l  t h e i r  development trend terminate, as was 
t h e  case with autogiros which ceased t o  exist with t h e  appearance, i n  1940, of 
t he  first successful helicopt,ers? A comparative inves t iga t ion  of hel icopters  
and VTOL o r  STOL c r a f t  as means i n  t ransport  av ia t ion  not requiring an a i r f i e l d  
w i l l  enable us t o  answer these  fundamental problems. 

It i s  known t h a t  recent ly  the matter of v e r t i c a l  takeoff a i r c r a f t  ( i n  
English, VTOL) and short-run a i r c r a f t  ( i n  English, Sn>L) has become urgent’-. 
(For footnote, see follow5ng page) 
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Actually, t he  present f l y i n g  speed of f ighters ,  reaching 2500 - 3000 km/hr, 
requires such high-power engines t h a t  very l i t t l e  remains t o  add f o r  t h e i r  
v e r t i c a l  takeoff.  Therefore, judging by t h e  l i terature i n  other  countries we 
can assume t h a t  f i g h t e r s  and f i g h t e r  bombers W i l l  be developed mainly as 
VTOL a i r c r a f t  not requir ing t h e  use of an a i r f i e l d .  The d i r ec t ion  of develop-

/22 
ment of t ransport  a i r c r a f t ,  whose power p l an t  i s  l imited by considerations of 
economics or quite simply by f u e l  consumption, tends toward STOL a i r c r a f t .  

Some propose t h a t  t he  f u t u r e  development of hel icopters  w i l l  o f f e r  a b e t t e r  
so lu t ion  t o  t ransport  problems f o r  a range up t o  600 km than do VTOL a i r c r a f t  
or spec ia l  STOL t r anspor t  a i r c r a f t .  

I n  examining t h e  possible  development trend of aviat ion,  we cannot limit 
t h e  study t o  an analysis  based on the  present state of t h e  ar t  i n  science and 
technology . 

By using such methods, many s c i e n t i s t s  have repeatedly arr ived a t  erroneous 
conclusions concerning t h e  l l l i m i t s 1 1  i n  t h e  development of various a i r c r a f t  or 
helicopters,  s ince they did not provide f o r  t he  development of parameters' char
ac t e r i z ing  t h e  weight and economic perfect ion of engines or perfect ion of design 
and materials used. It i s  necessary t o  extrapolate t h e i r  development somehow t o  
the future .  

Leaving room i n  the  fu tu re  f o r  such an invest igat ion,  we w i l l  estimate t h e  
s i t u a t i o n  a t  hand. We Will compare hel icopters  with VTOL and STOL a i r c r a f t ,  
using data  of t h e  best hel icopters  t h a t  have been b u i l t  as w e l l  as of a i r c r a f t  
being i n  the  design or construction stage.  

1. Tackical and Technical Reqr&rements f o r  V E L  and STOL 
MiEtary Tra-nsport A&raft of t he  West 

The t a c t i c a l  and t echn ica l  specif icat ions f o r  VTOL t ransport  a i r c r a f t ,  
worked out i n  the  USA, c a l l  f o r  a f ly ing  range of 550 - 700 km, a l i f t  capacity '  
of 3600 kg or 32 troops, and a cruis ing speed of 450 - 550 km/hr a t  a gross 
weight of not more than 16,000 kg. A t  t h e  same time a very long del ivery range, 
of the order of 4000 km, i s  required, which is  probably intended f o r  the possi
b i l i t y  of ferrying a i r c r a f t  from the  USA over t h e  ocean. 

In studying STOL t r anspor t  a i r c r a f t ,  one comes across ordinary c l a s s i c a l  
p rope l l e r  t ransport  planes such as, f o r  example, the  British-Canadian D e  Havil
land llCaribourl (Eg.l .21).  

By STOL transport  a i r c r a f t  we mean a i r c r a f t  t h a t  use engine power f o r  /23
reducing t h e  takeoff and landing runs. T h i s  i s  useful and necessary. 

A study of STOL a i r c r a f t  must include one of t h e  first a i r c r a f t  of this 
type, t he  French a i r c r a f t  Breguet-941 (Fig.1.22). On this a i r c r a f t  t he  e n t i r e  
wing area is  i n  the zone of p rope l l e r  sl ipstream. A l l  p rope l l e r s  are in t e r -

VTOL - v e r t i c a l  takeoff and landing; STOL - shor t  takeoff and landing. 
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connected by a transmission which provides safe takeoff or landing i f  one o r  
two of i t s  four  engines fa i l .  The p rope l l e r  sl ipstream, def lected downward by 
a double-slotted f l ap ,  produces add i t iona l  lift, which reduces takeoff speed 
and shortens the  run. However, t hese  qualities are achieved a t  t h e  expense of 
an increase i n  empty weight and shorten t h e  range of this STOL a i r c r a f t .  Heli
copters can operate successfully a t  such a range. 

Fig.l.21 British-Canadian Transport Plane 
D e  Havilland IICaribouIl. 

Fig.1.22 French STOL Aircraf t  Breguet-941. 

Despite t he  great  type d i v e r s i t y  of VTOL and STOL a i r c r a f t ,  it i s  not dif
f i c u l t  t o  arrange them l o g i c a l l y  i n  a general  c l a s s i f i c a t i o n  of a i r c r a f t .  They 
should be placed between hel icopters  and airplanes.  

It i s  comonly known t h a t  t h e  l a r g e r  t h e  area over which a i r  flows (it 
makes no difference whether it flows through a r o t o r  o r  t h e  nozzle of a je t  
engine) or, more precisely,  t he  smaller t h e  ve loc i ty  imparted t o  the  a i r  ?ass  
f o r  producing l i f t  i n  a i r c r a f t  o r  helicopter,  t h e  smaller w i l l  be t h e  power re
quired f o r  this p e r  u n i t  weight of machine. 

Thus, t he  ordinary hel icopter  and t h e  a i r c r a f t  taking off  v e r t i c a l l y  by the 
t h r u s t  of j e t  engines a r e  a t  opposite poles  of this c l a s s i f i c a t i o n  (Fig.1.23). 
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I n  the  pursu i t  of grea te r  range and probably higher speed, t he  hel icopter  
was provided with a wing; as the  wing area and hence t h e  l i f t  increased fu r the r  
(s ince the  t h r u s t  of t h e  r o t o r  a t  maxi" f ly ing  speed decreases so much t h a t  it 
i s  insu f f i c i en t  fo r  forward f l i g h t ) ,  propel lers  appeared on the  wing. Thus arose 
the  B r i t i s h  IIRotodyne" (F ig .1 .a )  and t h e  Soviet ro tocraf t  designed by N.I.Kamov 
(Fig.1.25) - a i r c r a f t  which i n  place of one l i f t i ng  and moving system have two, 
one being t h e  ro tor  and wing f o r  sustent ion and t h e  other  being a system of 
t r a c t o r  propel lers ,  incl ined forward t o  the  th rus t  vector of the rotor ,  t o  pro
vide forward propulsion. During v e r t i c a l  takeoff,  t he  wing and t h e  propel lers  
are useless,  and i n  horizontal  f l i g h t  t he  ro to r  i s  s q e r f l u o u s .  The attempt t o  
avoid such superfluous u n i t s  whose weight unavoidably reduces the  useful  load 
led  t o  a configuration with a wing and pivoted ro to r  (Be l l  XV-3, Fig.1.26) i n  /24.
which the  r o t o r  i n  horizontal  f l i g h t  becomes a propel ler ,  and t o  a configuration 
with a pivoted wing whose propel le rs  during takeoff - turning together  with t h e  
wing - a c t  as ro to r s  as, f o r  example, t he  XC-l42 a i r c r a f t  produced by Chance 
Vought - @-an - Hil le r  (Fig.1.2'7). 

J e t  a i r c r a f t  takTgg o f f  

t run 

Fig.l.23 Class i f ica t ion  Scheme f o r  VTOL and STOL Aircraf t .  

F'ig.1.24. Rotodyne Rotocraft. 



! 

Passing now t o  a i r c r a f t  with an engine more powerful than  t h a t  of t h e  above 
types of a i r c r a f t ,  t he  STOL je t  a i r c r a f t  i s  provided with means f o r  downward de
f l e c t i o n  of t h e  blast from the  jet engines o r  from various types of auxiliary 
turbofan engines. 

The configuration of t h e  Breguet-941 a i r c r a f t  (see Fig.1.22) can be re
garded as a var iant  of an ordinary airplane which, t o  increase t h e  l i f t  coeffi
c ien t ,  u t i l i z e s  t h e  a i r f low over t h e  wing created by t h e  propel lers ,  or else as 
a var iant  of an a i r c r a f t  with a pivoted wing where t h e  t h r u s t  of t h e  propel le rs  
i s  not l i t e r a l l y  turned but i s  def lected downward by means of t h e  mechanized 
wing. 

c -7 -u . .  /25 

Fig.1.25 Rotocraft Designed by N.I.Kamov. 

Fig. 1.26 B e l l  XV-3 Convertiplane. 

The diameter of t h e  propel le rs  of the  VTOL a i r c r a f t  shown i n  Fig.1.23 
(from l e f t  t o  r i g h t )  gradually decreases down t o  t h e  VTOL je t  a i r c r a f t  which 
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has no p rope l l e r  a t  a l l .  With a reduction i n  p rope l l e r  diameter, t h e  engine /26
power increases  p e r  u n i t  takeoff weight from 0.25 - 0.3 +/kg f o r  hel icopters  
t o  3 - 4 +/kg f o r  j e t  a i r c r a f t  ( t h e  values of t he  equivalent horsepower are 
taken here f o r  t h e  a i r c r a f t ) .  

The cruis ing speed of these a i r c r a f t  continuously increases along with t h e  
increase i n  i n s t a l l e d  horsepower. However, this i s  not a decisive f a c t o r  f o r  
t h e  problem of a t r anspor t  a i r c r a f t  with a range of 800 - 1000 km. 

T h i s  defines t h e  scope of VTOL and STOLtransport a i r c r a f t  t o  be compared 
and t h e  f l y i n g  range over which they are effect ive.  

Fig.1.27 Chance Vought - &an - Hiller XGG2 VTOL 
Aircraf t  with T i l t  Wing. 

To which of t hese  types of a i r c r a f t  w i l l  belong t h e  fu tu re  i n  solving t h e  
formulated problem? 

Before comparing t h e  hel icopter  with i t s  competitors with respect t o  econo
my, l e t  us examine t h e  problem of t h e  f l y i n g  range of t h e  helicopter.  I n  View 
of i t s  comparatively short  range, can t h e  hel icopter  en te r  this competition a t  
a l l ?  

Let us first examine and compare t h e  best of t h e  VTOL and STOL t r anspor t  
a i r c r a f t  t h a t  have been or are being constructed: t h e  t i l t - w b g  WOL air
c r a f t  of t h e  type XC-&2; t h e  STOL a i r c r a f t  of t h e  type Breguet-941; t h e  regular  
' t ransport  a i r c r a f t  of t h e  type IICaribouI* HG4; t h e  ro toc ra f t  with turboprop 
engines of t h e  IlRotodyneIl type; and helicopters.  

2. Means f o r  Increasing t h e  Flying Range of Hel icmters  

The he l i cop te r ,has  always been regarded as a short-range a i r c r a f t ;  a figure 
of 400 - 500 km i s  usually given as t h e  m a x i "  f o r  i t s  normal range. In  order 
t o  treat t h e  hel icopter  as a competitive a i r c r a f t  i n  this new area of use, t h e  



range should be almost doubled w h i l e  re ta in ing  i t s  lift capacity. How does one 
increase t h e  f ly ing  range? 

Let  us t u r n  t o  t h e  well-known formula of f ly ing  range: /27 

where 
G = weight of t h e  a i r c r a f t  (average during f ly ing  t h e ) ;  

GT = weight of t h e  fue l ;  
cy/cx = aerodynamic e f f ic iency  of t he  a i r c r a f t  ( taken t o  be constant);  

C, = spec i f i c  f u e l  consumption of t h e  engine;
5 = a coef f ic ien t  taking i n t o  account power losses  i n  the transmission 

due t o  cooling, e tc . ;
7 = r o t o r  eff ic iency.  

Equation (2.1) shows t h a t  t h e  range i s  greater ,  t h e  l a rge r  t h e  proportion 
of f u e l  i n  t h e  all-up weight of t h e  a i r c r a f t  and t h e  higher i t s  aerodynamic ef

f ic iency,  engine econoqy, and effi
ciency of engine and auxi l ia ry  units. 

T h i s  formula holds f o r  ary 
heavier-than-air c r a f t ,  including air
planes and hel icopters .  Specif ical ly ,
it follows from this equation t h a t  t h e  
f ly ing  range of various f ly ing  
machines, o ther  conditions being 
eq-cal, does not depend on t h e i r  cruis
ing speed. 

Can a. he l icopter  be given a range 
Fig.1.28 Product of Aerodynamic suf f ic ien t  f o r  competing with STOL 
Efficiency and Rotor Efficiency a i r c r a f t ?  

as a Function of Flying Speed. 
A s  indicated i n  Fig.1.28, t he  

product of aerodynamic e f f ic iency  
cy/cx and r o t o r  e f f ic iency  17 for a he l icopter  with a f ixed  landing gear i s  lower 
than  f o r  a t ranspor t  a i rp lane  by almost a f a c t o r  of 2. Furthermore, t h e  f u e l  
consumption of t h e  he l icopter  i s  somewhat g rea t e r  than  t h a t  of t he  airplane 
s ince  t h e  engine cha rac t e r i s t i c s  are i n f e r i o r  a t  low a l t i t u d e s  and f ly ing  speeds. 
Thus, a hel icopter  can be given a range equal t o  t h a t  of a i rplanes only by in
creasing t h e  f u e l  supply, i.e., t he  quantity GT/G. However, i n  so  doing how 
does one maintain t h e  usefu l  load? T h i s  can be done only by increasing t h e  
takeoff weight, but  t h e  hel icopter  W i l l  then  no longer be able t o  take off 
ve r t i ca l ly .  

What happens i f  we p lace  these  a i r c r a f t  under equal conditions, i.e., allow 
the  hel icopter  t h e  same takeoff run as anSTOL a i r c r a f t ,  namely 150 - 200 m o r  
even less?  A t  a r e l a t i v e l y  la rge  value of cy,  w i l l  t h e  he l icopter  then be able 
t o  l i f t  - a t  low speed - a much grea te r  weight than a n  airplane,  accomodate 



more fuel ,  and thus compensate f o r  i ts  lack i n  aerodynamic efficiency? 

3. -Helicopter with Takeoff R u n  

A s  shown i n  Fig.1.29 which gives the  curves of t h e  required and available 
horsepower of a llCariboull-type t ransport  a i rplane and of a modern helicopter,  an 
airplane can be kept i n  t h e  air a t  a speed not below 115 km/hr. A hel icopter  /28 

can hover i n  t h e  air without moving. If 
t h e  hel icopter  i s  overloaded by 15% above 

Nhp 	 t h e  normal takeoff weight Go, it  can no 
longer hover and, l i k e  t h e  airplane,  W i l l  
only be able t o  f l y  without dropping i f  it 

3006 	 has some speed - i n  this case, a speed of 
not l e s s  than 50 km/hr. A t  a g rea t e r  
speed than this, it wi l l  gain a l t i t u d e  and 
a t  a lower speed, l o se  a l t i t u d e .  The dif-

ZOO6 	 ference here i n  favor of t he  helicopter,  
i n  comparison with t h e  conventional air
plane, l i e s  only i n  t h e  f a c t  t h a t  t h e  
hel icopter  r e t a i n s  f u l l  c o n t r o l l a b i l i t y  

roo0 \ 1 I I a t  a speed below i t s  minimal and t h a t  
' R e q u i r e d  horsepower  there  i s  no danger of separation of flowf o r  ai r p  1 a n e  

and loss  of con t ro l l ab i l i t y ,  both of which 
are possible  i n  t h e  airplane.  

0 So far as t h e  takeoff distance i s  
concerned, assuming t h a t  t h e  hel icopter  

Fig. 1.29 Required and Available takes off at  a speed of V,,,, this dis-
Power as a Function of Flying tance a t  some average accelerat ion j,  

Speed. W i l l  be 

jf2 b-2
L L--:-mln 
run 2 j  (2.2) 

Thus, t h e  takeoff run i s  shorter ,  t h e  lower t h e  minimum f ly ing  speed (close 
t o  takeoff speed) and t h e  g rea t e r  t h e  acceleration. 

The m i n i "  speed i s  

where 
S ,  = wing area; 
p = air density.  

What values of cYmaxare available t o  a i rplanes and helicopters? 

For this, l e t  Us ca lcu la t e  t h e  value of c y  t h a t  an a i rp l ane  of t h e  llCariboull 
type should have at t h e  same weight as t h e  hel icopter  i n  order t o  f l y  without 
descending a t  speeds less than  "m. Figure 1.30 shows t h e  values of cy ,  
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calculated from t h e  formula 

of a hel icopter  r e fe r r ed  t o  t h e  wing area of a n  equivalent a i rplane,  which char
ac t e r i zes  t h e  l i f t  capacity of a hel icopter  i n  comparison with t h e  airplane.  
The curve cy of t h e  hel icupter  i n  Fig.l.30 extends t o  i n f i n i t y .  This i s  na tu ra l  
s ince t h e  hel icopter  has a r o t o r  which i n  essence i s  a r o t a t i n g  wing with a 
power p l an t  suspended from it and i s  capable of producing l i f t  a t  zero forward 
speed of t h e  e n t i r e  machine. Here we see t h a t  a t  speeds of 50 - 60 km/hr t he  
available values of c y  of t h e  hel icopter  are several times g r e a t e r  t han  f o r  an 
airplane of t h e  IlCaribouIl type a t  a speed of 115 km/hr, which has a highly 
mechanized wing. 

Thus, a t  equal power a g rea t e r  weight can be l i f t e d  by t h e  he l i cop te r  /29
at low speeds than  by an airplane.  

However, a g rea t e r  f l y i n g  weight 
does not always mean a g rea t e r  useful  
load. 

A t  equal relative f u e l  weight 
(about lo%), t h e  o r d i n a q  a i rp l ane  of 
t h e  IlCaribouIl type has a range of 
1000 km, i.e., twice t h a t  of a heli
copter taking o f f  without a run. 

The Breguet-941 STOL a i r c r a f t  ( a t  
a f u e l  weight 12 - 13% Qf t h e  f l y i n g  
weight) has twice t h e  Tange of t h e  
hel icopter  o r  of t h e  X G l 4 . 2  VTOL air
c r a f t .  

If, i n  helicopters,  t h e  f u e l  weight 
i s  increased t o  20 ,- 25% of the  gross 
weight, t hen  t h e  range of t h e  hel icopter  
can be doubled and r a i sed  t o  1000 km. 
T h i s  value i s  already close t o  t h e  
normal ranges of spec ia l ly  designed 
STOL a i r c r a f t .  

The load r a t i o  of hel icopters  
Fig.l.30 Dependence of ( c y h a l l) e q  taking o f f  with a run and a t  increased 

on Flying Speed. 	 f u e l  supply becomes higher than t h e  load 
r a t i o  of comparable a i r c r a f t  and reaches 
4!+- 50%. T h i s  makes it p o s s i b l e ' t o  ob

t a i n  equal product ivi ty  at almost t h e  same takeoff weight of a i rplane and heli
copter. For example, a t ransport  hel icopter  of average l i f t  capacity, j u s t  as 
a l*Ca,riboull-type airplane,  can t ransport  a load of 3.2 tons  over a range of 
1000 Ism. It i s  t r u e  t h a t  t h e  helicopter,  i n  so doing, uses 2.5 times more fue l .  
However, it must be remembered t h a t  t h e  airplane needs twice t h e  area f o r  taking 
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off and, what i s  quite important, t h e  hel icopter  after having consumed half  i t s  
f u e l  i s  able  t o  land v e r t i c a l l y ,  whereas t h e  ordinary airplane cannot do so. 

It must be emphasized t h a t  comparable a i rplanes and hel icopters  have 
p r a c t i c a l l y  t h e  same power supply (0.23 - 0.25 hp/kg). One must a l s o  bear i n  
mind t h a t  p i s t o n  engines, operating on gasoline, have a lower f u e l  consumption 
at l o w  a l t i t u d e s  than  turboprops, so t h a t  t h e  average turboprop hel icopter  oper
ates under less advantageous conditions than  t h e  IICaribouIl a i r c r a f t  with p i s t o n  
engines. 

Thus, t h e  suggestion t o  use a takeoff run f o r  t h e  hel icopter  w i l l  permit 
doubling i t s  range a t  t h e  same useful  load. 

-4. Takeoff Distance of H e l i c m t e r  

We have already expressed t h e  takeoff dis tance i n  terms of takeoff speed 
and acceleration. The takeoff speed, proport ional  t o  t h e  mi"m speed a t  which 
a hel icopter  can be supported i n  t h e  air a t  an overload of 15% as opposed t o  @

t h e  weight with which i t  can take off 
without a run, i s  not more than 
60 - 70 km/hr. Lst us now define the  
possible  degree of l i n e a r  accelera
t ion ,  s ince  t h e  takeoff run i s  in
versely proport ional  t o  acceleration. 
Let us f i n d  t h e  possible  in i t ia l  ac
celerat ion.  

A s  agreed, l e t  t h e  hel icopter  
develop a t h r u s t  amounting t o  only
0.85 G (takeoff weight) a t  t h e  take
off power. Then, allowing f o r  some 

Fig.l.31 Forces Acting on Helicopter angle of i n c l i n a t i o n  of t h e  r o t o r  
during Takeoff R u n .  	 axis t o  t h e  v e r t i c a l  o (here t h e  

difference i n  t h e  compression of t h e  
s t r u t s  and pneumatic t i res  of t h e  

nose and t a i l  wheels i s  accounted f o r )  and f o r  t h e  forward deviat ion of t h e  re
s u l t a n t  owing t o  de f l ec t ion  of t h e  automatic p i t c h  con t ro l  mechanism through an 
angle D,n, according t o  F'ig.l.31, we f i n d  t h e  i n i t i a l  acceleration: 

Here, t h e  second term on t h e  right-hand s i d e  t akes  i n t o  account f r i c t i o n  
of t h e  wheels against  t h e  ground, with a f r i c t i o n  coe f f i c i en t  f .  Adopting t h e  

usual notations of o f  = 6.5O, D,% = loo, T = 0.85, and f = 0.12, we obtain 

j, = 2.2 m/sec2. 
P

Assuming a relative s t a t i c  p rope l l e r  t h r u s t  of -N = 1.6 kg/hp f o r  t h e  
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-- jo=g -P N f\=2.5 m/sec 2 
( N O  f 

i.e., a value of t h e  same order as f o r  t h e  helicopter.  

O f  course. t h e  accelerat ion a t  t h e  moment of takeoff i s  determined by t h e  
excess power, which i s  somewhat higher f o r  t h e  airplane.  However, i t s  pr-opeller 
t h r u s t  decreases with an increase i n  speed whereas t h e  r o t o r  t h r u s t  increases;  

Fig.1.32 Forces Acting on a Helicopter 
during Takeoff on Nose Wheel. 

(5) -1 
takeoff 


where x,,, i s  the dis tance from t h e  center  
matic p i t c h  con t ro l  mechanism a t  a m a j d m a l  

i n  f a c t ,  t h e  angle of p i t c h  of t h e  
helicopter,  during t h e  takeoff 
run, may even increase since, 
during takeoff,  t h e  t a i l  wheels 
are able t o  l i f t  off t h e  ground 
at a t h r u s t  subs t an t i a l ly  1es.s 
than t h e  takeoff weight so  t h a t  
t h e  takeoff run i s  completed.on 
t h e  nose wheel. 

It i s  obvious from Fig.1.32 
t h a t  t h e  thrust-to-weight r a t i o  a t  
which the  t a i l  wheels can l i f t  off 
t h e  ground (disregarding f r i c t i o n )  
w i l l  be 

of g rav i ty  t o  t h e  a x i s  of t h e  auto-
forward def lect ion.of  this mechanism 

2 


[here i t  i s  assumed t h a t  t h e  quantity I( xm;x ) can be neglected f o r  unity].  

. .~ ^- . . .  ,. ..... . . _
4 

Fig.1.33 Running Takeoff of Mi-6 Helicopter. 
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With t h e  usual r e l a t ions ,  this corresponds t o  a thrust-to-weight r a t i o  of 
0.8 - 0.85. Figure 1.33 shows a hel icopter  during t h e  takeoff run, a t  a gross 
weight of G,,, = 1.15 G. 

An exact ca l cu la t ion  of t h e  takeoff run can be ca r r i ed  out by t h e  same & 
method proposed by t h e  author 30 years ago f o r  calculat ing t h e  takeoff run of an 
autogiro (Ref  .4). 

Running takeoffs  performed i n  p rac t i ce  have confirmed t h a t ,  at a 15% over
load of a hel icopter  as opposed t o  t h e  maximal weight w5th which it can t ake  off  
without a run, t h e  takeoff run amounts t o  no more than 60 - 100 m i n  s t i l l  air .  

5. Crit-e-ri0.nf o r  Es&.ima$t,ng t h e  Eco~og~yof Various 
Transport Aircraf t  

In any comparison of two t ransport  a i r c r a f t ,  a t t e n t i o n  i s  primarily centered 
on t h e  l i f t  capacity. S t i l l ,  t h e  speed of t ransport  i s  a l s o  important. Actual
l y ,  i f  a load can be t ransported more quickly, then more loads can be trans
ported i n  u n i t  ' t i m e  over a given dis tance a t  a smaller l i f t  capacity. 

T h i s  r e s u l t s  i n  the well-known c r i t e r i o n  of hourly product ivi ty  G l O a d V a v  t o  
km/hr (Vav i s  t h e  average ground speed). 

However, a t  what cost  i s  the  load transported? 

If both a i r c r a f t  have i d e n t i c a l  eff ic iency and range as w e l l  as takeoff & 
and landing p rope r t i e s  s a t i s f a c t o r y  f o r  f u l f i l l i n g  t h e  mission, which should be 
given preference? 

To answer this question we must know which of the a i r c r a f t  i s  more economi
ca l .  I n  m i l i t a r y  use, t h e  advantages of any a i r c r a f t  f o r  solving t ransport  
problems, which sometimes arise a t  an appreciable dis tance from the  supply 
bases, are determined pr imari ly  by cost  data .  Ekpenditures f o r  construction of 
t h e  machine i t se l f ,  incurred i n  the past ,  are no longer of s ignif icance and have 
no e f f e c t  on f u l f i l l i n g  t h e  immediate task.  Under such conditions, t he  economy 
of an a i r c r a f t  i s  determined mainly by t h e  amount of f u e l  consumed. Here, t h e  
t ransport  of f u e l  cons t i t u t e s  a bottleneck t h a t  is  decis ive f o r  t h e  a b i l i t y  t o  
solve t h e  s t a t e d  problems. The c r i t e r i o n  of economy under such conditions i s  
conveniently obtained by r e f e r r i n g  t h e  hourly product ivi ty  t o  t h e  weight of t h e  
f u e l  consumed during t h a t  time G T h r :  

G VL -..L e.s
'T hr 

Since t h e  f u e l  conswrption p e r  kilometer i s  

it follows t h a t  

I 




The quantity Leea has t h e  dimension of length, so t h a t  we can c a l l  it t h e  
equivalent spec i f i c  range of t h e  a i r c r a f t .  It represents  t h e  dis tance over 
which a given a i r c r a f t  can f l y  i n  excess of t h e  design range i f  the e n t i r e  trans
ported load i s  replaced by fue l .  S t i l l  another meaning can be given t o  this 
quantity. It can be regarded as t h e  dis tance over which an  a i r c r a f t  can carry 
one ton  of cargo after having consumed one t o n  of fuel .  It is  c l ea r  t h a t  t h e  
quantity Lees depends on t h e  dis tance of t ranspor ta t ion  j u s t  as product ivi ty  
depends on it. The f a r t h e r  t h e  machine flie's, t h e  more f u e l  it needs and the  
smaller t h e  cargo it can t ake  a t  a given f ly ing  weight (maximal). 

On the  other  hand, Leas i s  the  work expressed i n  ton-miles which a given 
a i r c r a f t  can perform, having consumed one ton  of fue l .  

The inverse quantity of L e a 8  ,<.e., 
Le .6 

, i s  f u e l  consumption i n  tons 

required f o r  performing t ranspor ta t ion  work of 1ton-mile o r  'Oo0 - kg/ton-mile . 
Le. s  

We can a l so  use o ther  c r i t e r i a  t h a t  estimate econoqy, i.e.,  t he  cost  of 
t ransport ing one ton-mile i n  rubles.  I n  these c r i t e r i a ,  we can take  i n t o  ac
count the  cost  of t h e  a i r c r a f t  ( t o  some extent,  this is  proport ional  t o  the  
empty weight of t h e  a i r c r a f t ) ,  t h e  service l i f e  of t he  components and power 
system, cost  of operation and repair, e tc .  

I n  this problem, the  mi l i t a ry  t ransport  c r i t e r i o n  Le.6 o r  '000 = c, is 
' e .  6 

most important s ince it takes i n t o  account not only econow but a l s o  the  real  
and ponderable requirement of supplying f u e l  f o r  t ranspor ta t ion  equipment under 
military conditions. Therefore, we can disregard many other  c r i t e r i a  but not 
this one. 

We supplemented t h e  values of L e a s  and C, f o r  comparable a i r c r a f t  by & 
data  on je t  VTOL a i r c r a f t  which, f o r  hovering, use spec ia l ly  i n s t a l l e d  l i f t i n g  
jet engines o r  which take of f  by means of fans  dr iven by t h e  main engines. The 
f u e l  consumption of such a i r c r a f t ,  w h i l e  hovering, cons t i tu tes  such a la rge  per
centage of t h e  takeoff weight t h a t  it m u s t  be taken i n t o  account when calculat ing 
the  value of C L ;  therefore,  t he  corresponding formula takes  the  form 

where 
-- 'Oo0 FT i s  the  f u e l  consumption i n  horizontal  f l i g h t ;  

cLh. f GI 0 ad 
t h 0 V C R h O V  

CLhOV 
= 1000 i s  the  f u e l  consumption w h i l e  hovering. 

G l o a d  L 
G 

For an a i r c r a f t  taking of f  by means of Wing fans ro ta ted  by turbines  
mounted t o  t h e i r  periphery, we have used data  similar t o  those published f o r  t he  
experimental Ryan X-16 a i rplane constructed i n  t h e  USA. 

I n  t h e  calculations,  we disregarded the  f a c t  t h a t  t h e  i n s t a l l a t i o n  of t h e  
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l i f t i n g  engines impairs t h e  aerodynamic efficiency of a VTOL a i r c r a f t .  It was 
assumed tha t ,  at ranges g rea t e r  t han  1000 km, VTOL a i r c r a f t  of t h e  indicated two 
types with a sus t a ine r  t u r b o j e t  Will f l y  at the  design a l t i t u d e  a t  m u m  aero
dynamic efficiency, whereas a t  a reduction i n  f w n g  range from 1000 t o  50 km 
t h e  operat ional  c e i l i n g  decreases accordingly and any drop i n  aerodynamic effi
ciency l eads  t o  some increase i n  f u e l  consumption. The hovering time thovwas 
taken as 6 min ( 3  min i n  takeoff and 3 min i n  landing). 

Table 1.3 gives our calculated da ta  f o r  a i r c r a f t  of d i f f e r e n t  f l y i n g  ranges 
and d i f f e r e n t  forms of takeoff .  

TABLE 1.3 

Type' o f Tak eo f f I 

C h a r a c t e r i  s t ic i  With S h o r t  
V e r t i c a l  Run 

L,  <ZOO m 

-
Range L,.k m  L 500 - 1000 -
F l y i n g  a1 ti tu3  5U0-2000 500-2u00 
. H , m  . ~. ~. -

Type o f  Y Y U
w w
a i r c r a f t  m a m

V 0 


00 .4 04 u Y 
U2 z a 

- ~-

I 
Takeoff  run 0 0 0 80 150 210 850 950 - 

m 

c,, kg/t .km 0.8 0.9 1.3 0.9 1.4 0.5 0 . 3  0.5 0.13 0.4 
V c r s  km/hr 250 460 280 240 280 400 600 800 6Q 30 

To compare t h e  economy of t ransport  conveyances, t h e  values of C L  a r e  given 
f o r  t h e  Soviet t ruck  ZIL-151 where it i s  assumed t h a t  t h e  road between two & 
po in t s  i s  longer by a f a c t o r  of 1.5 than t h e  a i r  route.  

Figure 1.34. shows the  values of C, as a funct ion of flying range, f o r  vari
ous VTOL a i r c r a f t .  The value of t h e  f l y i n g  range L i n  calculat ing C, was deter
mined with consideration of a decrease i n  f u e l  consumption p e r  kilometer as t h e  
a i r c r a f t  became l i g h t e r  due t o  deplet ion of t h e  fue l .  A s s m i n g  a l i n e a r  de
pendence between consumption p e r  kilometer and t h e  weight of t h e  a i r c r a f t ,  we 
must correct  t h e  value f o r  t h e  range, calculated from t h e  above formulas where 
t h e  per-kilometer consumption i s  accepted t o  be constant and corresponding t o  
t h e  takeoff weight, by t h e  quantity 

29 


i i  



where 	- GTG, = -
G 

i s  the  r a t i o  of f u e l  weight t o  takeoff weight of t h e  a i r c r a f t .  

For VTOL a i r c r a f t ,  a i r c r a f t  with a l a rge  f u e l  consumption f o r  hovering, t h e  
reduction i n  f ly ing  weight due t o  t h e  expenditure of f u e l  f o r  hovering and i n  
horizontal  f l i g h t  was taken i n t o  account. Figure 1.35 show the  curve of t h e  
correct ion coef f ic ien ts  K L  as a funct ion of t h e  values of E , .  

C, k g / t o n - k n  
~~ 

I 1 

Fig.l.34 Dependence of C L  on Flying Range L. 

For a i r c r a f t  with takeoff run, t h e  values of C L  a t  d i f f e ren t  f l y ing  ranges 
are given i n  Fig.1.36. The diagram a l so  shows how the  economy of t ransport  

means can be increased, a t  a given 
range, by using a takeoff run. The 

% - - . 
longer t h e  takeoff ,  t h e  l a rge r  t h e  take

1.J off weight of t h e  a i r c r a f t  and hence the  
I 


grea ter  t h e  weight of transported cargo. 

Such are t h e  results of invest igat-L2 	 ing  f u e l  consumption f o r  t ransport ing 
one ton-mile with various types of 
t ranspor ta t ion  means. 

1.1 

A s  regards t h e  cost  of operating 
airplanes and helicopters,  which natural
l y  i s  determined not only by t h e  cost  of100 0.1 112 a3 a4 E, f u e l  but a l s o  by the  service l i f e  and 
i n i t i a l  cost  of t h e  machine, we must bear 

Fig.1.35 Dependence-of Coefficient i n  mind t h a t  t h e  grea te r  power/weight & 
KL on G,. 	 r a t i o  of t h e  VTOL a i r c r a f t  compared t o  

t h a t  of hel icopters  as w e l l  as t h e  
presence of transmissions i n  some types 

more o r  less balances this cost.  A s  f o r  sa fe ty  i n  the  case of engine f a i l u r e  
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during takeoff o r  landing, a l l  advantages a r e  here on t h e  s i d e  of helicopters 
s ince t h e  p rope l l e r s  on a n  a i r c r a f t  with a pivoted Wing are not capable of auto-
rotat ion,  and engine failure (deplet ion of f u e l )  during landing of an a i r c r a f t  
of t h e  type Breguet-941 may lead t o  flow separation and a n  uncontrollable de
scent because t h e  Wing i s  no longer washed by t h e  propel lers .  Furthermore, 
t h e r e  W i l l  always be t h e  d i f f i c u l t y  of providing c o n t r o l l a b i l i t y  a t  low speeds 
i n  these  machines. 

/ ton-km 

-9
t VTOL t u r b o l e t'il 'I' a i r c r a f t ,  

'I "' w i t h  f a n s  

1 

Range 
2000-3000k n  

a i r c r a f t  


L t g h t  t r a n s p o r t  u r b o p r o p
C r o s s - C o u n t r y  p r o p e l  1 e r  

Truck a i r c r a f t  . 
r unspo r t 

1 I I Truck on h i g h w i  
r r c r a f t  -

IOG zoo 300 400 1, m 

Fig.1.36 Dependence of C, on Takeoff Run f o r  
Various Flying Ranges. 

A f u r t h e r  reduction i n  weight and f u e l  consumption of turboprop engines 
under development a t  present W i l l  lead t o  an increase i n  load f a c t o r  of heli
copters. The subs t an t i a l  increase i n  service l i f e  of r o t o r  blades, reduction 
gears, and transmissions obtained i n  modern prototypes W i l l  equalize t h e  amorti
zat ion cost  of a i rplanes and helicopters,  a f t e r  which the  hel icopter  will become 
a f u l l  and equal m e m b e r  of t h e  a i r  t r anspor t a t ion  system i n  i t s  most massive 
area. 

6. P o s s i b i l i t i e s  of Increase i n  M a x i "  Flying Speed 

If t h e  f l y i n g  speed of VTOL and STOL a i r c r a f t  i s  considered t o  be an irn
por t an t  f l y i n g  and t a c t i c a l  requirement, then t h e  p o s s i b i l i t i e s  of ro toc ra f t  are 
far from exhausted With respect t o  fu r the r  increase i n  speed. 

If we equate t h e  power required f o r  horizontal  f l i g h t  and t h e  net power of 
t h e  engine, we can obtain t h e  r e l a t i o n  between maximum speed and power/weight 
r a t i o  of t h e  a i r c r a f t :  

(2.10) 




where 
N = engine power; 
G = gross weight of t h e  a i r c r a f t .  

It follows from eq.(2.10) that t h e  maximum speed i s  d i r e c t l y  proportional 
t o  t h e  power/weight r a t i o  N/G of t h e  a i r c r a f t  

Figure 1.37 gives t h e  curves of t h e  required power/weight r a t i o  as a func
t i o n  of f ly ing  speed f o r  various a i r c ra f t .  The curves f o r  heavy ro tocraf t  show 
that, t o  increase t h e  f ly ing  speed above 300 - 320 km/hr, it i s  necessary t o  
sqplement  t h e  hel icopter  r o t o r  with a second high-l i f t  device - a wing; t o  
reach speeds above 370 km/hr a l s o  propel le rs  are needed, which m e a n s  changing 
over t o  a ro tocraf t .  Thus, by formulating t h e  problem of achieving t h e  highest 
speed possible  a t  any pr ice ,  it becomes poss ib le  t o  decide what VTOL a i r c r a f t  
configuration t o  use f o r  d i f f e ren t  d u m  f ly ing  speeds. However, it must be 
remembered t h a t  t h e  t r a n s i t i o n  from hel icopter  t o  ro toc ra f t  involves a loss i n  
l i f t  capacity, an increase i n  the  cost  of construction, e tc .  
power/weight r a t i o  of 0.45 hp/kg, which can present ly  be rea l ized  on rotocraf t ,  

Even with a 

the  t r a n s i t i o n  from hel icopter  t o  ro tocraf t  w i l l  not produce a ga in  i n  speed by 
more than 30 - 40 lan/hr. 

0.5 


0.4 
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0.2 

0.1 

F’ig.1.37 	 Powerheight Ratio of Aircraf t  as a 
Function of Flying Speed. 

Finally,  t h e  graph of t h e  required power/weight r a t i o  c l ea r ly  shows the  
grea t  difference in’ t he  power/weight r a t i o  of VTOL a i r c r a f t  and of rotocraf t .  
A t  equalpower/weight r a t io ,  t h e  rotocraf t  is somewhat i n f e r i o r  i n  speed t o  the  
propeller-driven VTOL airplane with a short  range. 
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-Section 3 .  Basic Pr inciples  of Design 

1. Select ion of Fn,qine Horser,ower- and Rotor %an 

In  most cases, t h e  hel icopter  designer i s  strpplied with t h e  desired l i f t  
capacity. KnaJing t h e  required speed, he estimates t h e  necessary power/weight 
r a t i o .  After assigning t h e  current  percentage of t h e  useful  load r a t io ,  he de
termines the order of magnitude of t h e  f l y i n g  weight and hence t h e  magnitude of 
t h e  i n s t a l l e d  power. Having selected t h e  number of engines i n  View of t h e  end 
use of t h e  hel icopter  (one engine f o r  a l i g h t  military machine, a t  least two 
engines f o r  a passenger c r a f t ,  etc.) ,  he can s e l e c t  t h e  most suitable engines 
among ex i s t ing  o r  scheduled types. 

Usually, it W i l l  happen that t h e  power of t h e  possible  combinations of 
engines does not match t h e  desired power. T h i s  necessi ta tes  correcting the  para
meters of t h e  hel icopter  i n  question, after se l ec t ing  t h e  optimum combination of 
ex i s t ing  engines. After this, t h e  main problem facing t h e  designer i s  t o  s e l e c t  
t h e  r o t o r  span f o r  t h e  s p e c i f i c  power p l an t .  

How does one s e l e c t  d i s k  loading? 

It i s  known from s t a t i s t i c s  t h a t  disk loading rapidly increases  with i k  
creasing f l y i n g  weight and varies within 12 - 50 kg/m2 as the weight increases 
from t h e  l i g h t e s t  t o  t h e  heaviest  helicopter.  

Disk loading, as a funct ion of weight, va r i e s  even more than wing load- & 
i n g  of an airplane.  T h i s  i s  of importance s ince an increase i n  wing loading of 
an airplane can be compensated by an increase i n  length of takeoff run whereas, 
f o r  helicopters,  t h e  takeoff run must always remain zero. 

The weight of t h e  r o t o r  increases  approximately i n  proportion t o  t h e  cube 
of i t s  span. However, a t  equal power t h e  l i f t  capacity of t h e  helicopter as a 
whole increases  i n  proportion t o  t h e  2/3 power with an increase i n  span. I n  
addition, such f l i g h t  da t a  as cei l ing,  rate of climb, range, rate of descent i n  
autorotat ion must be improved when t h e  span i s  increased and hence d i sk  loading 
i s  decreased. 

It i s  impossible t o  ca l cu la t e  t h e  parameters of an optimal design s ince 
t h e r e  are too  many contradictory considerations t h a t  t h e  designer must weigh. 
The answer t o  this problem should a l s o  include a search i n t o  t h e  past ,  an analy
sis of t h e  development of hel icopters  with respect t o  s i ze .  

How i s  t h e  next ( l a r g e r )  hel icopter  t o  be developed? 

It i s  obvious t h a t  t h e  prime requisite i s  t o  increase t h e  i n s t a l l e d  power. 
However, t o  what extent? For example, i f  we r e t a i n  t h e  power/weight r a t i o  ( f o r  
considerations of econow) and then, i f  necessary, increase t h e  r o t o r  span 's0 
that the  former disk loading remains, o r  else i f  we increase t h e  power/weight 
r a t i o  and then  have t h e  opportunity t o  increase disk loading provided khat take
off  i s  ve r t i ca l ,  Will we a c t u a l l y  obtain a comparatively smaller r o t o r  span? 

The best solut ion is  obtained with the  var iant  having t h e  lowest construction 
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weight, i.e., providing a higher proportion of u se fu l  load. 

Let  us f i n d  t h e  va r i a t ion  i n  load r a t i o  of a hel icopter  when i t s  s i z e  i s  
increased f o r  d i f f e r e n t  power loading and d i sk  loading. 

We will examine t h e  case i n  which a new l a r g e r  hel icopter  i s  developed ac
cording t o  the same scheme as above. 

Taking t h e  s t a t i c  t h r u s t  (without consideration of t h e  ground e f f e c t )  t o  be 
equal t o  t h e  weight, Joukowskits formula w i l l  furnish 

where 
5 = a coe f f i c i en t  smaller than uni ty  character iz ing t h e  mechanical l o s ses  

of power i n  t h e  transmission and those due t o  cooling and equaliza
t i o n  of t h e  torque;

r\ = 	r o t o r  eff ic iency representing t h e  r a t i o  of t h e  useful  power needed 
f o r  supporting t h e  a i r c r a f t  i n  t he  air during hovering t o  t h e  spent 
power . 

We w i l l  write t h e  expression f o r  takeoff weight of a hel icopter  i n  the  form 

where 
G u s ,  = useful  load of t h e  helicopter;

G , t  = weight of t h e  nonl i f t ing elements of t h e  helicopter;
G = takeoff weight of t h e  hel icopter ;

kt,= an empirical  coe f f i c i en t  representing t h e  r a t i o  of engine weight 
- and transmission t o  engine power; 
Gt.s 	 = r e l a t i v e  weight of l i f t i n g  system ( r o t o r  with hub and automatic 

p i t c h  con t ro l  mechanism) with respect t o  hel icopter  weight 

Change i n  load f a c t o r  on -insrease i n  r o t o r  span. We will attempt t o  de- fi 
termine t h e  load f a c t o r  -

G 
of a heavier hel icopter  which d i f f e r s  from the  

o r i g i n a l  by t h e  r o t o r  span: 

Assuming t h a t ,  i n  t h i s  case, t h e  power/weight r a t i o  N/G remains constant, 
eq.(3.1), a t  a constant value of 51, Will y i e l d  

G3I2=const N D  

o r  



Hence t h e  disk loading, i.e., t h e  quantity 

a l s o  should remain constant. 

On increasing t h e  r o t o r  span, i f  the  s i z e  of t h e  blades changes s imi la r ly  
w h i l e  t h e i r  number remains unchanged, t h e  weight of t h e  l i f t i n g  system increases 
i n  proportion t o  t h e  cube of t h e  r a t i o  of the  r o t o r  spans: 

Consequentl y, 

Here t h e  subscr ipts  1and 2 per ta in ,  respectively,  t o  the  o r ig ina l  heli
copter and t o  t h e  hel icopter  under study (D, > D1). 

However, i f  t h e  disk loading p i s  increased, flow separat ion at maximum 
speed can be avoided only by increasing t h e  loading (mainly by increasing t h e  
number of blades s ince a r e l a t i v e  increase i n  chord i s  less advantageous and 
causes a grea te r  increase i n  weight because of t h e  need f o r  l a rge r  balancers t o  
eliminate f l u t t e r ) .  

In this case, when re ta in ing  t h e  span and the  t i p  speed of the  blades, t he  
weight of t h e  l i f t i n g  system will increase proport ional ly  t o  p, i.e., 

o r  

Subst i tut ing this expression i n t o  eq.(3.3), we obtain 

The coef f ic ien t  k,, i s  the  sum of the  relative weights of engine and trans
mission: 
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The first addend remains unchanged (it character izes  t h e  weight charac
t e r i s t i c  of a modern engine) and t h e  second increases  proport ional ly  t o  t h e  in-

/& 
I 

. 

crease i n  rotor span. 

Actually, i f  we assume t h a t  t he  weight of t h e  transmission is proport ional  
t o  t h e  magnitude of i t s  transmitted torque Mt, then  we obtain 

Keeping t h e  t i p  speed constant (wR = const) ,  we have 

- 0 2-_-. 
"2 Dl 

Hence, 

A t  constant disk loading it follows from eq.(3.4) t h a t  

where 

m=Gz/G,. 

Then, considering a l s o  t h a t  

and 

we can transform eq.(3.9) i n t o  

where 

-
Assuming f o r  t h e  o r ig ina l  version: G,t = 0.25; G e n g  = 0.2; G t r  = 0.4;

N-
Gt .  6 

= 0.18; N = 0.28 and substi tubing these  i n t o  eq.(3.15), we obtain ( a t
G 

G2 = G I )  
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(+), =0.402; 

Guse-0 .694-0 .292 .G-

Hence it i s  c l e a r  t h a t  t h e  magnitude of t h e  load r a t i o  of a l a r g e r  heli
copter decreases monotonically with a n  increase i n  m (Fig.l,3�?), 

The r a t i o  of t h e  useful  load of hel icopters  can be represented as 

T
I- follows from eqs.(3.15) and (3.17) t h a t  it i s  impossi l e  t o  construc, & 

a l a r g e r  hel icopter  w h i l e  maintaining t h e  same d i sk  loading and t h e  same power 
t o  weight r a t i o  as those of t h e  o r i g i n a l  helicopter,  with a l a r g e r  ( o r  even t h e  
same as t h e  previous) coe f f i c i en t  of t he  load r a t i o ,  although t h e  absolute value 
of t h e  useful  load increases  a t  first (Eg.1.40). 

9’4 
p =consl D=consl 

Fig.1.38 Dependence of Load Ratio on Fig.1.39 Dependence of Load Ratio on 
Scale m of Weight Increase when Scale m of Weight Increase when 

p = const. D = const. 

Change i n  load  r a t i o  on increase i n  power/weight r a t i o  without change i n  
r o t o r  man. Let us next e x d n e  t h e  case where t h e  r o t o r  span remains unchanged 
w h i l e  f l y i n g  weight and engine power increase, i.e., t h e  power/weight r a t i o  of 
t h e  hel icopter  and d i sk  loading increase.  

It follows from eq.(S.l) t h a t  t h e  power/weight r a t i o  of a hel icopter  should 
i n  this case increase according t o  the  l a w  
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Equation (3.8) indicated t h a t  t h e  relative weight of t h e  l i f t i n g  system re
mains constant. Keeping t h e  r a t i o  of engine weight t o  engine power zonstant, 
t h e  relative weight of t h e  engine increases  i n  proportion t o  f i  

The r e l a t i v e  weight of t h e  transmission a l s o  changes 

Then t h e  expression f o r  t h e  load r a t i o  coe f f i c i en t  will t ake  t h e  form 

Subst i tut ing t h e  numerical values, we have 

G u s e  ~0.57-(2.17 VG. 

The r a t i o  of u se fu l  load t o  hel icopter  weight va r i e s  i n  t h e  same manner as 
i n  t h e  previous case (see Fig.1.39), i.e., decreases monotonically. 

A s  we see (fig.l.l+O), upon an increase i n  power at constant span, t h e  use

6,s e,  

Guse2 
-3 1 

2 

I 

Fig.l.40 Ratio of Useful 
Load Weights as a F’unction 

of Flying Weight Ratio. 

f u l  load increases  more rapidly than upon an 
increase i n  span a t  constant power/weight r a t i o .  

Thus, it i s  obvious t h a t  t h e  disk loading 
depends on t h e  weight c h a r a c t e r i s t i c s  of A2 
spec i f i c  engines avai lable  t o  t h e  designer f o r  
solving t h e  formulated problem, namely t o  l i f t  
a prescribed useful  load. It i s  obvious t h a t  
t h e  l i g h t e r  t h e  engine i n  comparison with a 
given prototype, t h e  g rea t e r  will be t h e  optimum 
disk loading and t h e  smaller w i l l  be t h e  r o t o r  
span. 

T h i s  i s  the  reason f o r  t h e  small loads p e r  
square meter of t h e  first airplanes and heli
copters. These machines with t h e i r  then low-
power and high-weight engines with l a rge  load
ing  were generally not airworthy. 

Thus, t h e  designer o r  researcher who 
wishes t o  p r o j e c t  i n t o  t h e  f u t u r e  should adopt 
some r u l e s  f o r  decreasing t h e  un i t  weight of 
engines, rotors ,  and nonl i f t ing s t r u c t u r a l  

elements (by using new materials and increasing t h e  e f f ec t ive  design stresses) 
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as ide  from t h e  possible  discovery of new engine operating pr inc ip les ;  only then 
w i l l  he be able t o  p red ic t  t h e  p o t e n t i a l i t i e s  of developing l a rge r  o r  more 
economic (load r a t io ,  f l y ing  range) a i r c r a f t .  

It would be natural t o  expect a pronounced increase i n  load r a t i o  by re
turning t o  small hel icopters  and using t h e  l e v e l  of engine and ro to r  unit 
weights achieved i n  developing t h e  heavy hel icopters  of t he  1960s. 

Actually, a comparison of recent hel icopters  with turboprops of t he  same 
weight category as t h e  M i 4  and Mi-4 hel icopters  showed t h a t  t h e i r  load r a t i o  
almost doubled. 

2. Analysis of Muztirotor Configurations 

Sooner o r  later, t h e  designer i s  confronted with t h e  problem of the  expedi
ency of fu r the r  increasing t h e  r o t o r  span and t h e  need t o  change t o  a twin- o r  
mult i rotor  configuration. 

The l o t  production of s t i l l  another blade s i z e  requires  very la rge  c a p i t a l  
investment f o r  building new s t e e l  mills, presses,  and other  expensive equipment 
required f o r  f in i sh- t rea t ing  of spars  and blade assembly. Therefore, t he  de
velopment of new blades i s  t o  some extent a Federal problem. A t  t h e  same t h e ,  
termination of t he  production of any one type of series-produced blade i s  im
possible,  s ince the  ex i s t ing  inventory of hel icopters  i s  a steady consumer of 
blades because the  blade l i f e ,  as a rule, i s  considerably shor te r  than the  
service l i f e  of hel icopters .  Consequently, when i n i t i a t i n g  a new blade design 
new production f a c i l i t i e s  must be created t o  supplement those already avai lable .  

Therefore, after having developed the  l a rges t  series-produced rotor ,  it i s  
l o g i c a l  t o  a t tack  the  problem of the  opthum multiple t o  be used. T h i s  renders 
t h e  problem of configuration spec i f ic :  it becomes necessary t o  double o r  t r i p l e  
a l s o  nonrotor units, i .e . ,  ro tors  together with reduction gears and engines. /.& 

Actually, t he  number of combinations i s  not excessive : twin-rotor ( side-by
s ide  and fore-and-aft configurations) and three-rotor hel icopters .  The cumber
some four-rotor configuration need not be discussed here s ince the  above con
f igura t ions  are able t o  provide t h e  required l i f t  capacity of 4.0-50 tons.  
Another problem t o  be discussed i s  t h a t  of comparing single-rotor helicopters,  
designed f o r  similar missions, with these  configurations.  

conf imra t ion .  Since the  induced ve loc i t i e s  of t h e  f ron t  andFore-and-aft._-_ 
rear r o t o r s  are iden t i ca l ,  t h e  induced veloci ty  of t h e  system w i l l  d i f f e r  only 
by t h e  quantity of t h e  average veloci ty  of mutual induction 

va*=-	 1 
XV,,

2 ( 3  -22) 
where 

v1 = induced ve loc i ty  i n  t h e  ro to r  plane; 
N. = coef f ic ien t  of induction. 

Then, t h e  addi t iona l  induced power of t h e  system o r  of t he  rear ro to r  i s  
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AN, =-1 zv,G.
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If both ro to r s  l i e  i n  t h e  same horizontal  plane and do not overlap, then 

u ='2; a t  a = 0.2 (Fig .1.&l) we already have n = 1.35.
R 

However, we should consider t h a t  t.he in&iced v e l o c i t i e s  are unevenly dis
t r ibu ted  over t h e  disk so  t h a t  t h e  average ve
l o c i t i e s  are larger ,  corresponding t o  another 
aspect r a t i o ,  i.e., t o  a smaller span or,  what 
comes t o  t h e  same, t o  a l a r g e r  load p on t h e  
supporting surface.  Therefore, we will take t h e  
expression f o r  t he  average ve loc i ty  of mutua l in
duction, referred t o  the  e n t i r e  c r a f t ,  as 

o,,= 0 . 7 5 ~ ~  4P=0.75 -. (3.24.)VA 

Then t h e  rate of climb of a hel icopter  of a 
Fig J . 41  For Determining fore-and-aft configuration can be expressed by 

Rotor Overlap. t h e  r a t e  of climb of a single-rotor hel icopter  

where 
Vi = rate of climb of a tandem (fore-and-aft configuration) hel icopter ;
V, = rate of climb of a single-rotor helicopter;  

A = r e l a t i v e  a i r  density.  

Thus, whereas t h e  Mi-4 hel icopter  with blades of mixed design has  a v e r t i c a l  
rate of climb, a t  a f l y i n g  speed of 100 km/hr, of 3.6 m/sec, t he  v e r t i c a l  speed 
of t he  tandem-rotor hel icopter  (Fig.l.42) with two such power p l an t s  decreases 
by t h e  quantity 

3.21AVt = V , - V t  =--=2.25 m/sec, 
!I Y 28 

i .e.,  t he  rate of climb of t he  tandern-rotor hel icopter  i s  1.35 m/sec. 

Consequently, t h e  f l y i n g  cha rac t e r i s t i c s  of t h e  fore-and-aft machine sub
s t a n t i a l l y  d i f f e r  from those of t h e  o r i g i n a l  single-rotor hel icopter  from which 
t h e  power p l an t s  w e r e  taken. 

The r a t e  of climb i s  determined by t h e  transverse span of t h e  helicopter,  & 
i t s  engine power, and t h e  takeoff weight of t he  hel icopter  prescribed by t h e  
designer. It can be s t a t ed  t h a t ,  i f  these parameters are given, t he  m a x i "  
possible  rate of climb W i l l  be determined regardless of t h e  configuration of t h e  
planned helicopter and t h e  type of i t s  power p l an t .  

I n  addi t ion t o  power expended f o r  l i f t i n g  weight, t he re  are a l so  power 
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expenditures f o r  mechanical, p r o f i l e ,  and induced drag. Thus, i f  t h e  takeoff 
weight of t h e  hel icopter  of a fore-and-aft configuration i s  twice t h e  weight of 
a single-rotor hel icopter ,  t h e  magnitude of rate of climb can be maintained only 
by increasing t h e  power of t h e  tandem-rotor hel icopter  t o  more than the  double 
power, by an amount of 

A N = G ,  	-.3P 
75VA 

If we only double t h e  power of t h e  tandem-rotor helicopter,  i t s  rate of 
climb w i l l  decrease, as indicated above. Such a doubling would be especial ly  
unsuitable f o r  heavy hel icopters  with l a r g e  d i sk  loading; thus, a t  values of 
p = 40 kg/m2 and V = 40 m/sec t h e  l o s s  of rate of climb bV; at an a l t i t u d e  of 
H = 3000 m, i n  comparison with t h e  o r i g i n a l  single-rotor helicopter,  w i l l  be
4 m/sec, i.e., such a hel icopter  w i l l  not be able t o  f l y  i f  V, <: 4.5 - 5.0 m/sec. 

Fig.l.42 Yak-& Helicopter. 

C o q a r a t i v e  da t a  of two Soviet hel icopters  Mi-4 and Yak-& of d i f f e r e n t  
configurations but having t h e  same engines and supporting systems ( these are 
doubled on the  Yak-& hel icopter)  show t h a t  t he  fore-and-aft hel icopter  has a 
v e r t i c a l  ground speed 2.6 m/sec lower than t h a t  of t h e  single-rotor hel icopter  
and t h a t ,  at a l t i t u d e s  of 1000 - 2000 m, t h e  loss  i n  v e r t i c a l  speed reaches 
3 - 3.5 m/sec. The se rv ice  c e i l i n g  a l so  drops by a f a c t o r  of 2 f o r  t h e  fore-
and-aft helicopter.  

Figure 1.43 shows t h e  change i n  torque d i s t r i b u t i o n  with respect t o  the  
r o t o r  shafts, measured i n  f l i g h t  on one of t h e  fore-and-aft hel icopters .  A t  
p = 0.1- 0.25, t h e  rear r o t o r  consumes about double t h e  power of t h e  f r o n t  
ro to r .  

T h i s  nonuniformity i n  loading of t h e  rear and f r o n t  reduction gears and 
ro to r s  s u b s t a n t i a l l y  reduces t h e  l ifetime of t he  rear r o t o r  p a r t s  or else neces
si tates development of a more powerful and heavy reduction gear. It i s  h436s
sible t o  use t h e  main reduction gear of t h e  o r i g i n a l  single-rotor hel icopter  as 
t h e  rear reduction gear of t h e  tandem hel icopter .  

The l a r g e  induced'losses due t o  mutual i n t e r f e rence  of t h e  r o t o r s  i n  fore-
and-aft helicopters,  which amount t o  520 - 25% of t h e  power at c ru i s ing  speed, & 
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grea t ly  impair i ts  e f f i c i ency  i n  comparison with t h e  single-rotor hel icopter  i n  
which t h e  power expenditure f o r  dr iving t h e  rear r o t o r  i n  horizontal  f l i g h t  i s  
negl igible .  

Side-by-side configuration. T h i s  configuration is  another so lu t ion  t o  t h e  
o ld  problem of how t o  bui ld  a I1bridgel1connecting. t h e  ro to r s .  How can one de

f i n e  $he-difference between such fore
and-af t and side- by- s i d e  11bridges"? 

From t h e  viewpoint of mutual i n t e r 
ference during hovering, t he re  are no 
fundamental differences i n  t h e  operation 
of t he  r o t o r s  of e i t h e r  type of heli
copter configuration. However, t he  
lo s ses  from p rope l l e r  wash over t h e  Wing 
i n  a side-by-side hel icopter  may be 
g rea t e r  than from wash over t h e  fuselage 
i n  a fore-and-aft helicopter.  There
fore ,  t he  c h a r a c t e r i s t i c s  of v e r t i c a l  
takeoff are poorer f o r  t h e  side-by-side 
configuration with a wing. Neverthe
l e s s ,  i n  forward f l i g h t  the rate of 
climb of t h e  side-by-side hel icopter  in
creases by an amount of 

i n  comparison with the  o r i g i n a l  single-
Fig.l.43 Change i n  Torque D i s - r o t o r  helicopter,  due t o  a decrease of 
t r i b u t i o n  with Respect t o  Rotor induced drag ( t h e  IIspanll of t h e  side-by-
Shafts as a Function of t h e i r  s i d e  hel icopter  being twice t h a t  of t h e  

Operation. o r i g i n a l  single-rotor machine). 

It can be demonstrated t h a t ,  between 
t h e  load r a t i o  of a side-by-side hel icopter  and a single-rotor helicopter,  t he  
following r e l a t i o n  exists: 

where 
- N r e a r  = a coe f f i c i en t  taking i n t o  account power expenditures

I r e  a r  
a t  t he  rear r o t o r  i n  a single-rotor helicopter taken 

AT equal t o  0.09; 
I T  =T,= a coe f f i c i en t  taking i n t o  account t h r u s t  l o s ses  due t o  

wash over t h e  wing, taken equal t o  0.07; 
5 0  = Gw - = a coe f f i c i en t  taking i n t o  account t h e  va r i a t ion  i n  

weight on changing from a single-rotor hel icopter  t o  a 
two-rotor hel icopter  of side-by-side configuration. 

Let us assume t h a t  t h e  wing weight i s  12%of t h e  weight of t h e  single-rotor 
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hel icopter  and t h a t  of t h e  rear transmission with rotor ,  10%. 

The above formu$ shows t h a t ,  i n  a side-by-side hel icopter  constructed from 
two single-rotor helicopters,  it i s  impossible t o  achieve t h e  load r a t i o  of t h e  
single-rotor hel icopter .  

If a side-by-side hel icopter  i s  designed from scratch,  it might r e s u l t  &
i n  a much better construction s ince t h e  designer of a side-by-side hel icopter
will not use t h e  same load p e r  square meter as t h e  designer of a single-rotor 
hel icopter  had been using. I n  f a c t ,  this f a c t o r  dl1be made g rea t e r  and t h e  
hel icopter  will become more compact. On t h e  other  hand, when designing a fore-
and-aft hel icopter  from sc ra t ch  i t  i s  na tu ra l  t o  s e l e c t  a smaller load p e r  area 
and a higher power/weight r a t i o  than  i s  usually done. 

It must be borne i n  mind tha t ,  i n  designing a side-by-side helicopter,  
t he re  must be means available f o r  ltcontrollingll t h e  frequency of na tu ra l  osci l 
l a t i o n s  of t he  Wing With power p l a n t s  and rotors ,  both i n  t h e  v e r t i c a l  and hori
zontal  plane, s ince this configuration has a multitude of possible  v ib ra t ion  
modes whose frequencies may en te r  i n t o  resonance with t h e  forced frequencies in
duced by t h e  ro to r .  Furthermore, i n  t he  case of high-power and thus heavy 
engines mounted t o  the  wing t i p s ,  t he  side-by-side hel icopter  almost c e r t a i n l y
Will have a v ib ra t ion  mode of a frequency close t o  o r  even smaller than t h e  
r o t o r  rpm, a t  which t h e  r o t o r s  w i l l  v ibrate  on horizontal  displacement. T h i s  
may set  up o s c i l l a t i o n s  of t h e  Ifground resonancell type not only on t h e  ground 
but a l s o  i n  the  air .  Therefore, t h e  designer who has decided t o  design a .side
by-side hel icopter  i s  faced with t h e  d i f f i c u l t  task of making t h e  Wing as small 
as possible  i n  area, l i g h t  i n  weight, and su f f i c i en t ly  r i g i d  i n  bending and 
to r s ion .  

However, despi te  c e r t a i n  d i f f i c u l t i e s  i n  designing side-by-side hel icopters  
and shortcomings of fore-and-aft configurations, designers w i l l  have t o  r e s o r t  
t o  them as a means of increasing l i f t  capacity. T h i s  becomes obvious when con
sider ing t h e  d i f f i c u l t i e s  i n  developing ro to r s  and reduction gears of super-
heavy single-rotor hel icopters .  

Select ion of-configuration. A.n analysis  shows t h a t ,  i n  changing over t o  
side-by-side o r  fore-and-aft hel icopters  with doubling of t h e  power p l an t s ,  i t  
i s  impossible t o  double t h e  use fu l  load l i f t e d  by t h e  single-rotor helicopter.  
If this could be achieved a t  a l l ,  i t  would be a t  t h e  p r i c e  of an appreciable loss 
i n  such f l y i n g  and t a c t i c a l  da t a  as takeoff and landing propert ies ,  r a t e  of 
climb, dynamic cei l ing,  e t c .  Thus, t h e  t r a n s i t i o n  from t h e  single-rotor t o  t h e  
mult i rotor  hel icopter  must be done over an increase i n  power/weight r a t i o .  

However, t he  se l ec t ion  of t h e  configuration can be l a rge ly  influenced by 
f a c t o r s  such as end use of t h e  hel icopter  and t a c t i c a l ,  technical ,  o r  operat ional  
requirements. The designer o f t e n  p r e f e r s  t o  adhere t o  the  configuration f o r  
which he has more da t a  and experience, i f  other  conditions permit selectimg 
several approximately equivalent configurations. I n  some cases, t he  designer i s  
forced t o  give preference t o  a previously used configuration even when another 
configuration might o f f e r  some advantages. 

Let  us give an example t o  i l l u s t r a t e  t h e  point .  The payload of a hel icopter  
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with standard range amounts t o  about 20% of f l y i n g  weight. Depending on t h e  
hel icopter  design, this weight may vary by 5% t o  e i t h e r  s ide.  T h i s  means that, 
a t  i d e n t i c a l  takeoff weight, a good hel icopter  w i l l  l i f t  a payload weighing 25% 
of the  machine i t s e l f ,  whereas a poorly designed hel icopter  wil l  l i f t  only 15% 
of i t s  weight. Thus, the  second hel icopter  w i l l  be qutte i n f e r i o r  with respect 
t o  l i f t  capacity. T h i s  should be taken i n t o  account, on the  one hand, i n  solving 
t h e  problem of se lec t ing  t h e  hel icopter  configuration and, on t h e  other  hand, 
i n  estimating t h e  r a t i o n a l i t y  of some p a r t i c u l a r  configuration on the  basis of 
a comparative ana lys i s  of da t a  of ex is t ing  designs. 

.... .... . . . .. . 



CHAPTER I1 

ROTOR AERODYNAMICS 

Section 1. Bxel-ent of Rotor. T.heoq and Methods of 
-Fxperiment-a l  -Determinatian of  i t s  Characterist ics 

The idea of using a ro to r  i n  place of a Wing as a l i f t i n g  system was born 
i n  1923. The Spanish engineer Juan de l a  Cierva, after the  airplane of his 
design had s t a l l ed  and crashed, decided t o  develop an  autorotating sustaining 
system whose wing-blade combination would not lose speed at a low o r  even zero 
forward speed of t he  apparatus. 

An experiment carried out by him i n  1924 i n  the  laboratory of Quadro-
Ventos i n  Madrid, which showed the  unlikely high values of t he  aerodynamic effi
ciency of an autorotating ro to r  as a l i f t i n g  system, induced a theore t ica l  in
vestigation of the aerodynamics of autorotating rotors,  carr ied out i n  England 
by Glauert i n  1926 and later developed i n  1928 by Lock f o r  the  case of hinged 
blades. 

Thus, experiment generates theory and the  endeavor t o  extrapolate the  re
sults of theory t o  pract ice  gives rise t o  new experiments which more thoroughly 
reveal the  physical nature of various phenomena, whi.ch i n  tu rn  leads t o  a new 
close examination and development of theory. Only i n  the  unity of theory and 
p r a c t i c e i s i t  possible t o  describe the  development of ro to r  aerodynamics up t o  
t he  present state of the  art .  Thus, i n  1928 the  Glauert-Lock theory w a s  first 
published. A s  i s  known, i n  this theory the  magnitudes of t h rus t  T, longitudinal 
force H, and torque M, are determined as a function of t he  kinematic parameter 

V cos  ap= - - ~ , 
w R  

of the  angle of ro to r  blade s e t t i n g  cp, and of the  flow coeff ic ient  

) - - .  V s i n a - u.- ____ 
W R  ’ 

which represents the  r a t i o  of the  velocity of t he  air  flowing through the  disk 
t o  the  t i p  speed wR (Fig.2.1). Consequently, the  coeff ic ients  of the moments 
and forces  can be expressed as 

According t o  t h e  momentum theorem (see Sect.3), we have 

Y =T =2en/i2v’v. (1.2) 
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After determining from this t h e  induced veloci ty  v 

and subs t i tu t ing  this expression i n t o  t h e  formula f o r  A ,  

we  obtain t h e  expression f o r  t he  angle of a t t ack  of t he  

For calculat ing t h e  aerodynamic cha rac t e r i s t i c s  of 
posed deriving t h e  unknown value of t he  quantity h from 

r o t a t  ion. 

c r a f t :  

an autogiro, Lock pro-
the  conditions of auto
i .e. ,  equating t h e  ex

pression-for  torque on the  ro to r  
shaf t  t o  zero: 

M,= f (cp, I., p)=O. (1.5) 

Since t h e  angle of blade set
t i n g  cp and the  cha rac t e r i s t i c  of 
t h e  regime p were prescribed 
quant i t ies ,  t he  value of h was 
determined from the  quadratic 
equation (2.47) representing 
eq.(1.5) i n  a developed form. For 
a given value of t he  veloci ty  of 
rotationwR, f ly ing  speed V, 
angle of s e t t i n g  cp ,  and known h ,  
the  on ly  possible  angle of a t tack 
of the  autogiro CY a t  which steady 
autorotat ion occurred was  found 
from eq.(l.k). I n  this case, t h e  
equation (see Sect .2) 

Fig.2.1 Velocity Components of Air 
Flowing through t h e  Rotor Disk. 

yielded t h e  value of t h e  t h r u s t  coef f ic ien t  w h i l e  t he  corresponding equation 
furnished t h e  value of t h e  coeff ic ient  of longi tudinal  force s o  t h a t  t h e  polar ,L!& 
of a freely autorotat ing ro to r  could be determined as a funct ion of t h e  angle of 
a t tack .  T h i s  polar ,  l i k e  t h e  polar  of a Wing, could be used i n  the  aerodynamic 
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ca lcu la t ion  of t h e  autogiro. Such a method w a s  published i n  1931 by 1.P.Bratu
khin ( R e f  .11). 

I n  1934, t h e  author* (Ref.4), i n  his study of overspeed of t h e  autogiro 
r o t o r  during t h e  takeoff run, determined t h e  unknown values of t h r u s t  and torque 
from eqs.(l.4), (1.51, and (1.6) and prescribed values f o r  t h e  angle of a t t ack  CY, 
angle of blade s e t t i n g  cp, and i n i t i a l  per ipheral  veloci ty  and f l y i n g  speed, 
i.e., t h e  parameter p,, which made it possible  t o  ca l cu la t e  t h e  aerodynamic char
a c t e r i s t i c s  f o r  cases of unsteady motion. The following method of determining 
t h e  flow coe f f i c i en t  h was proposed: 

Subst i tut ing expression (1.6) i n t o  eq.( 1.4.) Will y i e l d  a polynomial of t he  
fou r th  power i n  both h and p ;  thus, it i s  d i f f i c u l t  i n  p r a c t i c a l  work t o  deter
mine h at known p, o r  vice versa, s ince each time it would be necessary t o  solve 
a fourth-degree equation. A study of t h e  dependence of h on p a t  given values 
of CY and cp shows tha t ,  wi th  t h e  exception of a small segment of negative h near 
p = 0, t h e  curve h = f ( p )  represents  a s t r a i g h t  l i n e  with a high degree of accu
racy. The equation of t h e  family of t hese  s t r a i g h t  l i n e s  a t  d i f f e r e n t  values 
of CY and cp has t h e  form 

cp,Equation (1.7) y i e l d s  t h e  dependence of h on p,  CY, and 0 ;  i t s  use, to
gether with t h e  above formulas, permits calculat ing t h e  t h r u s t  and torque coef
f i c i e n t s .  It i s  thus poss ib l e  t o  calculate  t h e  aerodynamic cha rac t e r i s t i c s  of 
t h e  autogiro r o t o r  f o r  any unsteady operating conditions when t h e  torque created 
on t h e  r o t o r  by t h e  a i r  flow produces spinning o r  braking of t h e  blades, depend
i n g  on t h e  angle of a t t ack  and t h e  value of p .  

T h i s  s t i l l  l e f t  t h e  necessi ty  of f inding a method of applying this  theory 
(developed by Glauert and Lock f o r  an autogiro) t o  ca l cu la t ion  of t h e  aerody
namic c h a r a c t e r i s t i c s  of a helicopter,  i .e.,  t o  t h e i r  determination under forced 
r o t a t i o n  of t h e  r o t o r  by an engine. Such a method w a s  proposed by t h e  author 
i n  194.5, i n  col laborat ion with V.N.Yaroshenko ( R e f  .9). 

To determine t h e  torque necessary f o r  f l i g h t  under given conditions i t  i s  
l o g i c a l  t o  use t h e  above system of equations. Here, it was convenient t o  pre
sc r ibe  t h e  value of t h e  t h r u s t  coe f f i c i en t  t, since t h e  r o t o r  t h r u s t  i s  e a s i l y  
determined i f  it i s  approximately assumed t h a t  t h e  t h r u s t ,  under steady hori
zontal  f l y ing  conditions, i s  equal t o  t h e  hel icopter  weight. 

Using prescribed values of t h e  rpm and determining t from t h e  expression 

* Here and elsewhere i n  Section 1, t h e  author i s  M.L.Mil f  . 
4.7 



t h e  quantity A can be found from eq.(1.6), t h e  torque from eq.(2.47) and t h e  
angle of a t t ack  of t h e  helicoptercy which corresponds t o  these conditions, from 
e q O ( U )  

Even before t h e  present s tage of hel icopter  development, p r a c t i c a l  auto
g i r o  engineering required t h e  so lu t ion  of c e r t a i n  s tab i l i ty  problems; designers 
i n  various countr ies  attacked t h e  problem of determining t h e  d q i n g  produced 
by t h e  hinged r o t o r  during vibrat ions of t h e  c r a f t .  Analyses of f l i g h t  accidents 
with autogiros showed t h e  necessi ty  f o r  studying t h e  flapping motion of blades ,&g 
and f o r  f inding methods of r e t a in ing  autorotat ion during aerobatic maneuvers of 
t h e  c r a f t .  T h i s  l e d  t o  t h e  theory of a r o t o r  fo rh ingedb lade  attachment with 
curvi l inear  motion, which t h e  author developed i n  1939 and which represents  a 
more general  case than t h e  Glauert-Lock theory establ ished f o r  steady r e c t i 
l i n e a r  motion. 

Finally, i n  194.0 A.N.Mikhaylov worked out a method of equivalent rotors ,  
which simplifies t h e  appl icat ion of t h e  Lock theory t o  a r o t o r  equipped with an 
automatic p i t c h  con t ro l  mechanism (Ref  .15). 

The appl icat ion of these methods t o  t h e  aerodynamic ca l cu la t ion  of Soviet 
autogiros between 1931 and 1940 and of t h e  M i - 1  and Mi-4 hel icopters  i n  1947-1952 
showed highly sa t i s f ac to ry  agreement between design c h a r a c t e r i s t i c s  and f l i gh t -
tes t  cha rac t e r i s t i c s .  Since these first autogiros and hel icopters  f l e w  a t  rela
t i v e l y  low speeds and thus a t  small values of p, t h e  inaccuracies of t he  theory 
due t o  t h e  assumption of smallness of this parameter, made by Glauert and Lock, 
were nonessential. However, more complex problems w e r e  s t i l l  t o  come: t h e  de
velopment of more powerful and faster helicopters,  which implied constant im
provement of t h e  theory. 

The Glauert-Lock theory, as i s  known, makes a number of assumptions (in
cluding uniform d i s t r i b u t i o n  of induced v e l o c i t i e s )  so  as t o  permit i n t eg ra t ing  
t h e  equations i n  a f i n i t e  form. Thus, t h e  c y  of t h e  sec t ion  was  expressed as a 
l i n e a r  function of t h e  angle of a t t ack  c y  = amcy, w h i l e  c X pwas taken as some 
average quantity independent of t h e  angle of a t tack.  The forces  act ing on t h e  
p r o f i l e ,  i.e., on t h e  sec t ion  of t h e  disk where - i n  forward f l i g h t  - t he  air 
flows around t h e  blade from t h e  t r a i l i n g  edge (this region i s  small a t  small 
values of p,) were inaccurately determined. The r a d i a l  component of t h e  r e su l t an t  
veloci ty  i n  t h e  blade d i r ec t ion  was a l s o  disregarded. The blade i t s e l f  was 
assumed t o  be r e c t i l i n e a r ,  f la t  (not  twisted),  and of constant chord. 

During t h e  period of 1932-1943, many researchers - Whittle and Bailey i n  
t h e  USA, Hohenemzer and Zissing i n  Germany, and others  - f u r t h e r  refined this 
theory i n  t h a t  methods were found f o r  i n t eg ra t ing  equations i n  a f in i t e  form 
w h i l e  doing away with many previously accepted assumptions. The concept of t h e  
effect ive radius of a blade, smaller than t h e  actual,  was introduced f o r  talcing 
account of t i p  losses .  The coe f f i c i en t s  cy  and c, represented more complex 
functions of t h e  angle of attack, e t c .  

The most important improvement of t h e  c l a s s i c a l  theory during t h e  postwar 
years was t h e  appl icat ion of methods of numerical i n t eg ra t ion  t o  t h e  calculat ion 
of flapping motion and aerodynamic forces .  T h i s  permitted t h e  d i r e c t  use of t h e  
experimental c h a r a c t e r i s t i c s  of p r o f i l e s ,  taken f o r  t h e  necessary value of t h e  
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Reynolds numbers and Mach number, i n  determining c y  and c, of t he  sec t ion  as a 
funct ion of t h e  angle of a t t ack  and thus t o  take  i n t o  account a l s o  t h e  e f f e c t  
of conpress ib i l i ty  . 

Later, i t  became poss ib le  t o  introduce i n t o  t h e  calculat ions not only t h e  
in i t ia l  geometric shape of t h e  blade but  a l s o  i t s  deformations due t o  bending 
i n  the  plane of thrust and i n  plane of r o t a t i o n  and, what  i s  especial ly  im
portant,  due t o  tors ion.  

However, t h e  use of such a cumbersome method f o r  p r a c t i c a l  calculat ions 
became poss ib le  only after appearance of e lec t ronic  computers. Thus, t h e  modern 
method of r o t o r  calculation, as presented i n  this book on the  basis of s tud ies  
made by A.S.Braverman and M.N.Tishchenko, was  a step-by-step process. 

However, even after a l l  these  refinements there  s t i l l  remained t h e  m 
S e c t i o n  where  measuremenrs  

w e r e  made 

2' 

Fig.2.2 Induced Velocity Dis t r ibu t ion  
i n  Hovering. 

r a the r  rough assumption of a uni
form d i s t r ibu t ion  of induced ve
l o c i t i e s  over the  ro to r  disk, 
which not only led t o  an inaccu
racy i n  determining induced power 
losses  but a l so  t o  e r ro r s  i n  de
termining t h e  t r u e  angles of 
a t tack  of individual  blade sec
t ions  and hence t o  e r ro r s  i n  the  
p r o f i l e  power, th rus t ,  and longi
tud ina l  force.  

Thus, f urt'her refinement of 
t h e  theory could be expected from 
the  development of t he  vortex 
theory which i s  the  only one 
capable of determining the  d i s t r i 
bution of induced ve loc i t ies  i n  
r e l a t i o n  t o  the  forces  act ing on 
each given blade element. 

However, development of such 
a theory required grea te r  ins ight  
i n t o  t h e  physical  aspects of t h e  
phenomenon. Here again it w a s  
necessary t o  r e so r t  t o  experiment. 

m e r i m e n t a l  s tud ies  of flow 
around a r o t o r  i n  a Wind tunnel  

followed by removal of t h e  induced veloci ty  f ield,  carr ied out i n  1946 by t h e  
author together  with M.K.Speranskiy, c l ea r ly  showed that t h e  vortex system known 
from a propel le r  operating under conditions of axial c i r cu la t ion  flow and repre
sent ing [ f o r  t h e  case of c i r cu la t ion  constant along t h e  blade (I' = const)]  a 
c e n t r a l  vortex With blade-tip vor t ices  shed by t h e  blades, i s  transfo&ed - at 
s m a l l  values of p - i n t o  a system similar t o  t h e  rectangular vortex system 
cha rac t e r i s t i c  f o r  a hng. In turn,  t h e  induced veloci ty  d i s t r ibu t ion  obtained 
from eqe r imen t  (Figs.2.2, 2.3, and 2.4) ful ly  confirmed t h e  p o s s i b i l i t y  of an 
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Fig.2.3 Induced Velocity Distribution i n  
Forward Flight (p = 0.2). 

approximate representation of t he  induced velocity f i e ld ,  praposed by Kusner and 
Glauert, i n  t he  form of a funnel during the  hovering phase (Fig.2.5) and i n  the  
form of a cylinder truncated by an inclined plane during forward f l i g h t  
(Fig.2.6). This configuration could be used f o r  re f in ing  the  Glauert-Lock 
theory without resor t ing t o  the  vortextheory.  These experimental f a c t s  gave 
r ise  t o  a sequence of theore t ica l  works, which were based both on the approxi
mate vortex pa t te rn  of rectangular vort ices  suitable f o r  describing conditions 

a t  medium and high f ly ing  speeds 
and on various more general 
theories  which examine a system 
of vort ices  t r a i l i n g  from each 
element of the blade. 

It i s  necessary t o  say t h a t  
even before appearance of these 
experimental data, G .I.Maykopar 
examined the  vortex theory of 
rotors,  having proposed tha t  t he  
vortex cylinder slopes i n  direc
t i o n  of f l i g h t ,  which then 
served as incentive for a series 
of more or less accurate s tudies  
i n  this area. 

Fig.2.4. 	 Three-Dimensional Model of Induced Subsequently, L.S.Vil*dgrube 
Velocity Field of a Rotor. was successful i n  developing the  

vortex theory i n  the  USSR, fol
laved la ter  by V.E.Baskin. 



In a l l  these  theor ies  f o r  determining the  angle of a t t ack  of t h e  blade & 
sec t ion  it was  necessary t o  def ine not only t h e  known kinematic parameters cy, p, 
6 ,  and cp but a l s o  t h e  v e r t i c a l  component of t h e  induced veloci ty  v as a result of 
t h e  ac t ion  at a given poin t  of a l l  vor t ices  i n  t h e  region surrounding t h e  rotor .  
The induced ve loc i t i e s  are found by t h e  Biot-Savart formula as a funct ion of t h e  
c i r cu la t ion  i n  the  blade section: 

1r= -c,bU.
2 

Hence it i s  c l ea r  t ha t ,  s ince t h e  induced veloci ty  determining t h e  angle of 
a t tack  of t h e  sec t ion  i s  a funct ion of c i r cu la t ion  and s ince  t h e  lat ter,  i n  
turn,  can be determined i n  terms of cy which i s  a funct ion of t h e  angle of atta.ck 
of t h e  sec t ion  i n  which t h e  induced ve loc i ty  enters ,  a l l  these  problems reduce 
t o  quite complex equations and can be solved only by approximation methods and, 
i n  par t icu lar ,  by methods of successive approximations.. Generally, first t h e  
magnitude of c y  i s  determined under t h e  assumption of constancy i n  the  dis t r ibu
t i o n  of induced ve loc i t i e s  over t he  disk,  af ter  which the ca lcu la t ion  i s  re
peated during which process the  induced ve loc i ty  i s  determined from the  vortex 
theory. The i n t e g r a l  value of t he  coef f ic ien t  of t h rus t  i s  then compared with 
the  assigned value, and leads t o  ca lcu la t ion  of successive approximations. 

vcos ol P l a n e  of rotation 

Fig.2.5 Induced Velocity Distr ibut ion Fig .2.6 Linear Induced Velocity
according t o  t h e  Law of t h e  Triangle Distribution. 

Without here examining t h e  essence of various vortex theor ies  which, spe
c i f i c a l l y ,  d i f f e r  by the  assumption of f in i t eness  o r  i n f in i t eness  of t h e  number 
of blades, o r  t h e  pr inc ip les  of methods f o r  ca lcu la t ing  t h e  induced veloci ty  
(see Chapt.11, Sect.5), we Wi l l  estimate t h e i r  general  s ignif icance and r o l e  i n  
the  refinement of calculat ions of t h e  f ly ing  cha rac t e r i s t i c s  of t h e  single-rotor 
helicopter.  

Let us examine t h e  m a x i "  value of t h e  a i r  i n  determining t h e  induced 
power, assuming a uniform and funnel-shaped induced veloci ty  d is t r ibu t ion .  
After this, we W i l l  compare t h e  induced r o t o r  power under the  condition of con
stancy of t h r u s t  f o r  t h e  case of a uniform induced veloci ty  d i s t r ibu t ion  over 
t h e  disk and correct ions f o r  t h e  funnel. 

The funnel-shaped induced ve loc i ty  d i s t r i b u t i o n  i s  represented by t h e  l a w  
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of t h e  t r i a n g l e  (Fig. 2.5) : 
v,=kr, 

where v, i s  the  induced veloci ty  at a radius  r of t h e  blade. 

According t o  t h e  momentum theorem, the  elementary t h r u s t  i s  

dT=e2nr2v?. 

Integrat ing from 0 t o  R, we obtain 

T = 

where vt i s  the  induced ve loc i ty  i n  t h e  bl&de t i p  sect ion.  

For t h e  case of uniform induced veloci ty  d is t r ibu t ion ,  t he  th rus t  i s  

T ,=~ 2 n p v 2 .  

Equating TI and T, we obtain 

enR2v:=2nR2gv2, 

whence 
vt =v p .  

Consewen tly, 

The induced power i s  determined from t h e  following formulas: 

dN,,, =dTv =4nev;rdr; 

0 

Subst i tut ing i n t o  t h e  last formula t h e  value of v, = kr,  we obtain the  ex
pression f o r  power i n  t h e  case of an induced veloci ty  d i s t r ibu t ion  according t o .  . 

t h e  l a w  of t h e  t r iangle :  
N i n d  .=- 5 R2e2312V3=2.26nR2QV3. 

t r L  

This power i s  grea te r  by a f ac to r  of 1.13 than  t h e  power Nind f o r  t h e  case 
of uniform veloci ty  d is t r ibu t ion ,  s ince 
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Thus, t he  funnel-shaped induced veloci ty  d i s t r ibu t ion  increases  t h e  induced 
losses  by about 13%. Consequently, t h e  difference i n  the  r e l a t i v e  e f f ic iency  
amounts t o  about 10%. T h i s  i s  a high value so tha t ,  f o r  ca lcu la t ing  t h e  t h r u s t  
and power of a r o t o r  i n  a hovering regime, it i s  l o g i c a l  t o  use methods of t h e  
momentum o r  vortex theory which permit taking i n t o  account t h e  addi t iona l  power 
loss  due t o  nonuniform induced veloci ty  d i s t r ibu t ion  over t h e  disk.  

I n  an approximate calculat ion,  t h e  induced losses  calculated by the  formula 

N ;  =TU, 
can be increased by about 13%. 

I n  hovering, t h e  expended power i s  the  sum of induced power and p r o f i l e  
power, where the  former amounts t o  75% of t h e  t o t a l  required power. A t  cruis ing 
speed, t h e  induced power i s  only 20 - 30%and at maximum speed, about 10%. Thus, 
at high f ly ing  speeds t h e  ma.ximum refinement i n  t h e  required power, as a r e s u l t  
of taking t h e  nonuniform induced veloci ty  d i s t r ibu t ion  i n t o  consideration, Lu 
can be not more than 1- 2% i n  power and not more than 1% i n  f ly ing  speed. 

Of course, using (analogous t o  t h e  e f f ec t ive  aspect r a t i o  of an a i rp lane)  
an  e f f ec t ive  ro to r  radius  somewhat smaller than the  ac tua l  radius,  it becomes 
possible  t o  introduce an experimental correct ion t o  t h e  aerodynamic calculat ion 
which had been based on t h e  theory of constant induced veloci ty  d is t r ibu t ion .  
T h i s  correct ion may be p a r t i c u l a r l y  important i n  determining t h e  rate of climb 
and ce i l i ng  f o r  heavily loaded ro tors .  

Thus, it is  obvious t h a t ,  i n  calculat ing t h e  f l i g h t  data,  there  i s  no need 
f o r  much more complex ca lcu la t ions  of the  aerodynamic ro to r  cha rac t e r i s t i c s  
based on the  vortex theory. 

Refinement of t h e  sec t ion  angles of a t t ack  given by the  vortex theory be
comes necessary only i n  ca lcu la t ing  t h e  stresses set up i n  t h e  blade, espec ia l ly  
a t  low speeds where t h e  aerodynamic forces  inducing blade vibrat ions i n  second 
and higher harmonics ac tua l ly  are the  result of t he  blade encountering the  
vortex f i e l d .  According t o  the  theor ies  s t i pu la t ing  v = const, these stresses 
- f o r  a l l  p r a c t i c a l  purposes - are equal t o  zero. 

It must be assumed t h a t  fu r the r  refinement of t h e  veloci ty  f i e l d  may be of 
importance i n  determining the  boundary conditions at which flow separation be
gins. However, f o r  this purpose it suf f ices  t o  re f ine  only t h e  p a t t e r n  of t h e  
induced veloci ty  d i s t r i b u t i o n  i n  the  form of longi tudinal  pi tch,  which leads t o  
a va r i a t ion  i n  the  flapping motion (bl)  and t o  some red i s t r ibu t ion  of t h e  angles 
of a t tack .  

A t  t h e  same time, t h e  concept of induced veloci ty  d i s t r i b u t i o n  i n  t h e  form 
of a funnel (F’ig.2.5) and espec ia l ly  t h e  assumption of i t s  buildup from f r o n t  
t o  rear (fig.2.6) result i n  subs t an t i a l  var ia t ions i n  t h e  flapping motion (spe
c i f i c a l l y  i n  bl) and i n  t h e  lateral  force  s, which has been taken i n t o  account 
by various authors. 
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1. Class i f ica t ion  of Rotor Theories 

It i s  obvious from this account t h a t  only two of t h e  theor ies  of a real 
ro to r  d i f f e r  fundamentally. Both are based on a study of forces  ac t ing  on the  
blade element. Such an approach t o  t h e  hel icopter  ro to r  was first used by 
N.Ye.Zhukovskiy (Ref .1)  as long ago as i n  his inves t iga t ions  on the  e f f e c t  of 
wind on t h e  t h r u s t  of a hel icopter  ro tor .  

I n  t h e  first of these  theories ,  the  induced veloci ty  d i s t r ibu t ion  over t h e  
disk i s  prescribed, regardless  of the  forces  ac t ing  on the  blade elements. Its 
average value can be determined from the  momentum theorem. 

I n  t h e  second theory, t h e  induced ve loc i t i e s  of each blade element are a 
function of forces  act ing on a l l b l a d e s ,  which i n  t u r n  are a funct ion of these 
induced ve loc i t i e s  and are usually determined by means of t h e  Biot-Savart 
formula. 

Let us c a l l  t h e  first t h e  c l a s s i c a l  theory which encompasses the  Glauert-
I m k  theory and i t s  subsequent development, w h i l e  t h e  second w i l l  be designated 
as the  vortex theory. 

The c l a s s i c a l  theory i s  conceivable with in t eg ra t ion  i n  f i n i t e  form, w h i l e  
t he  vortex theory proposes only numerical so lu t ion  methods. 

It i s  a l s o  of use t o  study t h e  momentum theory of an i d e a l  rotor ,  which can 
be used i n  developing energy methods f o r  aerodynamic ca lcu la t ion  and i n  in te r 
pre t ing  t h e  results of an experimental determination of t he  aerodynamic r o t o r  
charac te r i s t ics .  

Although t h e  development of t h e  c l a s s i c a l  theory i n  i t s  numerical methods 
i s  nearing completion due t o  the  use of computers, the  vortex theory s t i l l  fi 
presents  various problems. Thus, i n  most vortex theories ,  when calculat ing the  
c i r cu la t ion  flow, t h e  quantity cy  i s  taken as a l i n e a r  funct ion of t he  angle of 
a t tack  s ince it can be refined. For s implif icat ion,  t h e  vortex system i s  con
sidered t o  be two- or three-dimensional but l i nea r .  T h i s  s impl i f ica t ion  can be 
compensated later. 

Thus, t he  vor tex theory ,  having inher i ted  all refinements introduced during 
t h e  development of t h e  numerical ca lcu la t ion  methods of t he  c l a s s i c a l  theory, i s  
present ly  becoming t h e  most accurate theory. I n  i t s  development, t he re  i s  no 
need t o  use the  assumption of steady flow around t h e  blade sect ions and the  
sec t ion  po la r  can be ref ined by using experimental data  as t o  t h e  influence of 
cent r i fuga l  forces  on phenomena i n  the  boundary layer. 

Proceeding from this c lass i f ica t ion ,  l e t  us give a f u r t h e r  account of t he  
ro to r  theory. 

2. Development of Experimental Methods 

Ekperimental methods f o r  determining t h e  aerodynamic r o t o r  charac te r i s t ics  
are being developed simultaneously with t h e  described development t rends of t he  



theory. 

After t h e  first experiments inMadrid i n  the  1930s, researchers i n  many 
countries began experimenting with ro to r s  i n  Wind tunnels. Experiments based 
on procedures by V.G.Petrunin a t  TsAGI w e r e  carr ied out (1931-1936) on models 
of autorotat ing ro to r s  of 1.2 m diameter, i n  which t h e  three components of force 
and torque were measured and t h e  blade flapping recorded. 

The experimental technique was grea t ly  improved. I n  pa r t i cu la r ,  it became 
possible  t o  obta in  t h e  fuselage po la r  i n  t h e  presence of an operating ro tor .  
Measurement of f lapping a t  t h e  hub of an autorotat ing rotor ,  turning i n  t h e  
tunnel  air stream about t h e  t r a n s l a t i o n a l  veloci ty  vector  [which permitted esti
m a t i n g  t h e  rotor damping i n  roll (see Sect.2)l was t h e  most no tewor tb  achieve
ment by V.G.Petrunin i n  these  experiments. 

However, it soon became c l e a r  t h a t  small Reynolds numbers i n  the  case of 
flow around t h e  blade sec t ion  l ed  t o  such extensive d i s to r t ions  of the  p r o f i l e  
po la r  on the  model, i n  comparison with a fu l l - sca le  c r a f t ,  t h a t  it was impos
s ible  t o  use these  results d i r ec t ly .  

I n  194.4, t h e  author together  with 1.F.Morozov a t  TsAGI set up experiments 
on a ro to r  of D = 2.5 m, which no longer concerned only the  autorotat ion regime 
but  a l s o  included t h e  hel icopter  regimes. 

The t e s t i n g  f a c i l i t y  f o r  t h e  ro to r  model of 2.5 m diameter i s  shown i n  
Fig.2.7. Tests on this model w e r e  first made i n  t h e  coordinates 6 ,  m, = f(y) 

tf o r  p = const and t = const (see l?ig.2.8), where 6 = 2.The tests, conducted 
t Y  

for three types of blades of d i f f e ren t  shape and twist, made it possible  t o  
judge the propulsive proper t ies  of t h e  ro tors .  However, t h e  main thought behind 
these  experiments l ay  i n  t h e  p o s s i b i l i t y  of estimating t h e  degree of per fec t ion  
of t h e  theory i n  comparison with calculat ions.  

Fig.2.7 Testing F a c i l i t y  for Rotor Models. 
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Whereas o w  first hel icopters  were calculated with reasonable accuracy by 
t h e  c l a s s i c a l  theory presented i n  Section 2, t h e  Mi-6 hel icopter  with 11,000-hp 
turboprop engines had already passed i n t o  a region of . f ly ing  speeds - and hence 
of values of IJ. (more than 0.4.) and Mach numbers - where t h e  Glauert-lock theory 
yielded appreciable e r rors .  I n  preparat ion of this, a ful l -scale  hel icopter  
t es t  stand was constructed at t h e  TsAGI on which t h e  author, together with M.K. 
Speranskiy, determined t h e  cha rac t e r i s t i c s  of l4.5-m ro to r s  i n  a la rge  wind 

tunnel.  The next problem was t h a t  of
,& 

converting t h e  experimental da ta  ob
tained f o r  a spec i f ic  r o t o r  t o  another 
load f a c t o r  and t o  o ther  Mach numbers. 
These calculat ions are presented i n  
Section 6. 

Because of t h e  need t o  re f ine  t h e  
theo re t i ca l  methods of calculat ing 
aerodynamic loads on a blade element, 
a series of experiments were carr ied 
out i n  recent years, whose r e s u l t s  
y i e ld  a more de ta i led  explanation of 
t he  c i r cu la t ion  f law p a t t e r n  around 
the  blade p r o f i l e  under ac tua l  ro to r  
operating conditions. I n  this respect, 
i n t e re s t ing  da ta  can be obtained by 
measuring t h e  pressure d i s t r ibu t ion  
over t h e  blade chord i n  f l i g h t .  By

0 t -01 ;  u t = O l Z S  -Trapezoidal blade in tegra t ing  t h e  per ta ining pressure---t=ol; 4 - t  =D.l.?5 -Rectangular blade d i s t r i b u t i o n  diagrams, it i s  possible  
t o  obta in  t h e  ac tua l  i l?-f l ight  aero-

Fig.2.8 Aerodynamic Rotor Charac- dynamic loads ac t ing  on t h e  p r o f i l e  
t e r i s t i c s  (Model Test). 	 and varying r e l a t i v e  t o  t h e  ro to r  azi

muth. In  making such experiments on 
models, V.E. Baskin and A. S. D fgachenko 

found tha t ,  as t h e  blade passes i n t o  the  region of vortex t r a i l i n g  from-the t i p  
of t h e  advancing blade, there  i s  a marked jump i n  blade loading. 

No doubt, t h e  fu r the r  development i n  hel icopter  engineering toward an in
crease of f ly ing  speeds w i l l  require new experiments and the  development of tes t  
stands for experimental determination of t h e  aerodynamic cha rac t e r i s t i c s  a t  even 
larger values of IJ. w h i l e  retaining similar5ty of Mach and Reynolds numbers. 

Sect ion 2. 	 Class ica lzheory  of a Rotor with Hinged Blade 
Attachment : General Case; Curvilinear Motion 

The ro to r  theory f o r  r e c t i l i n e a r  motion of a hel icopter  o r  autogiro was de
veloped by Glauert and Lock and has been described a t  numerous occasions [see 
( ~ e f . 3 6 ,  37, 2, 11, 23)l. The theory presented below i s  a fu r the r  development 
of t h e  Glauert-Lock theory, f o r  t h e  more general  case where t h e  hel icopter  i s  i n  
curv i l inear  motion so  t h a t  t h e  r o t o r  a x i s  descr ibes  a ro t a ry  motion i n  space. 
Such motion takes  place during steady curv i l inear  f l i g h t  of t h e  c ra f t ,  f o r  ex
ample, during turning and a l s o  during vibrat ions relative t o  the  longi tudinal  o r  
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t ransverse ax is  caused by p i l o t i n g  or external f ac to r s .  

Rotor Theory i n  Curvilinear Motion 

Here, a l l  t h e  a s s q t i o n s  made by Lock a r e  accepted i n  t h e  general  theory, 
namely: The induced ve loc i ty  i n  t h e  absence of r o t a t i o n  of t h e  r o t o r  ax is  i s  
considered as uniformly d i s t r ibu ted  over t h e  r o t o r  disk; t h e  change i n  t h e  l a w  
of i ts  d i s t r i b u t i o n  over t h e  d isk  pe r t a ins  only t o  t h e  superposed e f f e c t  of ro
t a t i o n  of t h e  e n t i r e  c r a f t ,  i.e., t h e  i n i t i a l  p a t t e r n  remains the  same a s  f o r  
Lock's pa t te rn .  

Likewise, we adopt t h e  assumptions of l i n e a r i t y  cy = f(a) and t h e  admissi
b i l i t y  of replacing t h e  coe f f i c i en t  c, by some average quant i ty  cXPavwhich i s  
i d e n t i c a l  f o r  a l l  blade sect ions.  

We will take i n t o  account blade t i p  losses ,  i .e.,  consider t h a t  no l i f t  i s  
developed at some t i p  po r t ion  of t h e  blade and t h a t  the  drag forces,  j u s t  a s  t h e  
i n e r t i a  forces ,  a c t  on t h e  e n t i r e  radius .  The method of obtaining t h e  expres
s ions f o r  forces  and moments here i s  analogous t o  t h e  k c k  method, so t h a t  we 
Will not repeat t he  der iva t ion  of t h e  fundamental equations here and only dis
cuss expressions that d i f f e r  i n  t h e  case of curv i l inear  motion. 

A spec ia l  r o l e  i s  played here by t h e  Coriol is  forces  of i n e r t i a  a r i s i n g  
upon ro t a t ion  of t h e  ro tor .  These forces  w i l l  be discussed i n  most d e t a i l .  

The r e s u l t s  t o  be presented here contain t h e  basic  r e l a t ions  of t h e  
Glauert-Lock theory f o r  r e c t i l i n e a r  motion and, furthermore, permit answering 
t h e  following questions : 

a) What i s  the  f lapping motion of  t h e  blades i n  curv i l inear  motion of 
t h e  e n t i r e  c ra f t ?  

b) 	How does t h e  pos i t i on  of t h e  aerodynamic r e su l t an t  change i n  t h e  case 
of r o t a t i o n  of t he  e n t i r e  c r a f t  i n  some d i r ec t ion  ( f o r  example, t o  
t he  l e f t  or t o  t h e  r i g h t )  and i s  there  a tendency t o  acce lera te  or 
decelerate  this rotat ion? 

c )  What p e c u l i a r i t i e s  does t h e  au toro ta t ion  regime of a ro to r  exhib i t  & 

i n  t he  presence of rotat ion? 

Along with an inves t iga t ion  of these  problems we Will a l s o  discuss the  ef
f e c t  of t h e  configuration of t h e  hub, p r o f i l e ,  and blade center ing on t h e  be
havior of t h e  r o t o r  from the  Viewpoint of s t a b i l i t y  and sa fe ty  of t h e  c r a f t .  

The obtained r e s u l t s  are comon f o r  any r o t o r  with hinged blade attachment, 
be it t h e  ro to r  of an autogiro o r  of a hel icopter .  

I n  addi t ion  t o  answering t h e  above questions which a r e  of independent in
t e r e s t ,  t h e  results of t h e  ana lys i s  y i e l d  some necessary da t a  f o r  studying t h e  
c o n t r o l l a b i l i t y  and dynamic s t a b i l i t y  of t h e  mentioned c r a f t .  

1. Coo+nate S y s t e m  and PhysLc-al Schgme of t h e  Phenomenon 

Coordinate system. The phenomenon i s  examined i n  a coordinate system f ixed  
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with respect  t o  t h e  c ra f t  (Fig.2.9). This i s  a right-handed system ( f o r  r ight-
hand r o t a t i o n  of t h e  r o t o r )  i n  which t h e  z-axis i s  d i r ec t ed  along t h e  ax is  of 

r o t a t i o n  of t h e  r o t o r  and t h e  x-axis backward with respect  t o  t h e  d i r e c t i o n  of 

t h e  veloci ty  of t h e  center  of g rav i ty  of t h e  c r a f t .  

blade 4 i s  reckoned from t h e  x-axis. 


The angular pos i t i on  of t h e  

Ph..sical scheme o f - the  phenomenon. We w i l l  s tudy a r o t o r  ro t a t ing  i n  space 
together  with t h e  c r a f t  a t  a constant angular ve loc i ty  and, i n  so doing, main
t a in ing  a constant angle of a t t ack  with t h e  f l i g h t  path.  

Such r o t a t i o n  occurs, f o r  example, i n  turning. 

Fig.2.9 Coordinate S y s t e m .  Fig.2.10 Velocity Diagram of Rotor 
i n  T u r n i n g .  

We are i n t e r e s t e d  here i n  the  manner i n  which t h e  radius of r o t a t i o n  of t h e  
c r a f t  is  t o  be taken i n t o  consideration. 

For this, l e t  us examine a helicopter executing a t u r n  of radius p a t  a 
l a rge  angle of bank Y b ,  close t o  90’ 

The veloci ty  diagram i n  the plane of symmetry of t h e  c r a f t ,  i n  this case 
close t o  the  turning plane, i s  shown i n  Fig.2.10. 

The relative flow ve loc i ty  a t  a dis tance r from t h e  center  of t he  r o t o r  can 
be divided i n t o  two components: veloci ty  Rp directed along t h e  tangent t o  the  
pa th  of t he  center of t h e  r o t o r  hub (we will c a l l  this t h e  turning speed) and 
veloci ty  Sdr directed perpendicular t o  the r o t o r  plane. 

The distance from the  center  of t he  r o t o r  hub t o  the  center  of gravi ty  of 
t h e  hel icopter  will be neglected f o r  t h e  radius of curvature of t h e  path. 

If we now t r a n s f e r  t h e  center  of r o t a t i o n  of t he  c r a f t  t o  the center ,of /60
t he  r o t o r  hub, i t  should become possible,  i n  add i t ion  t o  the indicated veloci
t ies,  t o  a l s o  allow f o r  t h e  add i t iona l  centr i fugal  forces  ac t ing  on t h e  blades. 



A s  i s  known, i n  the  case of a steady t u r n  without s ides l ip ,  t h e  r e s u l t a n t  
of t he  cen t r i fuga l  force and t h e  fo rce  of g rav i ty  l i es  i n  the  plane of symmetry 
of t h e  c r a f t .  

Thus, these forces,  proport ional  t o  $p, can be regarded as an increase i n  
blade weight. Obviously, this increase is  the  overload n. 

The expression f o r  t h e  coning angle a, contains a term taking t h e  blade 
weight i n t o  account: 

where Shehi s  t h e  s t a t i c  moment of t he  blade weight relative t o  the  horizontal  
hinge. 

For turning, we thus have 

- Sh.hn 
o t - - 	 

'h.h w2t (2.2) 

It i s  known tha t ,  i n  turning, t h e  revolutions of t he  r o t o r  increase.  If 
w t  = w f i  which roughly takes  place during autorotation, then, subs t i t u t ing  w t  
i n t o  eq.(2.2), we obtain 

Aa,,.= (2.3) 

%.e., during steady cu rv i l i nea r  motion of the r o t o r  without s ides l ip ,  the de
crease i n  coning angle due t o  the  weight of t h e  blades remains constant regard
less of t h e  overload. 

I n  the  usual case, Aa, i s  not more than 0.3'; this quantity can be e i t h e r  
neglected o r  taken i n t o  account, regardless of how this i s  done i n  the theory 
f o r  r e c t i l i n e a r  motion. Therefore, we W i l l  here discuss the following scheme: 
The r o t o r  moves a t  a constant angle of a t t ack  and executes a ro t a ry  motion rela
t ive t o  the  axis going through i t s  center.  

. ~2. Iner t ia .  For-nes~-Acting on t h e  Blade 

A t  cu rv i l i nea r  motion of t he  helicopter,  t h e  r o t o r  blade executes four  
ro t a ry  motions i n  space. 

F i r s t ,  it r o t a t e s  about t h e  hub a x i s  Ox with an angular veloci ty  c u ;  second
ly, it r o t a t e s  together  with t h e  &s 08 i n  space with a veloci ty  s1 having t h e  
components R, and f l y ;  finally,  it vibrates relative t o  t h e  axes of t he  flapping 
and drag hinges malung a n  angle p = f ($)  with the plane perpendicular t o  the hub 
a x i s  and a n  angle 5 = f ( $ )  r e l a t i v e  t o  i t s  own mean posi t ion.  

Below, we will neglect t h e  blade motion for t h e  drag hinge, i n  v iew of i ts  
relative smallness. 

Let us examine t h e  elementary i n e r t i a  forces  ac t ing  on t h e  blade during 
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r o t a t i o n  of t h e  rotor .  The cen t r i fuga l  fo rce  C 

i s  perpendicular t o  t h e  r o t o r  &s and d i r ec t ed  along t h e  radius.  

The cen t r i fuga l  forces  generated during r o t a t i o n  with angular ve loc i t i e s  /61
R, and R ,W i l l  be 

dCpX=mQ: i sin 9 dr ,  

dCsy=mQircosJIdr .  

These forces  a l so  l i e  i n  the  plane of r o t a t i o n  and, accordingly, are per
pendicular t o  t h e  vectors Rx and Q,. 

The i n e r t i a  force of flapping, perpendicular t o  t h e  blade, i s  

dJ=m- d28 r d r .  (2.6)
dt2 

The Coriol is  i n e r t i a  forces  K produced by t h e  ro t a t ions  u), R,, and Sa,, per
pendicular t o  t h e  plane of rotat ion,  are 

dKy= -2mQ,wr cos 9 dr;  

dKp,= -2mQprsin 9 dr .  

The Coriolis i n e r t i a  forces  generated during blade flapping, i.e., during 
r o t a t i o n  with an angular veloci ty  Sa, are as follows: 

- conponent i n  t h e  plane of r o t a t i o n  

dKpx=2mQ,  de dr; 
dt  

dKpe = -2mQy- de r d r ;  
Y d t  

- component perpendicular t o  t h e  plane of r o t a t i o n  

dBdK'ppx= -2mQ$ -r sin 9 dr ;
dt  

(2.9) 
dKip, = -2mQ,p- de r cos 9 dr .

d t  

The Coriolis i n e r t i a  forces  due t o  flapping and r o t a t i o n  a t  angular velocity 

dKp,= -2mop -dB r dr (2.10)d f  

lie i n  the plane of r o t a t i o n  and are perpendicular t o  t h e  blade. 
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2 	 any forces dK’bn [eq.(2.9)] of a higher 
order of smallness can be neglected

W i ‘  	 f o r  t h e  i n e r t i a  forces  of flapping or 
f o r  t he  forces  dKnand s ince a l s o  a l l  
cen t r i fuga l  forces  produced by rota-

I n  addi t ion t o  i n e r t i a  forces,  aerodynamic forces  a c t  on t h e  blade element. 

With the  aim of obta.ining a c l e a r e r  View over t h e  e f f e c t  of i n e r t i a  forces  

xov---l 
QT&_. ,  

L!Lm- ,- r - L h . h  

i \  
Fig.2.12 For Determining 
t h e  Flapping Motion of t h e  

Rotor. 

and t o  check whether t h e  general  equations de
rived below co r rec t ly  describe t h e  phenomenon, 
we Will first simplify t h e  problem. 

We W i l l  completely disregard a l l  aerody
namic e f f e c t s  and study the  motion of blades 
hinged t o  the  hub and ro t a t ing  by i n e r t i a  i n  a 
vacuum w h i l e  t h e i r  axis of r o t a t i o n  i s  turning. 

Motion of hinged rods r o t a t i n g  by i n e r t i a  
durin,--hub rotat ion.  kt us examine t h e  general  
case of a hub whose horizontal  (flapping) hinges 
are a t  some dis tance 1, from t h e  axis of rota
t i on .  

Let t h e  r o t o r  r o t a t e  about t h e  z-axis a t  a n  
angular ve loc i ty  w (Fig.2.12). 

The a x i s  of r o t a t i o n  z t u r n s  backward a t  a 
constant angular ve loc i ty  ny and, a t  some i n s t a n t  of time, i s  def lected through 
t h e  angle 6 from t h e  o r i g i n a l  p o s i t i o n  eo. Taking, as reference plane, t he  plane 
perpendicular t o  t h e  z-axis and assuming smallness of t he  angle 6 ,  eqs.(2.4),
(2.6), and (2.7) can be used f o r  deriving t h e  expressions f o r  t h e  moments of t he  
acting forces  relative t o  t h e  axis of t h e  flapping hinge. 

61 

I .. ..... . . - ... . .. ...... . 



The moment of t h e  i n e r t i a  forces  of flapping (with t h e  pos i t i ve  moment 
tending t o  raise t h e  blade upward) reads 

'h.h

=-"(dfz f mr2dr-2 
'h .h  

1 
 RSince, f o r  modern helicopters,  t he  r a t i o  h.h usually i s  not more than /63
0.02, we can assume t h a t  

R 
mr2 dr  = [mr2 dr  = ; 

'h.h b 

R Rs mr dr  = mr dr  =Sh.k,
'h.h 0 

and s ince t h e  i n t e g r a l  containing can be disregarded, we have 

M --*(Ih,h-2Sh;h1h,b). 
J - dt2 

Having designated 

The moment of cent r i fuga l  forces  i s  

Here, we assume the  angle @ t o  be small and cbnsider t h a t  t h e  vector of 
angular ve loc i tyw ?s directed along t h e  a x k  of ro t a t ion  z. 

The moment of t he  Coriolis i n e r t i a  forces  i s  

MKe= -2 1m&yosin+r(r-lh,h)dr= -22/h,hQy~(1--)sin+. (2.16)
0 


Equating t h e  sum of a l l  moments t o  zero, we obtain t h e  equation of blade 
motion: 

d28I , ,  =(1-20)f  w28 (1-E ) =  -2lh.hQyo(1 --)sin+. 
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After dividing by (1- c )” ,neglecting c2,  and s e t t i n g  cu = s,finallywe 
obta in  

d28 
QY-+ p ( l  +E)= -2 -(1 +�)sing. (2.17)

d1)2 W 

Let us f ind  t h e  p a r t i c u l a r  so lu t ion  of this equation. Se t t ing  p = N s i n  (I 
and subs t i t u t ing  i n t o  t h e  equation, we obtain 

2QYp= --(l+E)sing. 
E O  

The general  so lu t ion  of this equation w i l l  be 

29, 
E Op= A COS VI+ E + +  B sin v/1+Eg- -(I +E) sin 9. (2.l-8) 

$Subst i tut ing t h e  i n i t i a l  values of $ = 2;= 0 ;  98= 0,  we then /64.
determine t h e  values of A and B: 2 d4 

2 Q Y  n
A=- (1 COS l/wT,IEW 

2QY -n: (2.19) 
B = - ( I + z ) s i n v l + z - .  

2 IE O  

Sqbst i tut ing these  values i n t o  eq.(2.18) and assm-kng $1 = $ n 
2 

(here, 

$1 i s  t h e  angle reckoned from the  pos i t i on  of t h e  blade at the  i n i t i a l  moment, 
when t = 0) ,  we obtain 

f3 =-	
2 Q Y  

(COS l/iqzqll-cos q l l ) (  1-1e ) .  (2.20) 
E O  

From this, it i s  easy t o  obtain a l so  t h e  so lu t ion  of $ f o r  t he  case of 
hinges in t e r sec t ing  the  m t o r  axis ( t h .  = c = 0 ) .  

We w i l l  evaluate t h e  indeterminate form by t h e  LtHospital rule:  

d 

BE=0 =-I im -at (cos /iTq,- cos - _  QY sin+,.~ Q Y  -
O E‘O d O 

-( E )da 

Since t h e  ro t a t ion  i s  assumed t o  be uniform, then, having introduced JI1 = 
=cut, we f ind  

QYE = &  t=-(),, (2.21)y w 

and, subs t i tu t ing  Jrl = $ -
2 ’  

we obta in  f i n a l l y  
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I 

p =-QY cos (I,=6 cos(I,. 
0 (2.22) 

T h i s  r e s u l t  can be obtained a l s o  by d i r e c t  so lu t ion  of t h e  d i f f e r e n t i a l  
equation (2.17) i n  which it i s  assumed t h a t  e = 0. 

It follows from eq.(2.22) t h a t ,  i n  t h e  case of a hub wi th  in t e r sec t ing  
hinges with t h e  r o t o r  axis deflected backward at an  angle 6 ,  t h e  blade w i l l  be 
deflected i n  t h e  opposite d i r e c t i o n  through t h e  same angle. 

T h i s  means t h a t  t he  plane of t h e  blade t i p s  i n  space remains constant while 
t h e  ro to r  hub turns .  

The result i s  correct  and has phys ica l  meaning. 

The so lu t ion  f o r  p i s  p lo t t ed  i n  Fig.2.13 i n  t h e  case of superposed (e  = 0) 

u)
and spaced hinges ( f o r  e = 0.2") a t  -% = 0.01. The curves w e r e  constructed 

on the  basis of eqs.(2.20) and (2.22). 

Fig.2.13 Flapping Angle f3 VS. Azimuthal Pos i t ion  of Blade. 

A s  indicated by Fig.2.13, over a c e r t a i n  i n t e r v a l  of t h e  the  motion of t h e  
blades almost coincides, ?.e., t h e i r  pos i t i on  i n  space i s  constant; a f t e r  this, 
the  blade on a hub with spaced hinges gradually starts following the  a x k  of /66
ro ta t ion ,  i.e., t he  plane of r o t a t i o n  of t he  blade approaches the  plane of rota
t i o n  of t he  hub, with some phase shift. 

~~ ~ 

* Such a l a rge  value of e i s  used t o  make t h e  graph c learer .  I n  prac t ice ,  e 
does not exceed 0.02. 



-- 

A t  this time, however, t h e  angle of t u r n  of t h e  hub is  already so grea t  
t h a t  a fu r the r  analysis i s  useless  since' t he  blades are physical ly  res t ra ined i n  
t h e i r  a r r e s t ing  devices on the  hub and s ince t h e  above theory holds only f o r  
small 6.  

Thus, t he  study of short-time osc i l l a t ions  shows t h a t  t h e  ro to r  with small 
hinge spacing i s  p r a c t i c a l l y  equivalent t o  a ro to r  with in te rsec t ing  hinges,
i.e., it re t a ins  i t s  pos i t i on  i n  space unchanged. 

Y l  

f i g . 2 . a  Velocity Diagram of Fig.2.15 Change of Velocity f i e l d  
Blade Element. during Rotor Rotation. 

I n  t h e  subsequent analysis  we w i l l  disregard hinge spacing, and assume 
e = 0. Furthermore, we have reason t o  believe t h a t  t h e  aerodynamic forces  (as 
w i l l  be shown below) en t r a in  t h e  plane of ro t a t ion  of t h e  blades beyond the  
motion of t he  hub so t h a t  equilibrium i s  establ ished between t h e  blades and t h e  
i n e r t i a  forces  t h a t  tend t o  keep t h e  ro to r  pos i t i on  i n  space constant; thus,  t he  
plane of ro t a t ion  follows t h e  motion of t h e  hub with some lag.  

3. &xodynamic Forces Acting on the  Blade 

Let us assume t h a t  t h e  aerodynamic forces  ac t ing  on a blade element l i e  i n  
a plane perpendicular t o  the  blade a x i s  and depend only on the  veloci ty  com
ponent lying i n  this plane. 

The coordinate axes lying i n  a plane perpendicular t o  the  blade a x i s  a re  
s i t ua t ed  such t h a t  t h e  Ox ax is  i s  p a r a l l e l  t o  t h e  plane of ro t a t ion  and t h e  Py 
axis, perpendicular t o  it, l i e s  i n  a plane containing t h e  ro to r  axis. 

Let  us now deconpose t h e  ve loc i ty  ac t ing  on t h e  blade element i n t o  t h e  com
ponents U, and U, (F ig .2 .a ) .  These are equal t o  

U,=ro +pRo sin q; (2.23) 

U, =Wo- r 4 pRu$ cos ++Q,r cos 9- P,r sin 0. (2.24)
d t  

Here, eq.(2.23) i s  t h e  same as i n  r e c t i l i n e a r  motion. I n  eq.(2.&) only 
t h e  las t  two terms are added, which take i n t o  account t h e  e f f e c t  of ro t a ry  motion 
of t h e  axis. Consideration of these  terms gives t h e  change i n  veloci ty  f i e l d  of 
t h e  rotor ,  which becomes analogous t o  t h a t  depicted. i n  Fig.2.15. 

B 65 



Taking t h e  new values of U, and Uy i n t o  
account, a l l  elementary forces  ac t ing  on t h e  
r o t o r  blade can be obtained. 

0 
A s  derived by Lock, t h e  elementary &’

aerodynamic forces  and moments are expressed 
i n  terms of veloci ty  components of t he  ele-

Fig.2.16 Forces Acting on a ment i n  t h e  following manner: 
Blade Element. 

dM = 1 be (cXpa,U i-a,yU,Uy -. a&;) r dr; 

dH=-ssln+-pdTcos+;dMt . d  

r 

dS= -dM cos +- pdT sin 9. 
r 

4. Equation of Moments Relative-to F l a a i ~ R L ~  

The equation of moments r e l a t ive  t o  t h e  flapping hinge can be wr i t ten  as 
follows (see scheme i n  Fig.2.16): 

-f 2 m P p  cos 9r2dr+ 
(2.29) 

0 0 0 

After integrgt ion,  we obtain 
R R  

Let us change from d i f f e ren t i a t ion  with respect t o  t t o  d i f f e ren t i a t ion  

with respect t o  $, assuming d$ = w : 

and then rewrite t h e  equation of moments, af ter  dividing i t  by I,.,w”: 

sh.hdTr-2- 	 QY sin+-2 % cos$- -. 
0 0 1h.h O2 
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Using eqs.(2.23) and (2.&), we write out the  expressions f o r  U: and UxU, 
entering eq.(2.25) f o r  dT: 

The thrus t .  moment i s  

B2+T'pp2sin2$+- B3 h-- 8 4  de 
B3-ppcos+-- B4 -0, sin++ 

3 4 d+ 3 4 0 
B2 B2 8 3  de+- ips ing- -pp2singcosg- - -psin$-

(2.33) 
2 2 3 4 

8 3  9,  B4 9 ,
psin2g+--cos$+

3 w 4 0 3 w 

' L e t  us subst i tute  expression (2.33) in to  eq.(2.30) and s e t  y = bpaS4 . 
this f ina l ly  yields  2Ih.h ' 

The par t icu lar  solut ion of the  d i f f e ren t i a l  equation (2.34) can be repre
sented as  the  ser ies  

'$=a,- a, cos 9- b, sing -a2cos 2g- b, sin 2g -... 

It i s  known from solutions obtained with retention of only f ive  terms i n  
the e ression of B and f r o m  p rac t i ca l  experwents that ,  i n  the usual case of 
(a = 3, the second harmonics of the angle B a re  small i n  comparison with the  
first. 

For greater c l a r i t y  and simplicity of the  derivations ( w h i l e  fundamentalb 
retaining an accurate pa t te rn)  we W i l l  discard, i n  solving t h e  problem, the  
second harmonics i n  the expression f o r  p ,  i.e., we take B i n  the  form 

p=ao -a, cos + -6,  sin 9. (2.35) 
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We then  f i n d  t h e  der ivat ives  and and s u b s t i t u t e  them i n t o  
dJ, 

eq.(2.3!+). Discarding terms containing functions of double angles, we der ive 

Since eq.(2.36) i s  an iden t i ty ,  we equate t h e  coe f f i c i en t s  of s i n  J,, /69 
cos $, and of t h e  f r e e  term, whence we ob ta in  t h e  coe f f i c i en t s  of f lapping 
motion. 

The free term i s  

The coe f f i c i en t  of s i n  J, i s  

from which it follows t h a t  

The coeff ic ient  of cos i s  

1 B3 B 4 Q Y Y  Q x
b,y 4 B2+- 2 p2)-.--aOYp= 4 0  2-90 

whence 

Fox- t h e  conditions of r e c t i l i n e a r  motion we obtain 
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Then eqs.(2.37), (2.381, and (2.39) can be rewri t ten as 

We have examined t h e  p a r t i c u l a r  so lu t ion  of eq.( 2.34). Invest igat ions of 
t h e  general  so lu t ion  of this equation characterizing the  na tu ra l  vibrat ions of 
t h e  blade show t h a t  t h e  blade i s  stable and, after having been def lected from 
i t s  pa th  normal f o r  t h e  given regime, w i l l  re turn  t o  it under strong damping 
during one o r  two revolutions of t h e  ro tor .  

T h i s  means t h a t  t h e  new flapping motion of t he  blades, described by m 
eqs.(2.41) and caused by t h e  presence of angular ve loc i ty  of ro t a t ion  of t he  
c r a f t ,  i s  establ ished r a the r  promptly (within one revolut ion of t he  ro to r ) .  

The obtained expressions hold f o r  ro to r s  with la rge  y. Equation (2.41) 
shows tha t ,  under the  e f f e c t  of angular velocity,  t he  cone of t h e  blades ro t a t e s  
together with t h e  shaf t ,  lagging behind it by a constant angle Aa, and i s  a l so  
def lected i n  a perpendicular d i rec t ion .  Thus, t he  plane of this new slope i s  
sh i f t ed  i n  phase r e l a t i v e  t o  t h e  plane of ro t a t ion  of t h e  r o t o r  axis.  

T h i s  shift AI) i n  t h e  case of longi tudinal  ro t a t ion  i s  characterized by t h e  
r e l a t i o n  

where Ab,  and Aa, are determined by eqs.(2.41). 

Equations (2.41) can be used f o r  compiling a table (see  Table 2.1) showing 
t h e  d i r ec t ion  of flapping of t h e  cone under t h e  e f f ec t  of angular velocity.  

Deflection of t h e  cone i n  the  case of complex motion of t h e  ro to r  (for 
example, t o  t he  f r o n t  and r i g h t )  i s  easily obtained by means of eqs.(2.41). 
Thus, f o r  t he  p a r t i c u l a r  case y = 8 and Sa, =a,, we obtain Table 2.2. 
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TABLE 2.1 


Mode of Revolution 
of Rotor k s  

Pitches 
,Banks t o  t h e  l e f t  

Dives 

Banks t o  t h e  
r i g h t  

Mode of Def lec
t i o n  of Cone 

Forward and lef 
Right and 
f orward 

Backward and 
r i g h t  

Left and back
ward  

Dives and banks t o  Backward 
t h e  r i g h t  

Dives and banks t o  To r i g h t  
t h e  l e f t  

Pitches and banks To l e f t  
t o  t h e  r i g h t  

Pitches and banks Forward 
t o  t h e  l e f t  

The de f l ec t ion  of t h e  cone during r o t a t i o n  i s  easily determined i f  we re
c a l l  t h a t  it i s  def lected t o  t h e  s ide  opposite t o  t h e  r o t a t i o n  ( i n  the  plane of 
ro t a t ion )  and, furthermore, i s  deflected i n  a perpendicular d i r e c t i o n  opposite 
t o  t h e  d i r ec t ion  of t h e  gyro react ion (a right-handed gyroscope, on sloping back
ward, i s  def lected t o  t h e  r i g h t  w h i l e  t h e  add i t iona l . s lope  of t h e  cone occurs t o  
t h e  l e f t ) .  

5. Physical Meaning of t h e  Obtained -Re& 

Equations (2.41) show tha t ,  i n  response t o  r o t a t i o n  of t h e  r o t o r  axis t o  
some side,  t h e  axis of t h e  cone i n  this d i r e c t i o n  will l a g  ( t h e  plane of t h e  
blade t i p s ,  relative t o  t h e  sha f t  axis, i s  def lected t o  t h e  opposite s ide )  and, 
furthermore, w i l l  i n c l i n e  i n  a d i r ec t ion  perpendicular t o  t h e  rotat ion.  

It i s  not d i f f i c u l t  t o  demonstrate t h a t  t h e  lateral i n c l i n a t i o n  is caused 
by aerodynamic forces  and t h e  l a g  by i n e r t i a  forces .  

A s  a t y p i c a l  example, l e t  us examine t h e  case p = 0; B = 1. 

Let us assume t h a t  t h e  r o t o r  revolves backward; a, > 0; a, = 0. Then, 
according t o  eq.(2.&), 

Uy=AI?o- f -de -pRB COS 9 +Qyrcos,+=U 
yst +~ u ~ ,dt 

where UYst i s  t h e  expression f o r  U, when h2 = 0. 

The angle of a t t ack  of t h e  forward blade sect ions (4  = IT),assuming A = 
= const, decreases by 

A l l ,AU =-=-- QY 

'1 ux 0 

w h i l e  t h e  angle of a t t ack  of t h e  blade sect ions s t a t iona ry  with respect t o  t h e  
flow increases  by t h e  quantity 



Under t h e  e f f e c t  of t h e  change i n  moments of aerodynamic forces  occurring 
i n  this case, t h e  f lapping motion of t h e  blades Will change u n t i l  a new equi
librium of t h e  moments and a corresponding flapping motion are established. As 
follows from t h e  condition of zero hinge moment, t h e  angles of a t t ack  of t h e  
blade sect ions should r e t u r n  t o  t h e i r  previous value corresponding t o  r ec t i 
l i n e a r  motion (s ince no new forces  appeared arid t h e  v e l o c i t i e s  U, remained 
constant). 

T h i s  i s  real ized when t h e  real  ascis of r o t a t i o n  of t h e  cone swept by t h e  
blades i s  def lected leftward by t h e  same angle Acr ( t h e  axis i s  incl ined t o  t h e  
r i g h t  t o  reduce t h e  angle of a t t ack  of t h e  advancing blade i n  t h e  case of regular  
s t a t iona ry  f l i g h t ) .  

Actually, t h e  formula f o r  bl [eq.(2.39)] w i l l  y i e l d  i n  this case: 

b1=b; --,Q Y  

0 

i.e., t h e  s l a n t  of t h e  cone t o  t h e  r igh t ,  occurring i n  r e c t i l i n e a r  f l i g h t ,  de
creases by t h e  indicated quantity. 

Now le t  us examine t h e  e f f e c t  of i n e r t i a  forces.  The add i t iona l  force act
ing  during t h e  r o t a t i o n  i s  t h e  fo rce  due t o  Coriol is  acceleration. Its moment, 
according t o  eq.(2.7), i s  

AI ,  =-12mPywr2sin 9 dr =-2/h,hPro sin 9, 

i.e., during backward r o t a t i o n  of t h e  r o t o r  t h e  advancing blade 

acted on by t h e  moment M, = 2 1 h . h O + . u  which tends t o  depress t h e  blade. 

$ = E)i s2 ,  

T h i s  new moment changes t h e  blade flapping. Equilibrium i s  established 
when, as a consequence of this flapping, t h e  angles of a t t ack  of t h e  blade sec
t i o n s  i n  a forward posi t ion.  increase so t h a t  t h e  add i t iona l  aerodynamic moment 
equalizes t h e  moment of t h e  Coriol is  forces .  

A n  increase i n  t h e  blade angle of a t t ack  at t h e  p o s i t i o n  4 = 
2 

i s  achieved 

when t h e  real axis of r o t a t i o n  of t h e  cone described by t h e  blades i s  def lected 
forward (under r e c t i l i n e a r  f l i g h t  conditions, t h e  ax is  i s  incl ined backward so 
that t h e  angles of a t t a c k  of t h e  advancing blades diminish). 

Actually, eq.(2.38) for al yields D.2 

a,=+-, 	 8QY 

YO 
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i.e., during backward ro t a t ion  of t h e  rotor ,  t he  cone follows the  ro to r  axis 

with some lag, being def lected forward from it through t h e  angle -.	84 
'yw 

6. Equation of Torque 

The elementary moment due t o  aerodynamic forces  can be wr i t t en  i n  the  form 
of eq.( 2.26) : 

1dM,= -2 bg(rxPov U:- a,yU,U,- a,Ui)rdr. 

Here t h e  braking moment i s  considered t o  be pos i t ive .  I n  addi t ion  t o  these 
forces, addi t iona l  i n e r t i a  forces  [eqs.(2.5), (2.8), and (2.10)1 appear i n  the 
plane of ro t a t ion  owing t o  ro t a t ion  of t h e  r o t o r  axis i n  space. 

The expressions U,U, and U: i n  curv i l inear  motion can be represented by 
eqs.(2.23) and ( 2 . a )  i n  t h e  following form: 

u,u, =u,u
Yst 

U,Au,,; 

UxAUy=-QppRrsin2+- Q,or2sin + 4- (2.42)+Q y w 2cos ++QyopRrsin + cos +; 

uy=u,5t+Auy; 
A U ~=-!2gsin 9 +Byrcos +; 

ui=uist$-A@; 

AUZ, =-2 ~ , w h ~ r  de Qpr2sin (i,+sin + +2 -
4J 

+2PQ2,wpl?r sin + cos 9 +2Qyo)il?rcos + 
-2 -de QYwr2 cos + -2jjQywpl?rcos2+ 

4J 
-2Q,Qyr2 sin $J cos $J +P$2sin2 9 +Qi.2 cos2t). (2.43) 

Then, transforming t h e  expression dM, and adding the  moments due t o  i n e r t i a  
forces  according t o  eqs.(2.5), (2.81, and (2.101, we obtain 

where 

+ m [ - 2 ~ ,  d t s i n + - 2 ~ ,  -cos++de 	 (f?
dt (2.44) 

dt  
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Assuming B = a. - al cos Q - bl s i n  Q and substi tuting in to  eq.(2.&) the  fi 
expressions U,AU, and AUp from eqs.(2.42) and (2.43), we obtain, 
eq*(2.45) 9 

Mt=Mt 
st 
+-

2* bea, 
0?['pQ,wpRr2sin2++y8,or3sin+

-'pQyor3cos +-'pQ,v)pRr?sin.+cos ++2Q,ohRr2 sin +
-2a,Q,or3 sin2++2b,52,wr3.sin+ cos +-2 (ao-a ,  cos (0 
-6 ,  sin +)Q,opRr2 sin + cos +-251, ohRr2cos + + 
+2a1Q,,w?sin + cos +-2b1Qywr3cos2++ 
+2 (a ,-a, cos + -b,  sin +) QyopRr2cos2++2Q,Qyr3sin + cos + 

R 
-3:r3 sin2+ -S2; r3cos2+]dr + m [ -2a1Qywsin2(1, + 

0 

+26,QYwsin 9 cos ++(Ql/  -52:) sin + cos + 
-2 (a ,-a, cos +-- 6 ,  sin +) ( a ,sin + -b,  cos +)w2] r2dr. 

The moment due t o  zb of t he  blades per  revolution i s  

B4Qy 

a , - - 4 0  b , -+  

B3B, 8 4  9, 8 4  Qy 2+--sop--( w ) 2 - 8 ( x ) ] +30 8 -

according t o  

-

(2.46) 

Here Mts i s  the  moment due t o  aerodynamic forces, obtained i n  the  theory 
f o r  rec t i l inehr  motion 
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We then write t h e  expression f o r  m, by means of eqs.(2.46) and (2.47): 

7. Rotor Thrust and  &-~l..of Attack 

The ro to r  t h r u s t  i s  

2x BR 21: 

ry )dr. 

Subst i tut ing t h e  values of U, and Uy from eqs.(2.23) and (2.24) and in te 
grating, we obtain 

Se t t ing  

A s  we see, t h e  expression f o r  the  t h r u s t  coef f ic ien t  has been somewhat 

changed; nevertheless, assuming 4 = 0, we obtain t h e  same expression as for 

t h e  case of r e c t i l i n e a r  motion. The formula f o r  t h e  angle of a t tack,  after de
termining t h e  induced velocity,  i s  obtained from the  expression 

T =2nR2QV'V, (2.51) 

where V' i s  the  resu l tan t  velocity,  

V'=l/( V sin a -v)2+ V?cos2 a .  

Subst i tut ing T and V by t h e i r  expressions and remembering t h a t  
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A =  V s i n a - U  
P' 

V cos a 
; oR f 

W R  

we obtain 

i.e., t he  usual expression f o r  t h e  angle of a t t ack  i n  which only t has a new 
value. Writing this i n  expanded form, we der ive 

8 .  Lateral  Force 

According t o  eq,(2.28), t h e  elementary lateral force i s  

dS= --cosrj,-(jdTsinrjr.d M t  
r 

We can represent dS as 

dS=dS, A dS, 

where dS,, i s  the  elementary la teral  force f o r  the case of r e c t i l i n e a r  motion: 

A d s = - - AdMt cos 9- PA dT sin$. (2.55)
r 

I n  eq.(2.55) we can replace AdM, = A d M t a e r o  s ince the  i n e r t i a  forces  L22 
when summed with respect t o  z,-blades W i n  give zero. It i s  easy t o  demonstrate 
this by means of eq.(2.&): 

R R 

ddMtacro cos 1 )  =-1 bea, [?SZppRrsin29 cos $I + 
r 2 

+pSlxuJr2sin rj,cos 9 -yQyor2cos2 9 -'pQyopRr sin c) cos2li,f 

+2QplRrsin c) cos $I -2a18,0r2 sin2,+ cos 9+ 

+26,Q,or2 sin 9 cos29 -2(a0-a, cos 9 -6 ,  sin +)Q,u)pRrsin 9 cos* 9

-252,wA~rcos2c)$2a,Qyor2sin~cos29
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-2b,Qyor2cos3++ 2 (ao-a ,  cos 9- b, sin+) Q,opRr cos3+$ 

+2Q,Q,r2 sin 9 cos2+ -Qir2sin29cos +-Qir2cos3+]dr.  

Set t ing  

dT=dTst f A dT =dTs++	-1 bQa,U,AU, dr ,
2 (2.57) 

we f ind,  by means of eq.(2.42), 

PA dT sin $=-	 1 bea, ( a o - a,  cos 9 -6 ,  sin +)(- QxopRrsin3+
2 

-Q p r 2sin2++Q,wr2sin + cos 9+S2,wpRr sin2+ COS+). (2.58) 

The lateral force  of t he  ro to r  can be represented in t h e  form 

where 

2r:BR 
-5- PA dT sin 9 dr dq. (2.59)2n 

0 0  


Subst i tut ing e q ~ ~ ( 2 . 5 6 )and (2.58) i n t o  eq.( 2.59) and integrat ing,  we 
obtain 

(2.60) 

Subst i tut ing S S t  by i t s  value of fi 
S,,= - - z , b ~ / i ~ ~ ~ a ,1 

2 

(2.61) 

+aoa ,  (5-BP)) 1 

we f i n a l l y  obtain 

3--2 aor(BAS B" 'p)+ aoa,(S-B$)+2 
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(2.62) 

9. Longitudinal Force 

According t o  eq.(2.27), t h e  elementary longitudinal force is 

d MdH=-tsin+- PdT cos+. 

Set t ing 
dH=dH,+AdH, 

we f ind  
A d M t" 

A d H  = __sin$- PA dT cos+. 
r 

Analogous t o  eq.(2.56), 

A d M t a e m  .sin+=-
2' bQablI p8,u)pRr sin3++yQxwr2sin2 9 

r 

-y&?,wr2sin + cos 9 -pS2,wpRr sin2+ cos 9 +29,whRr sin2 9 
-2alQxwr2 sin3~+2b,Q,wr2sin2+cos+
-2 (a,  -a, cos (1, -b, sin +)8,u)pRr sin2+ COS 9 - ( 2.64) 
-2QYwhRrsin + cos I),+2a,Q,wr? sin2+ cos + -2b,Qywr2sin I),cos2I),f 
+2 (a,  -a ,  cos I()-6 ,  sin 9)  Q,wpRr sin + cos2I()+ 

2 2+2 Q,QYr2sin2 cos (1, -Q,r2 sin39 -Slur2sin $ cos291 dr. 

Analogous t o  eq.(2.58), 

PA dT cos += -1 beam(a,-a, cos + -b, sin +) ( -S2,wpRr sin2 9 cos + 
2 

-Q,w2sin 9 cos + +Qywr2cos2+ +QywpRrsin 9 cos2 +). 
(2.65) 

Let us use the  same notations as i n  the  calculat ion of t h e  la teral  force, 
-e& 

(2.66) 

Substi tuting here eqs.( 2.64), (2.65) and integrating, we obtain L22 

(2.67) 
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The expression of t h e  longi tudinal  fo rce  for r e c t i l i n e a r  motion has t h e  form 

Surmning eqs.(2.67) and (2.68), we f inal ly  obtain 

10. Consideration of the- Cha.we in-duced 
Velocity Di s t r ibu t ion  dur&ng CurvilinGar Motion 

I n  curvi l inear  motion, a change both i n  magnitude and i n  character of t h e  
induced ve loc i ty  d i s t r i b u t i o n  over t h e  r o t o r  disk should occur owing t o  t h e  
presence of new forces,  namely Coriol is  i n e r t i a  forces;  t h e  moments produced by 
these  forces are balanced ( i n  the  case of hinged blade attachment)by t h e  redis
t r i b u t i o n  of aerodynamic forces  

It i s  l o g i c a l  t h a t ,  i f  t h e  angles of a t t ack  of t h e  blade sect ions a t  a 
given angular p o s i t i o n  i n  cu rv i l i nea r  motion do not change i n  comparison with 
those ex i s t ing  i n  r e c t i l i n e a r  motion, then both t h e  forces  and t h e  induced ve
l o c i t i e s  caused by them a l s o  Will remain constant. 

Assuming t h a t  t h e  r o t o r  revolves backward (0,> 0), t h e  angle of a t t ack  of 
blade section, a t  p = 0; B = 1, w i l l  be 

UY ARw -raal s in  + + rob, cos + +Qyrcos (I, 
.. 

a,=y+ u x-=y+ ro 

Subst i tut ing here t h e  expressions f o r  a1 and bl obtained from eqs.(2.3$) 
and (2.39) and s e t t i n g  p = 0, B = 1, and R, = 0, i.e., 

we obtain 

a,=y+-- AR 8Qy-sin$. 
f Y o  

The angles af a t t ack  i n  t h e  forward and rear pos i t i ons  ((I = 0, $ = IT), as 
shown above, do not change when A = const, i.e., t h e  kinematic change i n  velocity 
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of the  disk (Q,r cos J r )  does not produce a change i n  t h e  angles of a t t ack  of t h e  
blades thanks t o  t h e  corresponding change i n  flapping motion. 

The above statements a l s o  hold f o r  p # 0.  The curves of the  azimuthal 
change i n  angle of a t t ack  of t h e  blade section, p lo t t ed  i n  Fig.2.23, f o r  r ec t i -

,&3 

linear motion and for r o t a t i o n  of t h e  axis i n  a longi tudina l  d i r ec t ion  a l s o  show 
t h a t ,  at azimuths $ = 0 and $ = IT, t he  angles of a t tack,  f o r  a l l  p r a c t i c a l  
purposes, remain constant3$. 

The change i n  angles of a t tack ,  f o r  t h e  example under study, takes  p lace  
from the  r i g h t  and l e f t  of this posi t ion,  t he  m a z h u m  change occurring when 

$ = + a n d $  = IT, which corresponds t o  t h e  azimuth of t h e  maximum value of 

t h e  Coriol is  i n e r t i a  forces .  

Thus, it can be assumed t h a t  t h e  previous d i s t r i b u t i o n  l a w  of forces  and 
induced ve loc i t i e s  over t h e  d isk  i s  superposed by aerodynamic forces  equalizing 
t h e  moments due t o  t h e  Cor io l i s  i n e r t i a  forces  and t h e  r e su l t an t  ve loc i t ies .  
These forces  have a i n  a plane perpendicular t o  the  d i r ec t ion  of rota
t i on ,  so  t h a t  t h e  induced ve loc i ty  f i e l d  w i l l  be t i l t e d  i n  this d i rec t ion .  

The v e r t i c a l  components of t h e  Coriol is  forces  a r e  expressed, according t o  
eq.(2.7), i n  t h e  following manner: 

R 

KQ =-s2m8,wr sin 9 dr =-2Shah

Y 
Qyu' sin 0); 

0 
R I 

KgX= - 2mQXwrcos 0) dr =-2S,,Q,w COS 0). I (2.70) 

0 

These forces  a re  l i n e a r l y  d is t r ibu ted  over t h e  radius and a re  periodic.  

It can be assumed t h a t  t he  aerodynamic forces  and t h e i r  induced ve loc i t ies ,  
equalizing t h e  Coriol is  forces  at each angular posi t ion,  obey the same law of 
change both with respect  t o  azimuth and radius  of t he  blade. Then the  induced 
ve loc i ty  i n  the  case of curv i l inear  motion can be expressed i n  the  form 

v =vo+v1 R 
sin ++v, L-cos 9. (2.71)R 

Here, t h e  ve loc i ty  d i rec ted  downward i s  comidered t o  be pos i t ive .  Let us 
denote 

VI IYQp --=c YI -
Y-

VO (2.72) 

VO T '  

x- The difference i n  the  angle of a t t ack  of t he  section, at Jr = 270°, f o r  rota
t i o n  i n  a t ransverse d i r ec t ion  (see Fig.2.22) i s  due t o  a change i n  A .  
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Here, lKnj and IKn,l are t h e  absolute values of t h e  Coriol is  forces  at 
angular pos i t ions  where they reach a maxi". I n  calculat ing v,, it was assumed 
t h a t  this veloci ty  i s  constant over t h e  radius. Assuming an  addi t iona l  induced 
ve loc i ty  as a l i n e a r  function of t he  radius, we should, from t h e  condition 
of equality of momentum, introduce some f a c t o r  C i n t o  the  expressions f o r  px 

3Sh.hZb (2.73)
PX' I 

-a ~ n R 4 t
2 

0 

Subst i tut ing v1 and v2 by t h e i r  values from eqs.(2.72), we obtain 

v = = v o + p y v o L s i n + + p  X O R
R 

v L c o s q .  

We then express t h e  mean induced veloci tx  i n  terms of t he  magnitude of 
th rus t .  According t o  the  l a w  of momentum 

Here V' is  the  resu l tan t  veloci ty  determined from eq-.( 2.52). 
expressions f o r  T and V' from eqs.(2.49) and (2.52), we obtain 

Subst i tut ing the  

Let us denote 

Then, the  veloci ty  component U, of t he ' b l ade  element w i l l  have the  form 

U' =kRo -pyhlrwsin 9 -p.A1rw cos (I, -r de 
Y dt  
-pew? cos 9 +Q,r cos 9 -P,r sin 9. 

To 	 the  expression UxUy obtained f o r  v = const, we then add the  terms 

U,A'U,=-pyklr2w2sin 9 -pyklw2Rrpsin29 
-p,Alr2w2 cos 111 -pA1w2Rrpsin 9 cos 9. (2.77) 

The expression f o r  t he  ro to r  t h rus t  w i l l  have the  form 
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2 x  BR 
1T=-J s Tbea, ('pU:+U,Uy+U,A'Uy)drd(O, 

2n 
0 0  


which, i n  the expression f o r  t he  coef f ic ien t  t, w i l l  give t h e  addi t iona l  term 

I n  t h e  expression f o r  t h e  t h r u s t  moment, we obtain the  addi t iona l  terms 

BR 

drA' 	 J dTr =$bea, r U x ~ ' U y r  == 

0 0 

Subst i tut ing t h e  expression f o r  the  t h r u s t  moment (with these addi t iona l  /80
terms) i n t o  eq.(2.30), we obtain the  following expressions of the  flapping coef-. 
f i c i e n t s ,  with consideration of a var iable  l a w  of induced veloci ty  d is t r ibu t ion :  

Let  us now derive t h e  formula f o r  torque i n  the  case of a variable l a w  of 
induced veloci ty  d i s t r ibu t ion .  

We f i nd  the  expression f o r  U;. L e t  us denote 

(2.81) 

where U, i s  taken with respect  t o  eq.(2.&), i.e., without consideration of a 
variable induced velocity.  
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The expression for dM[ reads 

dM' - - b e ( c x ~ ~ ~ U x - a a , ~ U ~ ~ U ~ - a , U ~ ) r d r .1 2 I 2  

t- 2 

We can represent this i n  the  form 
1dM; =?be [c,,,JJ: -a,cp (U,U, +A'U,U,) 

-aa, ( U ~ ~ 2 U y A ' U y ~ A ' U ~ ~ ] i d r  

or 


dM;=dM, +A'dM,, 
where 

A'dMt =--' beam ( P A  'uxuy+2uyA'U, +A'U;) r dr. 
2 .(2*83) 


Substituting here the  necessary expressions from eqs .( 2.77) and (2.82) /81
and integrating, we obtain 

8 4  Qy
- - ( - P A0 -;' 4  

Qx PYh)]  

or, se t t ing  m: = m, + A",, we obtain for A'mt the  expression 

We now determine the  expressions for pxhl  and prhl with the aid of 
eqs.(2.73) and (2.75), assumkg h t o  be small i n  comparison with p (which holds 
for p 2 0.15): 
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(2.86) 

Obviously, t he  add i t iona l  terms i n  the  exqressions f o r  t h e  flapping coeffi
c i en t s  and i n  t h e  expression f o r  t h e  torque do not depend on A .  

Equations (2.86) show t h a t  t h e  smaller the  value of p,  t h e  grea te r  w i l l  be 
t h e  inf luence of d i s t o r t i o n  i n  the  induced ve loc i ty  d i s t r ibu t ion .  T h i s  becomes 
understandable i f  we r e c a l l  t h a t  t h e  smaller t h e  t r a n s l a t i o n a l  velocity,  t h e  
grea te r  should be t h e  induced ve loc i ty  caused by an aerodynamic force  of t h e  same 
magnitude. The f a c t  t h a t  t h e  quant i t ies  pxAl and pvAl do not depend on A g rea t ly  
f a c i l i t a t e s  t h e  ca lcu la t ion  of t he  f lapping coef f ic ien ts  and forces  f r o m t h e  
var iab le  induced veloci ty .  The ca lcu la t ion  i n  this case i s  performed i n  t h e  
same manner as f o r  a constant induced ve loc i t  , except t h a t  +, a l ,  and bl a r e  
calculated from eqs.(2.78), (2.79), and (2.80 s and t h e  expression f o r  mt  from 
eq.(2.@); t o  t h e  obtained value, we add the  term A'm, calculated from eq.(2.85). 

ANALYSIS OF OBTAINED RESULTS 

11. Blade F lawing  

To i l l u s t r a t e  t h e  point ,  we made various ca lcu la t ions  of a ro to r  i n  curvi
l i n e a r  motion. 

Design data:  
ro to r  diameter, D = m; 
loading coef f ic ien t ,  ci = 0.065; 
s t a t i c  moment of blade r e l a t i v e  t o  axLs of flapping hinge, Shah= 

= a 2  kg m; 
angle of blade se t t i ng ,  cp = 3', am = 5.7. 

All ca lcu la t ions  were performed f o r  t h e  regime of autorotat ion.  

Figure 2.17 shows the  va r i a t ion  i n  flapping coef f ic ien ts ,  calculated f o r  

a constant value p = 0.3 and d i f f e r e n t  values of t he  r a t i o  Fd ( ro t a t ion  i n  /82 
t ransverse d i rec t ion) .  We see from Fig.2.17 t h a t ,  on ro t a t ion  t o  t h e  l e f t ,  

(+ > 0)bl increases  w h i l e  al decreases, ?.e., t he  cone described by t h e  

blades i s  def lected t o  t h e  r i g h t  and forward. I n  r o t a t i o n  t o  t h e  r igh t  

(%e 0), we have a decrease i n  bl and an increase i n  al ,  which ind ica t e s  de

f l e c t i o n  of t h e  cone t o  t h e  l e f t  and backward. The coning angle a. s l i g h t l y  in
creases with r o t a t i o n  t o  t h e  l e f t  and decreases with r o t a t i o n  t o  t h e  r igh t .  



Consideration of t h e  change i n  t h e  induced ve loc i ty  d i s t r i b u t i o n  leads t o  
an even grea te r  change i n  bl a t  an angular ve loc i ty  0,. 

Curve bl calculated f o r  a var iab le  induced ve loc i ty  i s  p lo t t ed  i n  Fig.2.17 

ao,aJJr*Pmln 

a s  a broken l i n e .  For 
p r a c t i c a l  purposes, we can 
disregard t h e  changes i n  a. 
and al due t o  var iable  induced 
veloci ty .  

Figure 2.17 a l s o  gives 
t h e  curve f o r  t h e  values 
p m i n  = a. -,/=,which 
shows a marked decrease i n  
p m i n  f o r  ro t a t ion  t o  e i t h e r  
l e f t  o r  r igh t .  T h i s  means 
t h a t  t h e  reserve of blade 
overhang decreases markedly 
toward t h e  lower a r res t ing  
device. The blades will pass 
lower, t h e  grea te r  t he  angular 
ve loc i ty  of t h e  roll and the  
smaller t he  value of y 

Figure 2.18 gives. the  
same curves f o r  t h e  case of 
r o t a t i o n  of t h e  c r a f t  i n  
longi tudina l  d i rec t ion .  I n  
conformity with t h e  foregoing,

Fig.2.17 Flapping Coefficients i n  Transverse during ro t a t ion  i n  a dive, a lRotation of Craft (p = 0.3). increases  and bl decreases, 
i.e., t h e  plane of t h e  blade 
t i p s  i s  displaced backward 

and t o  the  l e f t ,  whereas during ro t a t ion  i n  pif,ch i t - i s  sh i f t ed  forward and t o  
the  r igh t .  Curve B m i n  shows t h a t  nose-down r o t a t i o n  causes the  grea tes t  de
crease i n  B m i n ,  i .e.,  t he  blades pass very f a r  below the  plane of ro ta t ion ,  /sg
whereas p i tch ing  ro t a t ion  i n  this sense i s  most favorable.  

Figures 2.17 and 2. le  p e r t a i n  t o  c r a f t  whose cont ro l  i s  not accomplished by 
means of an automatic p i t c h  cont ro l  mechanism ( f o r  example, by a i le rons  and 
rudders, by deflect ing t h e  hub of autogiros with d i r e c t  control) .  Both 
Figs.2.17 and 2.18 ind ica te  tha t ,  f o r  such c r a f t  i n  curv i l inear  motion ( fo r  
example, during a sharp bank o r  going i n t o  a dive),  t h e  change i n  p m i n  may be 
much grea te r  than i t s  va r i a t ion  over t h e  e n t i r e  speed range of t he  c r a f t  i n  
r e c t i l i n e a r  f l i g h t .  T h i s  should be taken i n t o  consideration i n  se lec t ing  t h e  
pos i t ion  of t h e  lower a r r e s t ing  device of blade flapping. On a helicopter,  the  
p i l o t ,  i n  def lec t ing  the  automatic p i t c h  control,  reduces t h e  def lec t ion  of the  
blade cone i n  curv i l inear  f l i g h t ;  thus, the  reserves  of t he  angle toward the  
lower a r r e s t ing  device do not diminish so severely.  
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Fig.2.18 Flapping Coefficients i n  Longitudinal 
Rotation of t h e  Craft (p = 0.3). 

F’ig.2.19 Change i n  Angle of Attack and Thrust Coefficient 
of a Rotor, as a Funct ionaf  t h e  Angular Velocity of 

Rotation of t h e  C r a f t  at Constant p = 0.3. 

85 


e 




12. Effect  of Curvilinear Motion at- Autge ta t ion  
of t h e  Rotor 

In t h e  aerodynamic ca lcu la t ion  of a r o t o r  i n  au toro ta t ing  regime, eq.(2.@)
is  used f o r  determining A ,  which permits f inding t h e  value of A ,  i f  m, = 0 i s  
assumed and cp, p, a,, and nu are known. However, i n  p rac t i ce  this quadratic 
equation becomes very cumbersome after subs t i t u t ion  of t h e  values of +, al, and 
bl. For determining t h e  value of A it i s  more convenient, after p l o t t i n g  the  
dependence of m, on A ,  t o  read from the  graph t h e  value of A at  which m, van
i shes .  When constructing t h e  p l o t  of m,, t he  coe f f i c i en t s  a,, a,, and b, should 

be determined from eqs.(2.37), (2.3$), 
and (2.39). 

Figure 2.19 gives the values of 
t h e  angle of a t t ack  of t h e  r o t o r  and t h e

/s4. 
t h r u s t  coeff ic ient  t, obtained f o r  a 
constant value p .= 0.3 at d i f f e ren t  
angular ve loc i t i e s  of r o t a t i o n  of t h e  
c r a f t .  

Figure 2.19 ind ica tes  t ha t ,  t o  
maintain a constant value of p a t  con
s t a n t  f ly ing  speed i n  the presence of 
angular velocity,  t h e  magnitude of t h e  
angle of a t t ack  must be changed and t h e  
more so, t h e  l a r g e r  t h e  angular veloci ty .  
When t h e  c r a f t  r o t a t e s  t o  t h e  left ,  a 
constant value of p can be maintained 
only by increasing t h e  angle of a t t ack  
over t h a t  i n  r e c t i l i n e a r  motion, whereas 
i n  r o t a t i o n  t o  t h e  r i g h t  t h e  angle of 

Fig.2.20 Angle of Attack of Rotor a t t ack  must be reduce;. T h i s  is ex-
i n  Autorotation. plained physical ly  by the  f a c t  t h a t ,  i n  

r o t a t i o n  t o  the  l e f t ,  t h e  r o t o r  disk i s  
inc l ined  forward ( i n  addi t ion t o  being 

inc l ined  t o  t h e  r igh t ) ,  which reduces t h e  angle between ve loc i ty  and plane of 
r o t a t i o n  of t h e  blade t i p s  i n  space. I n  r o t a t i o n  t o  the  r igh t ,  t h e  opposite 
occurs. It can be assumed t h a t ,  t o  maintain a constant value of p, the  angle 
between the  ve loc i ty  of flow and the  plane of ro t a t ion  of t h e  blade t i p s  must 
remain constant a t  any angular ve loc i ty  R. 

Figure 2.20 gives the  values of t h e  angles of a t tack  as a function of p, 
obtained a t  d i f f e ren t  angular ve loc i t i e s  of r o t a t i o n  of t h e  e n t i r e  c r a f t .  It 
can be s e e n t h a t ,  i f  r o t a t i o n  of t he  d s  begins and proceeds a t  a constant /85
angle of a t t ack  (i.e.,  angle between ve loc i ty  and a plane perpendicular t o  t h e  
r o t o r  axis), then steady autorotat ion W i n  occur only at a new value of p, di f 
fe r ing  from t h e  former. Thus, i n  ro t a t ion  of t h e  c r a f t  t o  t h e  l e f t  at a constant 
angle of a t tack  p will increase and i n  r o t a t i o n  t o  t h e  r igh t ,  it will decrease. 

If i n  addi t ion  t o  t h e  angle of a t tack  a l s o  the  f ly ing  speed i s  kept con
s t an t ,  t h e  rpm of t h e  r o t o r  W i l l  decrease on ro t a t ion  t o  t h e  l e f t  and w i l l  in
crease on ro t a t ion  t o  t h e  r igh t .  

$6 
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To i l l u s t r a t e  this phenomenon, F'ig.2.21 gives the revolutions of a r o t o r  at 
angles of a t t ack  of CY = +4.5', 2.80, and 1.5' (po = 0.25, 0.30, 0.35 i n  rec t i 
l i n e a r  motion) as a funct ion of t h e  ve loc i ty  of r o t a t i o n  i n  t ransverse direct ion.  

The number of revolut ions i n  r e c t i l i n e a r  f l i g h t  i s  taken a s  no = 200 rpm.  

1t
iII 
I11 

F'ig.2.21 Rotor Revolutions i n  Auto-
ro t a t ing  Regime, as a Function 

of -."x
W 

The rpm i n  t h e  presence of ro ta t ion  
nn i s  ob tahed  from t h e  following 
considerations : 

V cos an0=9.55 -. 
roR ' 

ne=9,55 V-;	cos a 

P d  

POne=no -. 
Ps 

The value of psd is  determined 
from F'ig.2.20 a t  t h e  in t e r sec t ion  of 
the  ordinate  (Y = const with the  curve 
(Y = f ( p >  f o r  t h e  corresponding angular 
velocity.  

A s  a consequence of t h e  above 
e f f ec t  of  an increase i n  angle of 
a t tack  necessary f o r  maintaining 
steady au toro ta t ion  a t  a given p, 
there  e x i s t s  t he  r i s k  of t he  r o t o r  
losing au toro ta t ion  a t  high f ly ing  

speeds i n  t h e  case of r o t a t i o n  of t h e  c r a f t  t o  t h e  l e f t .  

If t h e  he l icopter  begins t o  r o t a t e  sharply t o  t he  l e f t  a t  l a rge  p while i t s  
angle of a t t ack  remains constant, t h e  ro to r  revolutions Will decrease rap id ly  
and p Will increase fu r the r .  T h i s  i s  aggravated by t h e  f a c t  that t h e  forward 
i n c l i n a t i o n  of t h e  r e su l t an t  of t h e  ro tor ,  generated when t h e  c r a f t  r o t a t e s  t o  
t h e  l e f t ,  w i l l  p e r  s e  (aga ins t  t h e  W i l l  of t he  p i l o t )  c r ea t e  a diving moment 
which tends t o  decrease t h e  angle of a t t ack  even more. The l a t t e r  circumstance, 
increasing t h e  abruptness of drop i n  r p m  as the  c r a f t  ro t a t e s ,  involves an in
crease i n  angles of a t t ack  with respect  t o  t h e  blade sect ions,  which causes f l a w  
separat ion and marked increase i n  drag. 

Figures 2.22 and 2.23 give t h e  va r i a t ion  i n  angles of a t tack ,  calculated 
f o r  sect ions of r = 0.5 at p = 0.3, for t he  case of s t a t iona ry  f l i g h t  and f o r  
d i f f e r e n t  d i rec t ions  of r o t a t i o n  of t h e  c ra f t .  A s  seen here, the  -angles of 
a t t ack  with respect  t o  t h e  sec t ions  increase markedly on left-hand ro t a t ion  and 
nose-dawn of t h e  hel icopter .  T h i s  i s  due t o  t h e  f a c t  t ha t ,  i n  t h e  cases under 
consideration, an increase i n  angles of a t tack  at angular s e t t i n g s  of t h e  blade 
of Jr = 270' and JI = 180' .(where t h e  angles of a t tack  of t h e  sect ions a re  already 
l a rge )  is  required t o  balance t h e  moment of t h e  Coriol is  forces .  

Taking t h e  var iab le  induced ve loc i ty  i n t o  consideration W i l l  always in
crease t h e  va r i a t ion  i n  angles of a t t ack  with respect t o  azimuth. 



Fig.2.22 	 Angle of Attack of Blade 
Section vs. Azimuth. 

Fig.2.23 Angle of Attack of Blade 
Section vs. Azimuth. 
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Based on wind-tunnel tests /s6
of blades with two prof i les ,  of 
which p r o f i l e  No.1 has higher /�J
values of cy,,, and CY,,than pro
f i l e  No.2, we p lo t ted  t h e  curves 
of t h e  reserve of autorotat ion i n  
Fig.2.& (Ref Ll): 

a-ua, - tan-I -==f(a-a , ) ,cx 

CY 

wherea'o i s  the  angle of a t t ack  
a t  which cy = 0 f o r  t he  p ro f i l e .  
The diagram shows tha t ,  i n  the 
case cp = 3 O ,  the  range of angles 
of a t tack.  at which an accelerat
i n g  moment i s  produced on the  
blade element extends fromcr, = 
= 4' , t o  CY, = 15' f o r  t h e  p r o f i l e  
No.2, and i s  much grea te r  f o r  t h e  
p r o f i l e  No.1, reaching a value 
of 30'. 

I n  p r o f i l e  No.2, during left-
hand ro t a t ion  of t he  c r a f t  with 

R 
a r a t i o  of += 0.05 a t  1.1 = 

= 0.3, a decelerating moment Will 
be produced even on the  sec t ion-
r = 0.5, over an  appreciable porc 
t i o n  of t he  disk,  To maintain 
au toro ta t ion  a t  given p ,  an even 
l a r g e r  angle of a t tack  of t h e  
ro to r  i s  required; i f  t he  angle
of a t t ack  is  kept unchanged, t he  
r o t o r  rpm will drop and t h e  flap
ping motion w i l l  increase great ly .  

T h i s  brings us t o  t h e  cor+ 
clusion t h a t  a constant (accord
i n g  t o  Fig.2.21) decrease i n  
r o t o r  rpm on left-hand rot.ation 
of t he  hel icopter  and an  increase 
i n  rpm on right-hand ro t a t ion  
w i l l  take place on ly  up t o  some 

"x 
small value of -,whose magni-.

w 


tude i s  determined exclusively 
by t h e  aerodynamic blade charac
t e r i s t i c s .  A t  l a rge  values of 



- -  

I  


2 

Fig.2.24 Curves of t he  Autorotation Reserve of Blades. 

n 
X t h e  ro to r  rpm on r o t a t i o n  t o  t h e  l e f t  wi l l  drop more abruptly - even as far 

W 

as loss of autorotat ion - as a result of flow separation, whereas i n  ro t a t ion  t o  
t h e  r igh t  t he  rpm Will first  cease t o  increase and then, at la rge  values of 

-Q x  ,begin t o  decrease. w 

Thus, f o r  a r o t o r  wi th  blade p r o f i l e s  of la rge  au toro ta t ion  reserves one 
can sa fe ly  permit a much g r e a t e r a n g u l a r  veloci ty  than  f o r  a r o t o r  with poor 
blade p ro f i l e s .  

__--t h e  Res-Gtant- of A e r o d y - d c  Forces13. 	Behavior of ~-

Q- C g v i l i n e a r.___-- .._Hel i cmte r  Motion 

According t o  general  considerations, t he  resu l tan t  i n  t h e  case of curvi
l i n e a r  hel icopter  motion i s  def lected i n  a manner similar t o  t h e  def lec t ion  of 
t h e  cone described by t he  blades i n  space. Thus, the resu l tan t  lags  on t h e  s ide  
opposite t he  ro t a t ion  and, i n  addition, i s  def lected i n  a perpendicular direc-

L1t i o n  by an  amount proport ional  t o  t h e  r a t i o  U). 
The l a g  of t h e  r e su l t an t  causes, r e l a t i v e  t o  the  center  of grav i ty  of t h e  

c r a f t ,  a moment counteracting t h e  ro ta t ion .  T h i s  cons t i tu tes  a damping moment 
which is  larger ,  t h e  g rea t e r  t h e  angular veloci ty  of r o t a t i o n  of t h e  c r a f t .  

The inc l ina t ion  of t h e  r e su l t an t  i n  perpendicular d i r e c t i o n  i n  the  case of 
lateral  ro t a t ion  causes a change i n  angle of a t tack,  whereas i n  the  case of 
longi tudinal  ro t a t ion  t h e  i n c l i n a t i o n  of t h e  c raf t  i s  t o  t h e  r i g h t  o r  t o  t h e  
l e f t .  

Figure 2.25 gives t h e  va r i a t ion  i n  t h e  quantity S character iz ing t h e  

angle of i nc l ina t ion  of t h e  r e su l t an t  in t h e  lateral  plane, as a funct ion of t h e  

d 
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~ig .2 .25  Lateral  Inc l ina t ion  of 
t h e  Resultant as a Function of t he  
Velocity of Rotation i n  Transverse 

Direction. 

angular ve loc i ty  of banking n (at 

p = 0.3). 

The formula f o r  t h e  l a t e r a l  force 
i n  r e c t i l i n e a r  motion does not y i e ld  
t h e  values of S close t o  fu l l - sca le  
values (owing t o  t h e  poor convergence 
of t h e  calculated flapping coef f ic ien ts  
t o  t h e  real coef f ic ien ts )  ; however, t h e  
va r i a t ion  i n  l a t e r a l  force a s  a func
t i o n  of t h e  angular ve loc i ty  i s  colc 
r e c t l y  given' by eq.( 2.62). 

The slope of t he  curve 2 = 
T

= f(+) i s  close t o  t h a t  of t h e  

curve bl = f(%). T h i s  circumstance 

can be used f o r  an approximate calcula
t i o n  of t h e  damping forces  and moments 

of t h e  r o t o r  with respect t o  t h e  degree of va r i a t ion  i n  the  flapping coeffi
c ien ts .  

The magnitude of t h e  component of t h e  damping moment act ing i n  t h e  plane /89
of angular ve loc i ty  of t h e  c r a f t  i s  readi ly  determined from t h e  formula 

M =Tdy, 

where 
y = distance between center  of hub and center  of g rav i ty  of t h e  c r a f t ;  
6 = angle of lag  of t h e  r e su l t an t  i n  ro ta t ion .  

According t o  eqs.(2.80) and (2.86), we can take,  f o r  p 2 0.2 

Here, K, i s  a coef f ic ien t  taking i n t o  account t h e  change i n  t h e  flow coef
f i c i e n t  h during ro t a t ion  of t h e  c r a f t .  The coef f ic ien t  Kl can be determined 
from experiment. If no experimental da ta  a r e  avai lable ,  we can take K, = 1. 

The i n t e n s i t y  of in te rac t ion ,  expressed by t h e  slope of t h e  curve S/T as a 
function of nx/w, may decrease on fu r the r  increase of this r a t i o  above a ce r t a in  
value, owing t o  f l o w  separat ion i n  the  blade sect ions.  

A s  a result of t h e  above-described phenomenon of decrease i n  rpm and hence 
i n  th rus t  during au toro ta t ion  while t h e  c r a f t  rotates t o  t h e  . left  (with a ro to r  
of r i g h t  ro t a t ion ) ,  t h e  damping and thus  a l so  t h e  con t ro l l ab i l i t y  of t h e  c r a f t  
is  l e s s  i n  the  case of left-hand ro t a t ion  than i n  the  case of right-hand rota-



t ion .  

The use of an optimum supporting blade p r o f i l e  extends the  permissible 
range of t h e  angles of a t t ack  of t h e  blade sect ions so much tha t ,  with proper 
arrangement of t he  helicopter,  t he  c r i t i c a l  magnitude of the  angular veloci ty  of 
r o t a t i o n  of t h e  hel icopter  wi l l  not be reached i n  ac tua l  service.  

EFFECT OF EbOTOR PARANETEX3 AND HUB DESIGN ON FLAPPING AND 
DAMPING OF THE EEDTOR 

Blade flapping and def lec t idn  of t he  r e su l t an t  i n  curvi l inear  motion of a 
hel icopter  a r e  affected by t h e  cha rac t e r i s t i c s  of t h e  ro to r  itself, which 
rhanges i t s  aerodynamics under these conditions. 

Below, we Will examine t h e  e f f ec t  on flapping and damping of t he  rotor ,  the  
moment cha rac t e r i s t i c s  of t h e  blade prof i le ,  i t s  transverse centering, and hub 
design. 

Le t  us take a hub with a flapping compensator, with kinematic dependence of 
t h e  angle of blade s e t t i n g  on the  flapping angle - such t h a t  the  angle of blade 
s e t t i n g  decreases with increasing flapping angle. 

&. Rotor -with -a P r o f i 1 g H a ~ n . ga Vgiable Center of Pressure 

Until  now, we discussed a ro to r  having blades with p r o f i l e s  of constant 
center  of pressure and wi th  a f l exura l  axis 	coinciding w i t h  the  center of pres

sure.  L e t  us now examine a ro tor  
having blades w i t h  a variable center  
of pressure.  

Recalling the  var ia t ions i n  the 
angle of a t tack  d i s t r ibu t ion  of the  
blade sect ions with respect t o  az i 
muth as they occur i n  curvi l inear  
motion, it i s  easy t o  show tha t ,  i f  
t h e  coef f ic ien t  of the  moment rela.
t i v e  t o  t h e  flexural axis of the  
blade c, depends on the angle of 
a t tack  of the  section, then t h e  
aerodynamic moment producing blade 
twist wi l l  vary i n  r e l a t ion  t o  i ts  
angular posi t ion.  T h i s ,  as a re
sult of blade twisting, W i l l  cause 

Fig.2.26 Diagram of t h e  Effect  of a change i n  the  flapping motion and 
Coriol is  Forces Producing Blade i n  the  p o s i t i o n  of the  resul tant .  

Twist i n  Curvilinear Motion. 	 L e t  us suppose t h a t  t he  f l exura l  
axis i s  located aft  of t he  aero
dynamic center  and t h a t  t h e  p ro f i l e ,  
a t  cy, = 0, has a diving moment 

9 1  




(cm0< 0), i.e., with increasing CY,t h e  center  of pressure of  t h e  blade sec t ion  
shifts forward and t h e  diving moment c, decreases. 

A s  a n  e x q l e ,  l e t  us examine t h e  case of left-hand r o t a t i o n  of t h e  c ra f t .  

The character of t h e  angle of a t t ack  v a r i a t i o n  of t h e  blade sections,  f o r  
r o t a t i o n  t o  t h e  left,  i s  p l o t t e d  i n  Fig.2.22. For t h e  blade i n  forward pos i t i on
(Q = IT),t h e  an les  of a t t ack  decrease almost t o  zero whereas f o r  t h e  blade 
located aft of ?I# = 0) they increase appreciably. Therefore, t h e  forward blade 
is  twisted i n  diving, i.e., t h e  angle of s e t t i n g  decreases, whereas t h e  rearward 
blade is  twisted very l i t t l e  (with t h e  veloci ty  U, being i d e n t i c a l  i n  both posi
t i o n s ) .  

To balance t h e  angles of a t t ack  of such blades, providing zero hinge moment, 
t he  cone of t h e  blades and hence t h e  r e su l t an t  should be def lected t o  t h e  left .  
T h i s  add i t iona l  i n c l i n a t i o n  of t h e  r e su l t an t  t o  t h e  le f t ,  occurring i n  l e f t  
rotat ion,  decreases the  resis tance of t h e  r o t o r  t o  r o t a t i o n  of t h e  c r a f t ,  i.e., 
damping, and may cause t h e  hel icopter  t o  bank a t  l a rge  angular ve loc i t i e s .  T h i s  
e f f e c t  produces pressure on t h e  con t ro l  s t i c k  direcced toward t h e  s i d e  of bank
ing. 

The above discussion shows t h a t ,  i f  t h e  flexural axis of t h e  blade is  lo

cated i n  f r o n t  of t h e  aerodynamic center, i.e., i f  -< 0, the damping momentdcmdcr 

of t h e  r o t o r  r e s i s t i n g  r o t a t i o n  of t h e  c ra f t ,  increases.  

15. Effect  of Blade Center iw 

If we assume t h a t  t h e  center  of g rav i ty  of t h e  blade sect ion i s  located a t  
some dis tance bf from the  focus of t he  p r o f i l e  (pos i t i ve  bf - backward), then 
during ro t a ry  motion of t h e  r o t o r  axis a couple, produced by t he  Coriol is  and 
aerodynamic forces,  arises on the blades. T h i s  i s  shown schematically i n  
Fig .2.26. 

The expression of t h e  moment producing t h e  blade twist (a pos i t i ve  moment 
will twist t h e  blade toward an increase i n  angle) w i l l  have the form 

Subst i tut ing dKnx and dK a, by t h e i r  expression from eq.(2.7), we obtain L l  

M,= 32 b f m ( ~ e y o s i n I : , $ & x o c o s ~ ) r d r .  

It i s  obvious here t h a t  t h e  moment varies per iodical ly .  

The angle of twist of t h e  blade, under assumption of constant mass, a value 
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of bf ,  and t o r s i o n a l  r i g id i ty ,  i s  determined by the  formula 

Assuming t h a t  a l i nea r ly  twisted blade i s  equivalent t o  a blade with a 
constant angle of s e t t i n g  equal t o  the  angle of s e t t i n g  of t he  first blade at 
t h e  sec t ion  r = 0.75 R, we, f ind  

Let  us der ive an addi t iona l  per iodic  var ia t ion  i n  angle of s e t t i ng  

-
where AV=V,COS++T,sin+, 

The periodic var ia t ion  i n  angle of s e t t i n g  leads t o  a var ia t ion  i n  incl ina
t i o n  of the  cone during rotat ion.  

The flapping coef f ic ien ts  take the  form ( f o r  constant induced veloci ty)  

0 1 
8 2  + - p 2

2 

If the  center of grav i ty  i s  located aft of t h e  aerodynamic center (bf > 0, 
A > 0), an addi t iona l  i n c l i n a t i o n  of t he  cone and hence of t he  resu l tan t  t o  the  
s ide  of r o t a t i o n  of t h e  c r a f t  W i l l  occur. If t h e  c.g. i s  ahead of t he  a.c., 
then the  addi t iona l  i n c l i n a t i o n  increases the  damping moment of the  rotat ion.  

The angles of twist Tl and 5, are easily determined i f  t h e  dynamic twist of 
t h e  blade i n  r e c t i l i n e a r  f l i g h t  i s  calculated and t h e  angle of twist vo i s  & 
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known (Ref.6). The r e l a t i o n  between these  angles i s  determined by t h e  formulas 

(2.88) 

16. Rotor with FhppinR Cowensator 

Let us now examine a r o t o r  whose blades change i n  p i t c h y ,  as a funct ion of 
the  flapping angle B .  There a re  many. methods of accomplishing such kinematics. 

f i gu re  2.27 shows one of t he  methods 
of changing p i t c h  i n  r e l a t i o n  t o  t h e  

\w hinge), where cp var ies  i n  accordance 
with t h e  l aw:  

Axis o f  b l a d e  -
'f=e, -ptono,. 

Axis o f  f l a p p i n g  The f lapping angle B , i n  this 

flapping angle fl (turned flapping6
kWh i n g e  case, i s  t h e  angle between t h e  blade 

axis and t h e  plane of ro ta t ion .  Not 
fig.2.27 Diagram of Blade with wanting t o  complicate t h e  results, we 

Turned Enge .  	 w i l l  take t h e  case IJ. = 0. The varia
t i o n  i n  f lapping motion obtained f o r  
regimes with IJI = 0 can be extrapolated 

t o  the  case IJ. > 0. 

Let  t h e  c r a f t  be incl ined i n  space at a constant angular ve loc i ty  having 
t h e  components Sa, and R,  . 

The veloci ty  components of t he  blade element w i l l  take t h e  form 

dfJU =hi?-r -+ QYrcos + -8,r sin+.Y d f  . 

Assuming cp = - B t a n  q ,  we construct,  as above, t h e  equation of moments 
r e l a t i v e  t o  the  horizontal  ( f lapping)  hinge f o r  B = 1: 

+Tw COS+--
Y Qx QY QxY QY -sin+-2 -sin+-2-cosq~,.4 0  0 0 

The p a r t i c u l a r  so lu t ion  of this equation has t h e  usual  form 

!=a, -a,cos +- 6, sin+, 



-- 

-- 

-- 

while the  coe f f i c i en t s  of t h e  series have t h e  values 

--+mal)]- 18 
Y 1 +tM2 01 ' 
8 1 

Equations (2.90) show t h a t ,  i n  t h e  case of a turned hinge, t h e  def lec t ion  
of t h e  cone described by t h e  blades and hence t h e  r e su l t an t  W i l l  take place at 

a smaller phase shift than  i n  t h e  case of a 
conventional hub. The absence of phase shift 

TABLE 2.3 	 means t h a t ,  i n  t ransverse ro ta t ion ,  there  should 
be no change i n  longi tudina l  i nc l ina t ion  of t h e  

sar e su l t an t ,  i .e. ,  a t  2 = 0, we should have 
w 

A 

al = 0 and, conversely, at -= 0, bl = 0. w 
I I I 

T h i s  condition i s  s a t i s f i e d  i f  

tanu 	 Y . (2-91)8 

The values of ol, shown i n  Table 2.3, a re  derived with respect t o  t h e  
value of y. 

TABLE 2.4. 

y = 8  v =4.6 

o,=o 01 =45" o 1 = 0  01 =30" 
-. 

QY 
=1 

_-QY QY 
-1.74-

QY -1.74 
0 0 0 0 

QY
61 

QY 
0 - _  0 

0 w 

b
tan- 1 r 45" 0 30" 0 

01 


=It is  of i n t e r e s t  t h a t  t h e  condition of absence of phase shift t a n  crl 
= y/8 y ie lds  the  same magnitude of damping ( l ag  of t h e  r e su l t an t )  as f o r  a r o t o r  

95 



l l l l l  I 1  I I  II I 1  I 1  I I I I 


without flapping compensator. For example, f o r  longi tudinal  ro t a t ion  we obtain 
t h e  values indicated i n  Table 2.4. 

It is obvious t h a t  t h e  absence of phase shift i n  t ransverse ro t a t ion  a t  
constant angle of a t t ack  ensures maintenance of IJ. i n  t h e  autorotat ion regime, 
i.e., prevents a decrease i n  ro to r  rpm o r  i n  c o n t r o l l a b i l i t y  during ro ta t ion .  

FDTOR FLAPPING I N  CURVILINE3R MOTION OF THE ROTOR AXIS 
AT VAR1ABI;E ANGULAR VELOCITY 

Below, we will derive formulas f o r  determining the  flapping coef f ic ien ts  
of blades i n  the  presence of uniformly accelerated and harmonic osc i l l a t ion  of 
t h e  ro to r  axis. For simplicity,  we W i l l  t ake  t h e  case where p = 0. It i s  shown 
tha t ,  f o r  both l a w s  of va r i a t ion  i n  angular ve loc i ty  of t h e  ro to r  axis, t h e  fi 
flapping coef f ic ien ts  and hence t h e  longi tudinal  and lateral  forces  of t he  r o t o r  
w i l l  vary by t h e  same amount - proport ional  t o  t h e  angular veloci ty  - as i n  the  
case of uniform ro ta t ion  of t h e  r o t o r  axis .  Furthermore, terms appear t h a t  de
pend on the angular accelerat ion of t he  ro to r  iwds. 

17. Uniformly Accelerated Rotation of t he  Rotor Axis 

Let  us first examine,,the case of r o t a t i o n  of t h e  r o t o r  a x i s  i n  pi tching at  
variable angular velocity" 

Q,=At. (2.92) 

ALet us subs t i t u t e  t = and put  k = 7.We can then  write 

Q, =kq. (2.93) 

We then derive t h e  expression f o r  forces  and t h e i r  moments r e l a t ive  t o  t h e  
flapping hinge. 

The ve loc i t i e s  i n  the  blade section, p = 0, n, = W, 
0, = 0, and B = 1, can be obtained from 

Ux=rw, 

U,=AwR$ kqr cos + -r -dt  . (2.94) 

Then, t h e  th rus t  moment takes  the  form 

(2.95) 

* By turning t h e  coordinate axes through an angle $,, a l l  results obtained below 
can be extrapolated t o  the  case of ro t a t ion  i n  any d i rec t ion .  
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The moment due t o  the  Coriol is  force  i s  

MK==-21,,hk$0 sin+. (2.96) 

The i n e r t i a  force of r o t a t i o n a l  accelerat ion reads 

where 

The moment of this force  i s  

R 

Mj,= mku)cos +r2dr= ku)COS 3. (2.97) 
U 

The equations of moments r e l a t i v e  t o  the  flapping hinge, after canceling 
Will take t h e  formby Ih.h w2, 

The p a r t i c u l a r  so lu t ion  t o  this equation has the  form 
- 

'$=a,- a,+ cos*$-6& sin li, -c1cos 9 -d ,  sin +. (2.99) 

Let us f ind  the  der iva t ive  of i3 with respect t o  9: Ler 

We next subs t i t u t e  these values i n t o  the  left-hand s ide  of eq.(2.98), 
yieldi'bg 

3-&,+ sin 3, --Y -b13,cos 3,+
4 4 

A 
4 4- ( 2 T , + 3 G 1  $2d ,  cos++a,=y(3++)+ (2.100) 

k+, k cos $8- 2 -+ sin++ 2--k $8 cos +- -. 
0 4 0 rb.hW2 
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Since eq.(2.100) i s  an iden t i ty ,  then, by equating t h e  coef f ic ien ts  of like 
terms, we obta in  t h e  following system of equations f o r  determining t h e  coeffi
c ien ts  of t h e  series 

Y - 2k 1 
TU1=-Tv 
Y F - Y  k 

1 - 4 : '  

- Y 2a1--b ,  +' G 1  =o, (2.101) 
4 4 

-
261 $--a, 	 Y - +-Y dl=  --;k 

4 4 W 

a,=Y(3++)--. Sh.h (2.102)A 

'h.hW2 

From eqs.(2.101) we obtain 

-a,= 8 k ; 
Y W 

- kb ,  = -;; 

w 

d,=- 12 k7. 
Y 

Thus, t h e  so lu t ion  f o r  B can be wr i t t en  i n  t h e  following form: 

h 8 k4JB=r(,+')+--cosq+ 4 Y W 

12 kcos(1,----sin+. 
W Y O 

It i s  easy t o  see t h a t  t he  quantity -	kJr i s  none other  than t h e  r a t i o  of w 

the  instantaneous angular veloci ty  0. = kJr t o  t h e  ve loc i ty  w. Thus, t h e  coeffi
c i en t s  of t h e  first terms i n  eq.(2.107) are analogous t o  those previously ob
tained f o r  f l y  = const, namely 

q=--SQY , b l = - ; .  QY 

Y W  

The terms containing s i n  Jr i n  the  expression f o r  B a r e  derived from the  &
influence of i n e r t i a  forces  generated as a result of nonuniform rotat ion.  I n  
backward ro ta t ion ,  t he  i n e r t i a  forces  tend t o  Eft t h e  blade which is  i n  the  r ea r  
pos i t ion ;  this causes a change i n  the  f lapping motion and a decrease i n  angles 
of a t t ack  so as t o  a t t a i n  equilibrium. I n  so  doing t h e  &s of the  cone t i l t s  



t o  t h e  l e f t .  

So far we have invest igated t h e  p a r t i c u l a r  so lu t ion  f o r  eq.(2.98), charac
t e r i z ing  forced osc i l l a t ions  of t h e  blade. Lzt us now examine the  general  solu
t i o n  of eq.(2.98) without t h e  right-hand member, i.e., t h e  equation 

Se t t ing  y = 8 i n  t h e  p a r t i c u l a r  case, we f ind  t h e  so lu t ion  i n  t h e  form 

The general  so lu t ion  of eq.( 2.98) then becomes 

P=C,e-*+C,+e-*+y -+- +G :> 
(2.109) 

The values of t h e  coe f f i c i en t s  C1 and C, are found f r o m t h e  i n i t i a l c o n d i 
t i o n s  $ = 0 ;  fI = 0 ;  fI' = 0 :  

4k 
e,= --+yYO ($++). 
(2.Ilo) 

A s  we see from eq.(2.108), t h e  terms containing C1 and C2 decay extremely 
rapidly;  thus,  i n  one revolut ion ($ = 2n) the  degree of per turba t ion  diminishes 
tenfold: e- 4 = e-2n = 0.002, $e-$ = 0.012. 

T h i s  furnishes  a j u s t i f i c a t i o n  t o  use only t h e  p a r t i c u l a r  so lu t ion  of 
eq.(2.107), neglecting free osc i l l a t ions  of t he  blade, a procedure a l s o  confirmed 
by experiment. 

A comparison with experiment showed tha t ,  under s t a t i c  operating conditions, 
the  induced veloci ty  d i s t r i b u t i o n  over t he  d isk  has a subs t an t i a l  influence on 
flapping; t h e  refined formulas f o r  t he  flapping coef f ic ien ts  are given elsewhere 
(Ref .8). 

For a r o t o r  with a flapping compensator, t h e  flapping motion of t he  ro to r  
i s  determined from the  formulas: 
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- k 1 .
a1= ---($+tmal) 1+ton201 ' 

-
A comparison of eqs.(2.l.l2) and (2.U.3) f o r  al and followed by comparing

them with t h e  previously obtained expressions (2.103) and (2.104) f o r  a r o t o r  
without flapping compensator, w i l l  show t h a t  t h e  l a g  of t h e  cone and hence of 
t he  r e su l t an t  i n  a d i r e c t i o n  opposite t o  t h e  r o t a t i o n  w i l l  be p r a c t i c a l l y  t h e  
same, whereas the  inc l ina t ion  i n  a perpendicular d i r e c t i o n  w i l l  decrease. 

18. Harmonic Osc i l l a t ion  of t he  Rotor Axis 

Let us now examine the case i n  which t h e  r o t o r  axis executes a harmonic 
o s c i l l a t i o n  i n  space a t  angular veloci ty  

Q,== A sin vt =A sin p+, 

where p = with v being t h e  v ib ra t ion  frequency of t h e  c r a f t .  

Since damping of t h e  f r e e  o s c i l l a t i o n s  of rotary-wing c r a f t  i s  small, t he  
harmonic l a w  describes o s c i l l a t i o n s  of t h e  c r a f t  c lose t o  t h e  t r u e  o s c i l l a t i o n s .  
We again obtain t h e  expressions f o r  t h e  moments of forces  relative t o  t h e  axis 
of t h e  flapping hinge. The ve loc i t i e s  i n  t h e  blade section, assuming as usual 
p = 0, B = 1, are equal t o  

U, =r w ,  

U,,= A d +  A sill ptj r cos II)-r -4 . I (2.116) 
dt 

The t h r u s t  moment i s  

The moment of t h e  Coriolis force reads 

R 
M,= -2 ~ m A s i n p $ w r s i n + d r = - 2 /  h.hwAsintnjrsinII). (2. l l8) 

0 

The moment of t h e  i n e r t i a .  force of r o t a t i o n a l  accelerat ion i s  
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R 

Mj,=I n d Q Y-r cos$r dr= A p o  cos Pdi) cos 9. 
dt  

0 

The equation of moments, after canceling by 1 h . h  w2, i s  w r i t t e n  i n  t h e  
form 

The so lu t ion  t o  this equation (assuming t h a t  we can neglect t h e  free motion 
of t h e  blade, according t o  t h e  foregoing) i s  found i n  t h e  form of 

;=ao- a;cos ( p +-+) -b;  sin (p+-+I -a; cos(&++I-b;sin (p+++). 

Subst i tut ing this so lu t ion  i n t o  t h e  equation of motion of t h e  blade, we 
f i n d  t h e  values of t h e  coeff ic ients :  

Y2 P
A -32(P-1) - ( P 2 - 2 P )  -t1( P 2 - 2P)  

a;=, 1 

Y2-16 ( P  - 1)2 + (P2 -2PY 

Disregarding powers of p g rea t e r  t han  t h e  first ( s ince  p does not exceed 
0.03 - 0.Ok) and expressing s i n  (pQ rt Q )  and cos (p$ f Q )  i n  terms of t h e  product 
of t h e  form s i n  pQ cos Q, cos pQ s i n  $, cos pQ cos $, s i n  p$ s i n  $, we 
obtain 

+ A sin Nsin q+ Q A p  cos p+sin +. 
Y O 
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Recalling t h a t  

~Acos@=-=- dQY 1 dQY 

d+ 0 dt ’ 

we f ind  t h a t  t h e  flapping motion, i n  t h e  case of hamnortic o sc i l l a t ions  of t he  
ro to r  ax is  i n  space, can be represented i n  t h e  form 

L Qy 
4 dt -]sin$. (2.120)+ T+udQY 1 

0 2  

Thus, t h e  longi tudina l  i nc l ina t ion  of t he  cone of t h e  ro to r  during r o t a t i o n  
i n  a longi tudinal  plane w i l l  be 

8 QY 64 dQY 1 (2.121) 

and the  l a t e r a l  i nc l ina t ion  becomes 

(2 122) 

These e q r e s s i o n s ,  r e l a t i v e  t o  t h e  magnitude of t h e  terms proport ional  t o  
t h e  angular ve loc i ty  of t h e  r o t o r  shaf t ,  coincide with those previously obtained 
f o r  uniform and uniformly accelerated ro t a t ion  and thus can be used, i n  the  
general  case of hel icopter  motion, f o r  determining forces  and moments of t he  
rotor, damping t h e  hel icopter  motion. 

For a r o t o r  with a flapping campensator, eqs.(2.121), (2.122) vary propor
t i o n a l  t o  eqs.(2.102) - (2.106). 

C H A F A C Y E U S T I C S  OF ROTOR AEEODYNAMICS DETERMI” Laa 
BY HINGED BLADE ATTACHMENT 

Hinged blade attachment has a subs t an t i a l  e f f ec t  on the  aerodynamics of t he  
ro tor ;  therefore ,  an understanding of t he  r o l e  and physical  meaning of flapping 
motion w i l l  help t h e  reader toward a b e t t e r  study of t h e  cha rac t e r i s t i c s  of 
r o t o r  aerodynamics. These questions a re  presented below. Furthermore, a simple 
graphic der ivat ion of formulas f o r  calculat ing t h e  flapping coef f ic ien ts  i s  
given. 
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__ 19. P b s i c a l  Meaning of Blade Flappi% 

The equation of blade flapping i n  steady r e c t i l i n e a r  f l i g h t  can be repre
sented as 

d2B+p=- Y 
(2.123)

d92 a ,
where 

1 

Here, ShShi s  t h e  mass static moment of t h e  blade r e l a t i v e  t o  t h e  flapping
hinge . 

As s h m  above [see eq.(2.33)1, t h e  expression f o r  -	dt contains t h e  flap
dF 

ping angle p and t h e  angular veloci ty  -#-; this demonstrates t h a t  t h e  flapping 

motion r e l a t i v e  t o  t h e  flapping hinge i s  damped by aerodynamic forces.  

Owing t o  appreciable aerodynamic damping [with l i nea r i za t ion  of t he  equa
t ion ,  i.e., on the  assumption t h a t  cy  = amar,t h e  average (per  revolution) coef

f i c i e n t  of i n  eq.(2.34) i s  equal t o  T B2 = 1- 1.71, the  natural osci l la

t i o n s  of t h e  blade rap id ly  d i e  out and t h e  flapping motion of t h e  blade becomes 
a forced o s c i l l a t i o n  due t o  t h e  t h r u s t  moment. Since t h e  na tura l  frequency of 
t h e  blade i s  close t o  t h e  rpm of t h e  r o t o r  [ the  average (per  revolution) coeffi
c ien t  of B i n  eq.(2.34) i s  equal t o  11, t he  blade reaches i t s  maximum osci l la
t i o n  amplitude upon a va r i a t ion  i n  t h r u s t  moment with the  frequency of the  ro to r  
revolutions, i.e., with respect  t o  the  first harmonic. 

The cor re la t ion  between t h e  amplitudes of t he  second harmonic of flapping 
and the  t h r u s t  moment i s  by approximately a f a c t o r  of 10 less than f o r  t h e  first 
harmonic. Therefore, desp i te  t h e  f a c t  t h a t  t h e  amplitude of t h e  second harmonic 
of t h e  t h r u s t  moment i s  high, blade flapping occurs mainly with respect t o  t h e  
first harmonic. 

Thus, t h e  bulk of t h e  flapping motion of t h e  blade i s  described by the  
equation 

?=a, -a, cos 9- 6 ,  sin $. (2.124-1 

kt us subs t i t u t e  eq.( 2 . l a )  i n t o  t h e  equation of flapping motion (2.123) . 
The left-hand s ide  of t h e  equation i s  equal t o  a,: 

The equation of flapping takes  t h e  form 



(2.126) 

It follows from eq.(2.125) tha t ,  i n  each sec t ion  of t h e  blade, t h e  sum of 
t h e  i n e r t i a  fo rce  of flapping and of t h e  component of t h e  cen t r i fuga l  force 
noma1 t o  t h e  blade ax is  i s  proport ional  t o  a. and i s  a constant, remaining un-

/100 

Fig.2.28 Distr ibut ion of Thrust 
over t h e  Blade Radius a t  I d e n t i c a l  
Magnitude of Thrust Moment Re la 

t i v e  t o  t h e  Horizontal Hinge. 

changed upon r o t a t i o n  of t he  blade al
though t h e  flapping angle of t h e  blade 
changes. This means t h a t  t h e  first 
harmonic of t h e  moment of i n e r t i a  forces  
r e l a t i v e  t o  t h e  horizontal  hinge i s  
equal t o  zero. Therefore, as shown by 
eq.(2.126), t h e  t h r u s t  moment of t h e  
blade relative t o  t h e  flapping hinge 
should be t h e  same at a l l  azimuths. 
Herein l i e s  t h e  basic  cha rac t e r i s t i c  of 
a r o t o r  with flapping hinges and t h e  
physical  meaning of blade flapping with 
respect t o  t h e  first harmonic: The 
blade moves about t h e  horizontal  hinge 
so t h a t ,  as a result of t h e  redis t r ibu
t i o n  of aerodynamic forces  over t h e  
blade caused by t h e  flapping, t h e  t h r u s t  
moment relative t o  t h e  horizontal  hinge 
does not change a t  a l l  azimuths. 

20. 	 Redistribution of Aerodynamic Forces over t h e  
Rotor Disk due t o  Flapping-

Equality of t h e  magnitude of t h e  thrust moment of t h e  blade r e l a t i v e  t o  t he  
flapping hinge a t  every azimuth w i l l  not result i n  blade th rus t ,  calculated only 
with consideration of t h e  f irst  harmonics of flapping which are t h e  same a t  a l l  
azimuths, s ince t h e  d i s t r i b u t i o n  of t h r u s t  over t h e  radius  changes from azimuth 
t o  azimuth (Fig.2.28). However, owing t o  flapping of t h e  r o t o r  with hinged 
blade retention, t h e  f irst  harmonic of t h e  change of blade t h r u s t  decreases 
steeply.  

The blade t h r u s t  depends on t h e  flapping motion m a i n l y  wi th  respect t o  t h e  
add i t iona l  r e l a t i v e  flow normal t o  t h e  blade a~5.s'~produced during flapping of 
t h e  blade elements, which changes t h e  t r u e  angle of a t t ack  of t h e  element. The 
changes which introduce first-harmonic flapping i n t o  t h e  d i s t r i b u t i o n  of t r u e  
angles of a t t ack  over t h e  r o t o r  disk are appreciable. For example, t h e  addi
t i o n a l  v e r t i c a l  veloci ty  of t h e  air Ag,,= alF of a blade element a t  azimuth 
$ = 90' and of t h e  same element a t  azimuth $ = 270' i s  t h e  same i n  magnitude but 
opposite i n  direct ion.  However, owing t o  t h e  difference i n  the  horizontal  com
ponents of t h e  relative flow, t h e  t r u e  angle of a t t ack  of t h e  element decreases 

For simplicity,  we w i l l  c a l l  t h e  ve loc i ty  of t h e  a i r  normal t o  the blade ax is  
t h e  llverticalll veloci ty .  
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l i t t l e  at $ = 90’ and increases  much more at $ = 270’. T h i s  explains the  l o c a l  
increase of t he  t r u e  angles of a t tack  of t h e  blade sect ions i n  the  region $ = 
= 270’ and t h e  occurrence of flow separat ion a t  high f ly ing  speeds f o r  a r o t o r  
with hinged blades (Fig.2.29). 

Above, we determined t h e  r e l a t i v e  v e r t i c a l  ve loc i ty  of t he  flow a t  azimuths 
$ = 90’ and $ = 270’. T h i s  w a s  found equal to ,  respectively,  -alm and alrw. 
The expressions have a simple explanation. 

Figure 2-30 shows a ro to r  whose blades have d i f f e ren t  f lapping angles a t  
azimuths $ = 0’ and $ = 180°, i.e., the a x i s  of the  cone of t h e  blades i s  de
f l ec t ed  backward (al # 0). Here, t h e  blades have a “ u m  v e r t i c a l  veloci ty  
with respect t o  absolute magnitude on passing through azimuths $ = 90’ and /101 
$ = 270’ s ince  the  blade, i n  the  same time i n t e r v a l  A t  = %, i s  ve r t i ca l ly  

displaced by the  l a rges t  magnitude (p > n).  A t  azimuths Jr  = 0’ and Jr  = 180°, 
the  v e r t i c a l  ve loc i ty  of t he  blades i s  equal t o  zero. 

I $!) =90 D; 270 

Fig.2.29 Variation i n  A n g l e  of Attack Fig.2.30 Displacement of Blade Section 
of the Blade Section with Respect t o  Relative t o  Plane of Rotation on 

Azimuth, due t o  Blade Flapping. Blade Turning. 

Thus, a change i n  v e r t i c a l  ve loc i ty  and, consequently, i n  t rue  angle of 
a t tack  and blade t h r u s t  a t  azimuths Jr  and Q + I-IW i l l  take place on var ia t ions i n  

the  blade flapping angles at azimuths $ + 2 and $ + -2 and vice versa. Bear

ing this i n  mind, i t  i s  easy t o  understand how t h e  r o t o r  flapping w i l l  vary i f ,  
f o r  some reason, a cyc l ic  change of t h e  t rue  angles of a t tack  takes  p lace  o r  an  
addi t iona l  moment r e l a t i v e  t o  t h e  flapping hinges appears on t h e  blades. 

For example, i f  because of blade twist ing o r  f o r  some other  reason the  
angles of a t tack  of t h e  sect ions increase t o  a maximum at azimuth $ and decrease 
“ a l l y  at azimuth JI + IT,then  a n  addi t iona l  f lapping motion of t he  blades i s  



established so t h a t  the  blades occupy the lowest pos i t i on  a t  azimuth JI - 2 

and, when flapping upward, reduce t h e  t r u e  angles of a t tack  t o  a value at which 
the  condition of constancy of t h r u s t  moment r e l a t i v e  t o  the  horizontal  hinge is  
observed a t  a l l  azimuths. The highest pos i t i on  of t he  blades i s  a t  azimuth $ + 

+ LL af ter  which they drop, res tor ing  t h e  dimjrnished angles of a t tack .  Along
2 

with the  va r i a t ion  i n  fla ping with respect t o  t h e  f irst  harmonic, the forces  H 
and S a l so  vary (Fig.2.317: 

It w a s  shown above tha t ,  despi te  t he  la rge  first harmonic a t  ve loc i ty  U, 
the  first harmonic of the  va r i a t ion  i n  blade t h r u s t  with respect t o  azimuth i s  /103
r e l a t ive ly  s m a l l ,  s ince it subs tan t ia l ly  decreases because of t he  flapping. The 
second harmonic of blade t h r u s t  i s  l a rge r  and t h e  t h i r d  smaller than the  first 
harmonic. 

Fig.2.31 Variation i n  Flapping and 
Longitudinal and Lateral  Forces due 
t o  Dynamic Twist of the  Blade with 

Respect t o  the  First Harmonic. 

P 
P" /102 
h.h 

0.IO 

Fig.2.32 Variation i n  Flapping Angle, 
Angular Acceleration of Flapping, and 
Thrust Moment of Blade Relative t o  

Flapping Hinge as a Function of Azimuth. 

The second harmonic of blade th rus t  causes second-harmonic flapping motion 
of t he  blade 

Ag-= - - u a , ~ ~ s 2 + - b b , s i n 2 ~ ,  (2.127) 

which i s  equalized by t h e  moment of i n e r t i a  forces  

(2.128) 
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Fig.2.33 Variation i n  Angular 
Velocity of Flapping, Angle of 
Attack of Section a t  r = 0.975, 
and Blade Thrust as a Function 

of Azimuth. 

-
1/=0.30; t,=0.1.6; a=  -9.4'; 

The curves show t h e  kinematic 

and c rea t e s  some red i s t r ibu t ion  of aero
dynamic forces  of t h e  blade with respect 
t o  azimuth, which i s  less extensive than 
f o r  t h e  first harmonic. 

The higher harmonics of flapping 
are very small and have p r a c t i c a l l y  no 
e f f e c t  on the  blade aerodynamics. 

The graphs i n  Figs.2.32 and 2.33 
are an i l l u s t r a t i o n  of our statements 
on blade flapping and va r i a t ion  i n  aero
dynamic forces  with respect t o  azimuth. 
The diagrams w e r e  obtained by rough 
calculation, on the  assumption of uni
form induced veloci ty  d i s t r i b u t i o n  over 
the r o t o r  disk and without consideration 
of e l a s t i c  o s c i l l a t i o n s  of t h e  blade 
which a f f e c t  t he  magnitude of t h e  upper 
harmonics of flapping and blade t h r u s t .  

The ca l cu la t ion  w a s  performed f o r  
t h e  following i n i t i a l  data: 

M,=0.6; L = O . 9 ;  R=O, f , , = O .  
am 

dB d2Bc h a r a c t e r i s t i c s  of f lapping B, ' 7''dJr2 
th rus t ,  and t h r u s t  moment of blade t,,,, m h S h ,  and angle of a t t ack  of sectioncu, 
a t  r = 0.975. 

We see from this example and f r o m  Table 2.11 t h a t ,  beginning with t h e  
second harmonic, the flapping coe f f i c i en t s  markedly decrease and, beginning with 
t h e  t h i r d  harmonic, t he  decay coe f f i c i en t s  of blade t h r u s t  diminish. Thus, the 
angle and angular ve loc i ty  of flapping as w e l l  as t h e  angle of a t tack of t h e  
blade sec t ion  vary mainly with respect t o  the first harmonic, i.e., with the  
frequency of t h e  r o t o r  revolutions.  The second harmonic becomes manifest i n  
angular accelerat ion of t h e  blade, whereas t h e  blade t h r u s t  and i ts  moment rela
t i v e  t o  t h e  flapping hinge vary mainly with respect t o  the  second harmonic. 

21. Approh-ate Deri-ti-on of- Formulas f o r  Flapping Coefficients 

On t h e  basis of t h e  p rope r t i e s  of blade flapping, described i n  Subsection 19, 
we w i l l  derive approximate expressions f o r  determining t h e  flapping coe f f i c i en t s  
a, and b, obtained i n  Subsection 4. For simglicity,  we w i l l  take B = 1 and /104.
w i l l  disregard small terms of t he  order of p so as t o  ob ta in  expressions with 
a n  accuracy t o  p .  

On t h e  basis of t h e  constancy of t h e  t h r u s t  moment a t  a l l  azimuths, we w i l l  
equate t h e  t h r u s t  moments for azimuths d i f f e r i n g  by 180'. T h i s  method permits 
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a better d e f i n i t i o n  of t he  mechanism of equal izat ion of t h r u s t  moments by means 
of flapping, under d i f f e r e n t  conditions o f  blade flow a t  azimuths d i f f e r i n g  by 
330'. 

The angle of backward tilt of t h e  a d s  of t h e  r o t o r  cone a1 i s  determined 
from a n  examination of azimuths Jr = 90' and Jr = 270'; t h e  angle of sideward tilt 
of t h e  axis of t h e  cone toward t h e  s i d e  of t h e  advancing blade ($ = 90") i s  de
termined from azimuths JI = 0' and Jr = 180'. 

The superposit ion of t h e  t r a n s l a t i o n a l  veloci ty  of f l i g h t  on the rotary 
motion of the r o t o r  i s  responsible f o r  t h e  d i f f e ren t  operating conditions of t h e  
blades a t  azimuths 90' and 270'. A t  azimuth Jr = 90' t h e  v e l o c i t i e s  are added 
and a t  azimuth $ = 270°, subtracted. Therefore, t h e  coe f f i c i en t  a1 i s  equal t o  
zero during s t a t i c  operation of t h e  r o t o r  and increases with an increase i n  f ly

ing  speed V (o r  p = ''Os cy ).
W R  

A t  azimuth Jr = 90°, t he  relative flow i n  t h e  plane of r o t a t i o n  i s  equal t o  
U, = w R ( r  + p ) .  Here, i n  t h e  region of l a rge  ve loc i t i e s ,  t he  backward displace
ment of t he  axis of t h e  r o t o r  cone causes a l i f t i n g  of t h e  blade and a decrease 
i n  t h e  v e r t i c a l  component of t h e  relative flow U, = wR(h  - alF), which reduces 
t h e  t r u e  angles of a t t ack  of t h e  sections.  

A t  azimuth Jr = 270°, t h e  r e l a t i v e  flow i n  t h e  plane of r o t a t i o n  i s  small, 
w h i l e  t he  v e r t i c a l  ve loc i ty  and t h e  t r u e  angles of a t t ack  of t h e  sect ions in
crease: U, = wR(F - p ) ;  U, = wR(X + alF). 

Let us then construct t h e  equations f o r  t h e  elementary t h r u s t  moment, take 
t h e  i n t e g r a l  from r = 0 t o  7 = 1at both azimuths and, equating t h e  r e su l t s ,  
f ind t h e  expression f o r  al. We can a l s o  equate t o  zero t h e  moment of t he  t h r u s t  
difference a t  azimuth Jr = 90' and Jr = 180' : 

(2 129 

where 1 

-1 (E) ='P(r-p)2+(F-p) (Afa17) .  
a, dr +=2709 

Hence, 

Owing t o  t h e  ve loc i ty  difference of t h e  oncoming flow a t  azimuths Jr = 90' 
and Jr = 270°, the  quantity al will vary even a t  t h e  same change i n  angle of at
tack o r  v e r t i c a l  veloci ty  f o r  t h e  blade a t  these azimuths. For example, upon an 
increase i n  angle of a t t ack  of the rotor ,  equal v e r t i c a l  ve loc i t i e s  appear a t  
t h e  blade sect ions a t  azimvkhs Jr = 90' and Jr = 270'. To have t h e  blade t h r u s t  
moment increments a t  these  azimuths iden t i ca l ,  t h e  angles of a t t ack  of t h e  
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sect ions a t  azimuth Jr = 90' should be decreased f u r t h e r  and, a t  azimuth Jr = 270°, 
increased again. Obuiously, this Will occur upon an increase i n  a,. 

T h i s  i s  an important property of a r o t o r  with hinged blades: Upon an in
crease i n  angle of a t t ack  of t h e  hel icopter  owing t o  an increase i n  al, t he  
longi tudinal  force H increases  and a des t ab i l i z ing  moment appears r e l a t i v e  t o  
t h e  center  of g rav i ty  of t h e  helicopter,  causing an even g rea t e r  increase i n  
angle 

of a t tack.  

dU,=-Vd, I We should note t h a t  a, does not depend 
on the  i n e r t i a  cha rac t e r i s t i c s  of t he  
blades, s ince a, equalizes t h e  aerodynamic 

9=O 9=f&p--
v Ilasymmetryll i n  r o t o r  operation. 

of a t tack;  t he  hel icopter  i-s s t a t i c a l l y  unstable with respect t o  t h e  angle 

3

d [$ = Va, The presence of t h e  coning angle i s  

responsible f o r  the difference i n  v e r t i c a l  
Fig.2.34 Variation i n  Velocity veloci ty  IJy of t h e  air r e l a t i v e  t o  t h e  
U, as a Function of t he  Coning blade, a t  azimuths Jr = 0' and Jr = 180' 

Angle aO. (Fig.2.34). 

For a blade i n  t h e  forward pos i t i on
( J r  = 180°), t he  ve loc i ty  of t h e  air i s  directed from t h e  bottom upward; t o  reduce 
t h e  t r u e  angle of a t t ack  t h e  blade, on passing t h e  azimuths 90 - 270°, i s  l i f t e d  
upward. During t h e  second half  of t h e  revolution t h e  blade drops, which in
creases t h e  t r u e  angles of a t tack.  Thus, t h e  a x i s  of t h e  r o t o r  cone i s  dis
placed l a t e r a l l y ,  toward t h e  s i d e  of t h e  advancing blade ( J r  = 90')-

L e t  us now derive t h e  expression f o r  t h e  coe f f i c i en t  b,. The ve loc i ty  com
ponents of flow around the  blade sect ions are equal t o :  

a t  azimuth Jr = 0, 

a t  azimuth Jr = 180°, 

U, =wRr; Uy=wR (A -b,F+ pao). 

Equating t h e  t h r u s t  moments of t h e  blade at these  azimuths, we o b t a i i  

The coe f f i c i en t  b, equalizes t h e  aerodynamic I~aspnmetry"caused by t h e  
presence of aO. Since a, depends on the  mass c h a r a c t e r i s t i c  of t h e  blade y, it 
follows t h a t  a l s o  bl depends on y. 

22. 	Effect of Nonuniformity of t h e  Induced Velocity 
.Field on t h e  F l a p p i x  Motion 

N e x t ,  we W i l l  define t h e  va r i a t ion  i n  the  flapping coe f f i c i en t s  al and b, 



f o r  t he  case i n  which an addi t iona l  v e r t i c a l  ve loc i ty  appears on t h e  sect ions 
and an addi t iona l  per iodic  moment r e l a t i v e  t o  t h e  flapping hinge a c t s  on the 
blade : 

AU,,=-U,COS(I) -U2sin(I); 

AM= -Mlcoscj,-M2sin(I). 

The blade th rus t  moment i s  the  only moment able  t o  balance the  addi t ional  
first-harmonic moment caused by a var ia t ion  i n  the  v e r t i c a l  veloci ty  and i n  the  
moment AM. 

The l i n e a r  t h rus t  of t he  blade receives an increment owing t o  a change i n  
the  flapping coef f ic ien ts  by a quantity Aa, and Abl. In  this case, t he  equation 
of flapping has the  form 

R 

dTr  = /h.h da0-M,cos 9 -M ,  sin 9. (2.134)
0 

I n  conformity with eq.(2.134), we can examine t h e  following equal i t ies :  /106 

or, i n  dimensionless form, 

The equal i ty  (2.137) can a l so  be described d i f fe ren t ly :  

or, expressing -	d t  i n  t h e  form of 
d? 
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The physical  meaning of eq . (2 .a1)  i s  obvious: The flapping hinge moment, 
varying with respect t o  t h e  first harmonic, i s  equalized by t h e  moment of t h e  
first harmonic of thrust". 

Henceforth we w i l l  use the  equal i ty  (2.139) and, accordingly, t h e  
equal i ty  (2.l-42) : 

I 

and determine only t h e  flapping coef f ic ien t  increments. 

Let us examine t h e  azimuths 4 = 90' and Q = 270' (Eg.2.35): 

- 
% We W i l l  give t h e  expressions f o r  i-:i and 

\ dF 
(with an accuracy t o  p 2 ) :  

- d t  d tHowever (?)d t  i s  not equal t o  (-dF )a., - ( F ) t , d  s ince  t h e  term 
1 

-pa,r i n  t h e  expression -	dt ? i s  t h e  coef f ic ien t  of sin2$ and does not per
dF J ~ r = ~ o ~  

t a i n  t o  the  first harmonic. 



From t h e  equal i ty  (2.139) we obtain 

N e x t ,  l e t  us examine the  azimuths $ = 0 
and $ = 180' (Fig 2.36) : 

Fig.2.35 For Deriving t h e  
Ekpressions f o r  Aa,. 

From t h e  equal i ty  (2.l.42) we obtain 

Using eqs.(2.%3) and (2.m),we then derive the  formulas f o r  determining 
t h e  flapping coef f ic ien t  increments, with consideration of a nonuniform in- /108
duced veloci ty  d i s t r ibu t ion  over t h e  r o t o r  disk.  

~ig.2.36 For Derivihg t h e  Ekpressions f o r  Ab,. 

I n  first approxhat ion,  t he  induced veloci ty  d i s t r ibu t ion  can be described 
by t h e  equation (see Fig.2.6) 

-
V ( f ,  I;))=P+&cosqJ. 

Since t h e  pos i t i ve  d i r ec t ion  of t h e  addi t iona l  v e r t i c a l  veloci ty  AU, is  
from the  bottom up and t h a t  of t h e  induced veloci ty  from the  top down, a com-



parison of eqs .( 2.l45) and (2.132) w i l l  
y ie ld  

Subst i tut ing eq.(2.Uc6) i n t o  eqs.(2.&3) 
and (2.l4.4), we obtain the  sought expres
s ions : 

Fig.2.37 Variation in b1 as a A U l = O ;  
1 -Function of p. 

ab1=4a j;"dr=u. 
U 

Thus, t h e  backward def lec t ion  of t h e  ax is  of the  r o t o r  cone Will not change, 
whereas t h e  lateral  def lec t ion  w i l l  increase by an angle numerically equal t o  
t h e  increment of t h e  r e l a t i v e  induced veloci ty  a t  t h e  blade t i p  i n  both forward 
and rear pos i t ions .  If we assume t h a t  a = ?-,i.e., t h a t  t h e  induced veloci ty  
a t  the  leading end of t h e  disk i s  equal t o  zero and a t  the  t r a i l i n g  end equal t o  
double the  mean value, then 

w h i l e  t he  t o t a l  value of backward def lec t ion  of t h e  cone ax is  W i l l  be 

A longi tudinal  tilt of t h e  induced veloci ty  f i e l d  a l so  a f f ec t s  the  magnitude 
of t he  longi tudinal  and l a t e r a l  forces  of the  ro tor .  L e t  us der ive t h e  formulas 
f o r  determining h and s: 

1 1 3h = u , [ - - I p ~ + 3 p a l + q h a , + - B  1 (ui+-a:>
4 

Equations (2.3.49) - (2.151) can be used a t  p > 0.1 - 0.05. Therefore, i n  
fig.2.37 which gives the  curve of bl as a funct ion of p, t h e  sec tor  from p = 0 
t o  p = 0.1 contains a broken curve, l a i d  approximately through t h e  poin ts  p = 0, 

?:- The quantity a, as re la ted  t o  t h e  f l i g h t  regime, can be determined from data  
given elsewhere (Ref  .25). 



at  which b, = 0 and IJ, = 0.1. 

By means of eqs.(2&3) and (2.w)we can a l s o  obtain t h e  approximate 
expressions f o r  determining t h e  flapping coef f ic ien t  increments during curvi
l i n e a r  motion of a helicopter,  which were derived i n  Subsection 4. 

METHOD OF CALCULATING THE AEFDDYNAMIC CHARACTERISTICS 
OF A FDMR FOR AZIMUTHAL VARIATION OF BLADE PITCH 

23. E d v a l e n t  Rotor The0.m 

It w i l l  be shown below t h a t  a r o t o r  whose blade p i t c h  changes cyc l ica l ly  
with respect t o  t h e  first harmonic 

can be regarded i n  t h e  aerodynamic design as a ro to r  with a constant p i t c h  equal 
t o  cpo, but with a d i f f e ren t  angle of a t tack .  On this' basis, t he  method of de
termining t h e  aerodynamic cha rac t e r i s t i c s  of a r o t o r  with a p i t c h  var iable  i n  
azimuth i s  ca l led  t h e  equivalent ro to r  theory. 

The equivalent ro to r  theory furnishes  an explanation f o r  t he  mode of varia
t i o n  i n  r o t o r  cha rac t e r i s t i c s  with def lec t ion  of-the automatic p i t c h  cont ro l  
mechanism. The formulas f o r  calculat ing ql and i n  r e l a t i o n  t o  the  angle of 
def lec t ion  of t h e  automatic p i t c h  cont ro l  and t h e  kinematic charac te r i s t ics  of 
t h e  ro to r  hub a re  given i n  Subsections 25 -. 28. Data published earlier (Ref .l5, 
I,!+.) were used i n  presenting t h e  material .  

F i r s t ,  l e t  us examine the  problem formally: 

Subst i tut ing eq.( 2.152) i n t o  t h e  equation of flapping and, f o r  simplicity,  
re ta ining only t h e  first harmonics, a s e r i e s  of transformations will y ie ld  

Below, i n  Subsections 23 and 24, only the  p i t c h  components (PO, @,, and F1 
W i l l  be contained i n  t h e  formulas so tha t ,  f o r  s implici ty ,  we wi l l  omit t h e  sub
s c r i p t  "0" of yo .  

From eq.(2.153), t he  following formulas are obtained f o r  t he  flapping /110
coef f ic ien ts  : 



It i s  obvious tha t ,  on making the  subs t i tu t ion  A,,  = A - F1p, eqs.(2.154)
t o  (2.156) can be rewr i t ten  i n  the  form 

4 
1 aoP ti l .  

bl= 3 (1 +-2 P2) (2 159 

A comparison of these  formulas with eqs.(2.4.0) f o r  a r o t o r  with constant 
p i t c h  readi ly  shows t h a t  a, and t h e  first terms of t h e  expressions f o r  al and bl 
coincide, provided t h a t  both ro to r s  have equal p and y, and t h a t  t he  A of t he  
ro to r  with constant p i t c h  i s  equal t o  A,, . Henceforth we will denote a l l  quanti
t i e s  per ta in ing  t o  a r o t o r  with constant p i t c h  by the  subscr ipt  lleqll or l le l !  

(f o r  equivalent ) . 
The coincidence of t h e  formulas enables us t o  determine t h e  flapping coef

f i c i e n t s  of a r o t o r  with var iab le  p i t c h  from the  formulas f o r  t he  flapping coef
f i c i e n t s  of a ro to r  with constant pi tch,  adding (p.1 and Cpl: 

(2.160) 

(2.161) 

(2.162) 

In so  doing it i s  necessary t o  satisfy t h e  conditions of equivalence of 
t h e  r o t o r  wi th  var iable  p i t c h  and the  ro to r  with constant p i tch :  



- -  
Now we are convinced t h a t  t he  following r e l a t ions  are sa t i s f i ed :  

Ux= r +p sin += Ux,; 

(a-'p) u-=lTy-uy, 
o r  

(2.168) 

Actually, on t h e  basis of eqs.(2.160) - (2.165), we represent both s ides  /1l1
of the  equal i ty  (2.168) i n  expanded form: 

It i s  obvious t h a t  t h e  equal i ty  (2.168) i s  va l id  here. 

It follows d i r e c t l y  from eq.(2.168) t h a t  

Thus, the  angles of a t tack  a t  a l l  blade sect ions f o r  t he  r o t o r  with var iable  
p i t c h  and f o r  t h e  r o t o r  with constant p i t c h  equivalent t o  it are equal. 

Ekewise, we can show t h a t  

dt
d; : 

t,==t, * 
e '  

I =te. 

Equations (2.168) - (2.170) show t h a t  a decrease o r  increase i n  linear 
thrus t ,  produced by a change i n  p i t c h  of t he  blade a t  a given azimuth, i s  due t o  
a decrease o r  increase i n  u, a t  t h e  same azimuth when calculat ing on the  basis 
of t he  equivalent ro to r  theory. 

A t  equal t h rus t  coeff ic ients ,  the r e l a t i v e  induced ve loc i t i e s  are a l so  equal 



from which it follows, based on eqs.(2.163) and (2.164), that 

We represent t h e  expression f o r  -	dq i n  the  form [see eq.(3.56)1
dF 

Using eqs.(2.168) and (2.170), we f ind  

Since, f o r  a ro to r  with flapping hinges, the value of t h e  i n t e g r a l  

i (  d F )  
i s  constant a t  a l l  azimuths, t he  i n t e g r a l  with respect t o  J I  must be 

equal t o  zero. Consequently, t he  average per-revolution magnitude of t h e  torque 
coef f ic ien ts  of t h e  ro to r s  i s  iden t i ca l :  

mt=mto. (2 178) 
dqHowever, a t  equal azimuths t h e  values of dF, qq, and m, Jr f o r  both ro to r s  

are not t h e  same and t h e  ro to r s  have a d i f f e ren t  var iable  component of f lapping 
motion about t h e  drag hinge. 

Let  us now derive formulas f o r  determining t h e  coef f ic ien ts  h and s of the  
ro to r  with var iab le  p i t c h  from t h e  corresponding coef f ic ien ts  of t h e  r o t o r  with 
constant p i tch :  he, and s e P .  On t h e  basis of eqs.(2.161), (2.162), (2.171), and 
(2.177) we then  obtain 

Ah+= -tqeAPcos++Aq+sin+=- +ex 

1 



(2.180) 

Consequentl y, 

(2.181) 

(2.182) 

Finally, l e t  us def ine t h e  r e l a t i o n  of t h e  coe f f i c i en t s  of forces  i n  t h e  
veloci ty  axes. It follows from eqs.(2.172), (2.174), and (2.l-81) t h a t  

Equations (2.183) and (2.184) show t h a t  a r o t o r  with d i f f e r e n t  and q1 a t  
i d e n t i c a l  p, A,,, cp has i d e n t i c a l  t, and t,. Consequently, a t  equal p 9  ty,t, 
the r o t o r  with a cyc l i c  va r i a t ion  of p i t c h  and t h e  r o t o r  with a constant p i t c h  
have equal cp, he , ,  cyeq, but  d i f f e ren t  cy. T h i s  c h a r a c t e r i s t i c  of a hinged r o t o r  
manifests i tself  i n  t h a t ,  a t  equal t, and t, ( a t  equal f l y i n g  weight, speed, a 
and a l t i t u d e )  but a t  d i f f e r e n t  Fl (d i f f e ren t  centering o r  angles of s t a b i l i z e r  
s e t t i ng ) ,  t h e  hel icopter  wi l l  have d i f f e ren t  angles of a t t ack  and angles of 
p i t ch .  T h i s  i s  shown i n  Fig.2.38: The r o t o r  with constant p i t c h  and t h e  ro to r  
with variable pi tch,  a t  equal p, t,, t, have equal cyep but  d i f f e r e n t  c y ;  conse
quently, t h e  hel icopter  with a deflected automatic p i t c h  con t ro l  mechanism i n  
t h e  same f l y i n g  regime w i l l  occupy a new pos i t i on  i n  space. 

P l a n e  of r o t a t i o n  o f  r o t o r  
w i t h  p i t c h  v a r i a b l e  

i n  a z i m u t h  

v -tr P l a n e  of r o t a t i o n  o f  r o t o r  w i t h  c o n s t a n t  
p i t c h  and p l a n e  of e q u i v a l e n t  

// r o t z r  f o r .  

'Qz I//-e Y,+O 
4' 

Fig.2.38 Angles of P i t ch  of Helicopter a t  Same Flying Regime 
but Different Deflections of Automatic P i t c h  Control. 

An important consequence of eqs.(2.178), (2.183), and (2.184) i s  the  possi
b i l i t y  of mathematically determining the  interdependence of t h e  coe f f i c i en t s  p, 
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ty,t,, m, i r r e spec t ive  of whether or not t he  r o t o r  has a cycl ic  va r i a t ion  of 
p i t c h  with respect t o  azimuth since, f o r  any F1 and GI, t he  coe f f i c i en t s  ty,t,, 
m, do not change. T h i s  property of t h e  r o t o r  g rea t ly  s impl i f i e s  the aerodynamic 
design of a helicopter.  

7 
The above-derived formulas of t h e  equivalent r o t o r  theory w i l l  remain val id  

even i f  they are not derived from eq.(2.153) 
and even i n  the  absence of assumptions of uni
formity of t h e  induced veloci ty  f i e l d  (without 
discarding higher harmonics of flapping) and of 
other  assumptions. Consequently, a l s o  here 

'P lane  o f  transformations based on t h e  equivalent r o t o rr o t a t i o n  
theory will hold. The higher harmonics of flap

pl. acegal.tP ping and t h e  loads ac t ing  on t h e  blade i n  the.q":od 
t h r u s t  plane, f o r  a r o t o r  with p i t c h  varying 
as a function of t h e  first harmonic and f o r  a 

Fig.2.39 Displacement A s  of r o t o r  with constant p i t ch ,  are i d e n t i c a l  i f  t h e  
t h e  Flapping H5nges Relative conditions of equivalence of t h e  regimes 
t o  the  Plane of t h e  Equiva- (2.163) - (2.165) a r e  s a t i s f i e d .  

l e n t  Rotor. 
The equivalent r o t o r  theory i's not appli

cable i n  t h e  case of widely spaced flapping 
hinges, s ince r e l a t i v e  t o  the  new reference plane, i.e., r e l a t i v e  t o  the  plane 
of t h e  equivalent rotor ,  t h e  blades execute a n  add i t iona l  displacement A s  
(Fig.2.39) together with t h e  flapping hinges, which does not occur when calcu
l a t i n g  a r o t o r  re,lative t o  t h e  plane of r o t a t i o n  and i s  not taken i n t o  account 
i n  design formulas. 

Fig .2.4O Reconstruction of t h e  Aerodynamic Character is t ics  
f o r  a Rotor with P i t ch  Varying i n  Azimuth. 

Finally,  f o r  a r o t o r  with constant p i t c h  a l l  dimensionless cha rac t e r i s t i c s  
are defined upon prescr ibing three quant i t ies  (p, A ,  cp or any other  three quanti
ties), whereas f o r  t h e  r o t o r  with variable p i t c h  f i v e  quan t i t i e s  (p,  h ,  y, /lu, 
q ~ ~ ,o r  any other five) must be known f o r  determining t h e  dimensionless 

119 




- 

cha rac t e r i s t i c s  i n  t h e  r e l a t e d  axes. 

Thus, it has been proved t h a t  t h e  ca l cu la t ion  of a r o t o r  with variable 
p i t c h  can be replaced by t h e  simpler ca l cu la t ion  of a r o t o r  with variable pi tch,  
i.e., s t i p u l a t i n g  equivalence of t h e  f ly ing  regimes (2.163) - (2.165), with sub
sequent conversion by t h e  above fomulas .  

The sequence of ca l cu la t ion  i s  as follows: 
From t h e  quant i t ies  p,  A ,  cp, F1, Fl which are known f o r  t h e  r o t o r  with 
variable pi tch,  we f i n d  w e ,  h e ,  y e .  
We then d&"i.ne a o e 9  ale,  he,te, m t e ,  he, se, tYe,he* 
From the  conversion formulas, we f ind a,, al, ... t,. 

The equivalent r o t o r  theory i s  o f t en  used i n  determining t h e  aerodynamic 
cha rac t e r i s t i c s  of a r o t o r  from graphs. If t h e  graphs are constructed f o r  a 
r o t o r  with constant pi tch,  t h e i r  change f o r  a r o t o r  w i th .va r i ab le  p i t c h  w i l l  be 
as shown i n  F'ig.2.40. I n  t h e  graphs f o r  t h e  angle of a t t ack  at cp = const (upper 

-p l o t s )  t h e  curves of t are equidis tant ly  sh i f t ed  by Act  = &, and each po in t  of 
t h e  curves of h i s  s h i f t e d  by ACY = t o  t h e  r i g h t  and b Ah = -t& downward. 
On t h e  graphs f o r  r o t o r  p i t ch ,  a t  cy = const (lower p l o t s3 t h e  marking of t h e  
angles of a t t ack  i s  changed ( f o r  F1 # 0, each curve corresponds t o  a n  angle of 

-a t t ack  g rea t e r  by Tl), and t h e  curves of h, i n  addition, are sh i f t ed  by Ah = 
- -tFl. The graphs of m,, ty,t,, ao, and of higher harmonics of flapping a,, 
b, ( n  = 2, 3, ...)are modified l i k e  t h e  graphs of t, whereas t h e  graphs of s, 
al, bl are modified l i k e  t h e  graphs of h. On t h e  graphs of t he  aerodynamic 
cha rac t e r i s t i c s  i n  t h e  veloci ty  axes ( t h e  p l o t  on t h e  r i g h t  i n  F'ig.2.40) f o r  a 
r o t o r  with # 0, the  marking of t h e  angles of a t t ack  i s  also changed. 

P l a n e  o f  
e qu i v a1e n  t 

Fig.2.41 For Determining t h e  Pos i t i on  of t h e  
Equivalent Rotor Plane. 

Let us now derive formulas correlat ing t h e  c h a r a c t e r i s t i c s  of t he  r o t o r  
w i th  variable p i t c h  and i t s  equivalent r o t o r  with constant p i t ch ,  on t h e  basis 
of  geometric r e l a t ions .  

Figure 2.4-1 gives a s i d e  v iew of t h e  r o t o r  and two blade sect ions at azi
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muths 90 and 270:. If' we draw a plane turned about t h e  blade axis through a n  
angle b g = 9 0 0  = -?pl t o  t h e  plane of rotat ion,  then t h e  blade p i t c h  r e l a t i v e  t o  
t h e  turned plane w i l l  be i d e n t i c a l  and equal t o  t h e  mean value of p i t c h  p e r  
revolution. T h i s  plane i s  t h e  plane of t h e  equixalent ro to r .  The angle of /115
a t t ack  of t h e  equivalent r o t o r  (Y, = (Y - 6:. If Cpl # 0, a n  analogous p i c t u r e  i s  
obtained on viewing t h e  r o t o r  from t h e  azmuth  Q = 0, i.e., t h e  plane of t h e  

P l a n e  of e q u i v a l e n t  

ec. 

P l a n e  of r o t a t i o n  

Fig. 2.42 Velocity and Elementary 
Force Components of Blade Sections 

i n  Different Reference Planes. 

equivalent r o t o r  i s  turned, r e l a t i v e  t o  
the  plane of rotat ion,  through an angle-
'pl i n  t h e  s i d e  plane of t h e  helicopter.  

Thus it i s  obvious t h a t ,  f o r  a r o t o r  
with p i t c h  varying cyc l i ca l ly  with re
spect t o  t h e  first harmonic, we can se
l e c t  another plane of reference relative 
t o  which t h e  r o t o r  p i t c h  does not change. 
Therefore, relative t o  the  new reference 
plane we can determine forces,  moments, 
and flapping of t h e  r o t o r  by formulas 
derived f o r  t h e  r o t o r  with constant 
p i t ch .  I n  so  doing, it must be taken 
i n t o  account t h a t  t h e  new reference 
plane has a d i f f e r e n t  angle of a t t ack  
and t h a t  t h e  r e s u l t s  of t he  calculat ion 
p e r t a i n  t o  axes r e l a t ed  with it and 
should be converted t o  axes r e l a t ed  with 
the  plane of r o t a t i o n  of t h e  ro to r .  

T h i s  cons t i t u t e s  t h e  geometric meaning of t h e  formulas derived above. 

The pos i t i on  of t h e  aerodynamic force of t h e  r o t o r  r e l a t i v e  t o  t h e  ve loc i ty  
vector of f l i g h t  does not depend on t h e  se l ec t ion  of t h e  reference plane; there
fore ,  i t s  components on the  ve loc i ty  axes, i.e., l i f t  and propulsive forces, are 
equal [see eqs.(2.183) and (2.184)l. 

-
Fig.2.43 For Determining t h e  Difference 5,.- Uy, 

at  Azimuths Q = 0' and Q = 180' . 
L e t  us now ou t l ine  t h e  changes occurring when calculat ing t h e  elementary 

forces  of t he  blade sec t ion  on change-over t o  t h e  new reference plane. 
Figure 2.42 shows t h e  blade sec t ion  at azimuth 4 .  The sec t ion  has a s e t t i n g  
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angle c p ~r e l a t i v e  t o  t h e  plane of ro t a t ion  and a setting angle cp r e l a t i v e  t o  /116
t he  plahe of t h e  equivalent ro tor .  The angle of a t t ack  of t h e  blade section, 
i.e., the  angle between t h e  chord of t h e  blade and t h e  vector of t h e  t o t a l  rela
t i v e  veloci ty  of flow around the  sec t ion  U, does not depend on se lec t ion  of the  
reference plane [see eq.(2.169)1. The r e l a t ions  between t h e  compgnents of U a t  
small values of hp are equal [see eqs.(2.166) and (2.168)]:UX 2: U,; U,, r U, + 
+ U,hp o r  AUy -hpU,. 

A s  indicated above, t he  last  expression shows that any decrease o r  increase 
i n  load p e r  u n i t  length of t h e  sec t ion  due t o  a change i n  blade p i t c h  at  a given 
azimuth f b r  an equivalent ro to r  with constant p i t c h  i s  the  result of a decrease 
o r  increase i n  U, a t  t h e  same azimuth. 

Le t  us define t h e  reason f o r  t he  va r i a t ion  i n  Uy a t  t he  charac te r i s t ic  azi
muths Jr = 0 and 90'. A t  azimuth $ = 0, U, and U,, are equal: 

- - - 4 .U,=p(a-f)-v -r--,
4J 

We see from Fig.2.43 tha t ,  a t  $ = O,,the  value of B changes on changing t o  
another reference plane by t h e  same quantity as CY so  t h a t  CY - B = CY, - B e .  T h i s  

If AT = -pi COS $ 9  then t h e  plane of .the equivalent r o t o r  i s  incl ined 
laterally r e l a t ive  t o  the  plane of ro t a t ion  by an angle on account of which 

Thus, when the  p i t c h  of t h e  blade a t  azimuth $ = 0 changes by -&, a change 
t o  t h e  equivalent plane i n  t h e  ca lcu la t ion  w i l l  lead t o  a decrease i n  n, owing 
t o  a decrease i n  t h e  flapping r a t e  r e l a t i v e  t o  t h e  plane of t h e  equivalent ro to r  
by a quantity equal t o  TI?. 

A t  azimuth Q = 90°, U, i s  equal t o  

- - - d eUy=pa --v  - r - ;  
dll, 
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If 4 = -yl s i n  4 ,  

Consew e n tl y, when t h e  blade p i t c h  decreases a t  azimuth w = 90'. t h e  change--~ -
over t o  t h e  plane 'of t h e  equivalerk r o t o r  produces t h e  same decrease i n  aero
dynamic force as a result of t h e  f a c t  t h a t  U,, < U, owing t o  a decrease i n  angle 
of a t t a c k  of t h e  equivalent r o t o r  and a n  increase i n  flapping rate relative t o  
t h e  equivalent ro to r .  

In conformity with Fig.2.42, t h e  formulas f o r  converting t h e  load p e r  u n i t  
length i n  t h e  blade sec t ion  will. be 

Thus, a l l  formulas of t h e  equivalent r o t o r  theory are i n  essence only 
formulas f o r  converting from one system of axes t o  another. 

-24. 	Deri-vation of FormU&aS- f o r  a R o t x @ t h - Fkpping Hinges 
.a s - f o r. .. . . .a Rotor without .Hi%-

-- . . . . . . - .  . m.~~Equivalence. o.. . .~.. .- . Rigid Rotors 

I n  t h e  Glauert-Lock theory, when deriving formulas f o r  t h e  coeff ic ients  of 
forces ,  torque, and flapping, t h e  flapping angle of t h e  d i r ec t ion  of forces. i n  
space i s  reckoned from a plane r e l a t i v e  t o  which t h e  s e t t i n g  angle of t h e  blade 
i n  r o t a t i o n  remains constant. Obviously the plane of t h e  equivalent ro to r  meets 
these requirements. 

I n  this Subsection, we W i l l  derive formulas f o r  t h e  coe f f i c i en t s  of forces 
and torque of a rotor ,  except t h a t  we conceive t h e  hinged r o t o r  as r i g i d  r e l a t i v e  
t o  t h e  axis of t he  cone described by t h e  blades. I n  so  doing, we W i l l  take t h e  
plane of t h e  blade t i p s  as t h e  reference plane r a t h e r  than the  plane of t he  
equivalent rotor .  Relative t o  this new plane, t he  blade s e t t i n g  angle changes 
i n  r o t a t i o n  but there  i s  no flapping; this s impl i f i e s  t he  expression f o r  the ve
l o c i t y  component of t h e  flow p a s t  t he  blade U, normal t o  the  reference plane. 
Since U, en te r s  t h e  expressions f o r  elementary fo rces  more complexly than the  
s e t t i n g  angle, t h e  formulas f o r  t h e  coe f f i c i en t s  of forces  and torque i n  the t i p  
plane a r e  simplified.  

T h i s  method gives ind iv idua l  formulas applicable t o  t h e  calculat ion of a 

* Figure 2.43 shows t h e  displacements of t h e  blade A s  relative t o  the plane of 
r o t a t i o n  and plane of equivalent r o t o r  during a half-revolution of t h e  blade; it 

i s  obvious t h a t  (3 ' 1 dB 
\ d t  )3 '-*d t  
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r o t o r  both with constant blade s e t t i n g  and with a s e t t i n g  angle variable relative 
t o  the  plane of ro t a t ion .  

Occasionally, a p p r o h a t e .  expressions f o r  t h e  longi tudinal  and la te ra l  
forces  of t h e  r o t o r  en te r  t h e  aerodynamic calculat ions and especial ly  the  sta
b i l i t y  calculations:  

h =tal;  
s= tb l .  I 

Obviously, these expressions are va l id  i f  t h e  forces  directed p a r a l l e l  
t o  t h e  plane of t h e  blade t i p s  are 
equal t o  zero, i.e., i f  t he  re
s u l t a n t  of a l l  aerodynamic forces  
i s  perpendicular t o  the plane of 
t h e  t i p s .  

The obtained expressions f o r  
t h e  coe f f i c i en t s  of forces  p a r a l l e l  
t o  t h e  plane of t h e  blade t i p s  are 
addi t ions f o r  r e f in ing  eqs.(2.185). 

Finally,  we w i l l  derive various 
formulas w h i l e  re ta ining t h e  as
sumptions of t he  Glaueri-Lock theory. 

Fig.2.44. Velocity Components of Flow Blade flapping can be taken i n t o  
Past  t h e  Blade. 	 account only with an accuracy t o  

the f irst  harmonic. For a r o t o r  
with i n f i n i t e l y  heavy blades (a0 = 

= bl = s = 0, the coe f f i c i en t s  of higher harmonics of flapping are a l s o  equal 
t o  zero) such formulas w e r e  derived by Lock (Ref.37). 

Le t  us now derive these  formulas. 

The veloci ty  components of flow pas t  t h e  blade i n  a plane normal t o  i t s  
&s (Fig.2.44, plane N )  are t h e  component p a r a l l e l  t o  t he  plane of t he  blade 
t i p s  

-

Ux(K) wr +V COS (a+a,) sin 9 w~ (; +p sin 9) =w ~ U x ( , , ,  (2.236) 

and t h e  component normal t o  U,
( k) 

Uy(K)=Vsin{~~+uJ--v--Vcos(a$u.,)cos+sin a,=: 

z 2  w R  (k+pol -a,p cos +)=wR (A(,<) -a,p cos 3) =oR5  (2 .B7)  
Y ( K ) '  

(2.188) 

characterizes t h e  ve loc i ty  of t h e  air f low through t h e  plane of t h e  blade
'(.k)tips. 



Let us first examine a r o t o r  
having a p i t c h  constant with re
spect t o  azimuth. I n  the  sec t ion  
normal t o  the blade axis a t  azi
muth Q , t h e  angle between t h e  
plane of ro t a t ion  and t h e  plane 
of t h e  blade t i p s  i s  equal t o  

P T T  
= al s i n  $ - bl cos Q 

Q+2 

(Wg.2.45). Therefore, t he  rela
t i o n  between the  quant i t ies  per
t a in ing  t o  t h e  plane of r o t a t i o n  
and t h e  plane of t he  t i p s ,  i n  con-

Fig.2.45 For Determining t h e  Blade Set- formity with Fig.2.46, i s  as 
t i n g  A n g l e  Relative t o  t h e  Plane of the follows : 

Blade Tips. 
'OW)=? -B++$='p -a, sin $+bl  cos 9; ( 2 .w) 

UqK)=If x ;  (2.190)
/119 

Uy(K)=Uy+UxP* +a=Uy+Ux(qs in$-bb ,  cos $1; (2 0191) 

The expression f o r  t h e  angle of a t t ack  of t h e  blade sect ion obviously 
should not depend on t h e  se l ec t ion  of t h e  reference plane. We will demonstrate 
t'his, a f t e r  subs t i t u t ing  eqs.(2.1@) - (2.191) i n t o  the expression f o r  t h e  angle 
of a t t ack  of t h e  section: 

c -?*+ ;) Kr(K).+uy(K) 

The expressions f o r  t h e  coe f f i c i en t s  of aerodynamic forces  of a blade ele
ment i n  the-plane N have t h e  usual form (see F'ig.2.46): 



- - 

Omitting intermediate computations, we can give the  f i n a l  formulas: 

-
-aoprcos 9 --2 

1 
aop2sin 2$ 

1 cos 241I ; (2-195)2 

where cxpB v  i s  the  average value of cxp over t h e  disk.  

To determine -dq we must use eq.(2.193): /120dF 

Subst i tut ing cpckl with respect t o  eq.(2.189) i n t o  t h e  expression f o r  

dt 'I and integrat ing,  we obtain 

=uw[fL+- ? ( I + - 3 1 " 2 ) ] = t .  
3 

Since, i n  r e a l i t y ,  the  ro to r  blades have flapping hinges, t he  condition of 
flapping motion 

1 -1 a,,=s(=);d;, 
dr 

y o 

is sa t i s f i ed ,  which y ie lds  

(2.201) 

Let us derive t h e  expressions f o r  the  coef f ic ien ts  of longi tudinal  and 
la teral  forces  p a r a l l e l  t o  t h e  plane of t he  blade t i p s .  
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The elementary longi tudinal  and la teral  forces  are equal t o  

Subst i tut ing eqs.( 2.195) and (2.196) i n t o  these  equations and in tegra t ing  /121
t h e  elementary forces  over t h e  blade radius and azimuths, we obtain t h e  follow
ing  expressions f o r  the  coef f ic ien ts  of average per-revolution forces:  

(2.205) 

(2.206) 

With consideration of these emressions.  t he  coef f ic ien ts  of longitudinal 
and la te ra l  forces  of-the ro to r  
are equal t o  

h =h(K) +ta,; (2.207)

Jli I\ ..s =-S(K )  +fb1. (2.208) 

Calculations show t h a t  use 
of t h e  approximate formulas 

P l a n e  of r o t a t i o n  (2.185) leads t o  an e r ro r  i n  de
termining h, equal t o  10 - 30% 

e 
 (toward t h e  s ide  of a decrease, 
a l a rge r  f igure  always per ta ins  

Fig.2.46 Velocity and Elementary Force t o  small  t h r u s t  coef f ic ien ts  t).  
Components of the  Blade Section f o r  The der ivat ives  of t he  coeffi-

Different Reference Planes. c i en t  h with respect t o  p,  cy, cp 
can be determined f r o m  eq.(2.185). 
Determination of the  coeffi

c i en t  s and i t s  der iva t ives  by means of eq.(2.186) gives A result d i f f e r ing  
grea t ly  from calculat ions by means of eq.(2.208). Equation (2.208), j u s t  as 
eq.( 2.61) of t h e  Glauert-Lock theory, a t  uniform induced ve loc i ty  d is t r ibu t ion ,  
only approximately determines s, but calculat ions by means of eq.(2.208) are 
c loser  t o  t h e  experimental da ta  than calculat ions by means of eq.(2.185). 

P rac t i ca l  calculat ions show t h a t  t h e  value of t he  coef f ic ien t  s i n  autoro
t a t i o n  i s  close t o  zero and amounts t o  only a small por t ion  of the value of t he  
product tbl .  A t  average values of m, (horizontal  f l y ing  regime) the  value of s 
i s  smaller than  t h a t  of tbl and we can roughly consider s = h tbl .  A t  maximum 
power conditions, t he  value of s i s  equal t o  o r  higher than tbl .  

The torque coef f ic ien t  of t he  ro to r  i s  determined from the  expression 



2x I 

(2 209 

Since eq.( 2.209) provides f o r  in tegra t ion  with respect t o  I/I within limits 

dqfrom zero t o  2n, a l l  harmonics of the expression f o r  cis(k) vanish on in te 

grat ion.  Therefore, it su f f i ces  t o  subs t i t u t e  i n t o  eq.( 2.209) only the  center  

Subst i tut ing eq.( 2.210) i n t o  eq.( 2.209) and in tegra t ing ,  we obtain 

(2.2l l )  

W e  w i l l  demonstrate t h a t  m, = m 
,(k) 

. I n  f ac t ,  using eq.(2.197), we f ind  m,: 
2% I /122 

2 x  1 (2.212) 

It i s  known from the  equation of blade flapping relative t o  the  flapping 

hinge t h a t  t he  expression f o r  t he  t h r u s t  moment of t h e  blade (1-dt "d") does 
dF 

not contain first harmonics $; consequently, t he  i n t e g r a l  with respect t o  $ i s  
equal t o  zero. Thus, the  coef f ic ien t  of t he  average per-revolution torque m, i s  
determined by eq.(2.2SL) ( the  instantaneous values of m, 

$ are not mutually equal,i.e., m t  # mtt). 
(k)$ 


It i s  a l so  easy t o  prove the  equal i ty  of t h e  expressions f o r  m, [eqs.(2.211) 
and (2.48) 1 by taking t h e i r  difference: 
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The expressions i n  t h e  brackets are equal t o  zero, s ince they represent 
formulas [eqs.(2.201) and (2.202)l f o r  determining t h e  flapping coef f ic ien ts  a, 
and bl Thus, it has been proved t h a t  m, = m, . 

( k )  

The l i f t  and propulsive forces  of t he  r o t o r  do not depend on t h e  mode of 
calculat ing t h e  components of .  t h e  resu l tan t  force of t h e  ro to r  i n  t h e  re la ted  
axes, whether r e l a t i v e  t o  the  plane of ro t a t ion  or r e l a t i v e  t o  t h e  lane of t h e  
blade t i p s .  They are equal t o  (considering cos al = 1, s i n  al alP 

= t ( K )cos (a+a,) -h ( K )sin(a +al)=t cos a -h sin a=ty; (2.213)
tY(K)  

sin (a+ a , ) + / ~ ( ~ )t x ( K ) = t ( K )  cos (a+a,)=t sin a+h cos a =t,. (2.21k) 

The formulas derived i n  this Subsection are simpler than those of the  
Glauert-Lock theory. They are a l so  of i n t e r e s t  i n  t h a t  they permit t rac ing  t h e  
manner i n  which,and t h e  f a c t o r s  by which,the formulas f o r  calculat ing a r i g i d  
ro to r  (simplest  case) are transformed i n t o  formulas f o r  a hinged rotor .  The 
change i n  formulas takes  place f o r  t h e  following reasons: 

1. Change i n  angle of a t t ack  of t h e  r o t o r  owing t o  def lec t ion  of t h e  angle 
of ro t a t ion  of a r i g i d  ro to r  through an angle al. In place of h we introduce 
h c k )  = h + a lp  i n t o  t h e  formulas for a r i g i d  rotor :  

2. Cyclic change of r o t o r  p i t c h  r e l a t i v e  t o  t h e  deflected plane of rota- /123
t i o n  of t he  r i g i d  rotor :  

With consideration of t h e  cycl ic  change of p i tch ,  t he  formulas f o r  a r i g i d  
r o t o r  take  t h e  form 
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-where F1 
(k) 

= al, (pl(,) = -b, f o r  t he  case i n  which the  blade p i t c h  does not 

change r e l a t i v e  t o  t h e  suds of rotat ion.  

W e  note tha t ,  i n  calculat ing a r i g i d  r o t o r  with variable p i tch ,  it i s  im
possible  t o  use a new reference plane r e l a t i v e  t o  which the  p i t c h  i s  constant, 
%.e., t he  equivalent ro to r  theory. T h i s  i s  due t o  t h e  f a c t  t h a t  t h e  blades, on 
rotat ing,  do not l i e  i n  a new reference plane but ac tua l ly  leave it, i.e., per
form flapping motion r e l a t i v e  t o  it, and t h e  r i g i d  ro to r  theory does not hold 
f o r  t h e  new reference plane. 

3. The coning angle of a rig2d ro to r  i n  forward f l i  ht  c rea tes  a cyc l ic  
change i n  t h e  veloci ty  component Uy of t he  sec t ion  f l o w  ?see Fig.2.34): AU, = 
= -pa, cos $. Furthermore, owing t o  the  presence of t h e  coning angle the  blade 
t h r u s t  is  projected onto t h e  plane of t h e  t i p s ,  supplementing t h e  forces  h(

'r)
and s (~ ) . .  These f ac to r s  fu r the r  complicate t h e  fo&-_ulas, so t h a t  they a c q n r e  a 
form whch, af ter  t h e  subs t i tu t ions  tjl = -b, and = a,, coincides with 

( k )
t h a t  of eqs.(2.198), (2.205), (2.206), and (2.211): 

(2.218) 

4. Change-over from the  plane of t h e  blade t i p s  t o  t h e  plane of r o t a t i o n  @ 
according t o  the  expressions 
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When using eqs.(2.215) - (2.218) for calculat ing a ro to r  with flapping
hinggs according t o  the  condition of flapping motion [eq.(2.199)1, ao, T ~ ( ~ ) ,  
and C p l ( k )  w i l l  be equal t o  

L e t  us next examine a ro to r  with p i t c h  varying i n  azimuth. 

Equations (2.215) - (2.218) without any changes are applicable a l s o  t o  
calculat ing a ro to r  with var iable  p i tch .  

I n  this case, the  conditions of equal i ty  of t h e  s e t t i n g  angles r e l a t ive  t o  
the  plane of t h e  blade t i p s  are 

G I ( K )  =-'l+Gl; 1 
-

= a 1  +?l? I (2.221) 

-
where Fl(k )  , cpl( k )  , and ao, as before, are determined i n  conformity with t h e  
condition of zero moment a t  -t h e  flapping hinge i n  accordance with eqs.(2.220). 
In p lace  of t h e  term h C k )  - 'pick) p it i s  convenient t o  subs t i t u t e  h - F1p, i n t o  
eq.(2.220). 

Thus, t he  ca lcu la t ion  of a r o t o r  with var iable  p i t c h  i s  accomplished by 
means of formulas derived i n  this Subsection and d i f f e r ing  only by t h e  f a c t  t h a t  
a l  and bl arz not equal t o  G I ( k )  and ?i71(k) and are found from eq.(2.221) after 
determining Cpl( k) and 4jl( k) . 

The angles Cpl(,> and should be equal t o  the  angles between t h e  plane 
of t h e  blade t i p s  and t h e  plane r e l a t i v e  t o  which the  r o t o r  p i t c h  i s  constant, 
i.e., t he  plane of t h e  equivalent rotor .  Consequently, 

(2.222) 

Thus, without introducing t h e  concept of an equivalent ro to r  we obtained /125 
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eqs.(2.2%) and (2.221), after ac tua l ly  r e l a t i n g  t h e  quan t i t i e s  per ta ining t o  
t h e  plane of t h e  blade t i p s  with t h e i r  corresponding quan t i t i e s  of an equivalent 
r o t o r  . 

The formulas derived i n  this Subsection y i e l d  t h e  conditions of equivalence 
of a r o t o r  with and without flapping hinges: Rotors are ~lequiva len t l~i f  t h e i r  
angles of a t t ack  differ  by a quantity equal t o  al, and a r o t o r  without flapping 
hinges has a coning angle and components of cyc l i c  p i t c h  change determinable by 
eq.(2.2%) or eq.(2.221). 

Here, it i s  assumed t h a t  t h e  flapping hinges are located on t h e  ax is  of 
r o t a t i o n  of t h e  r o t o r  or close t o  it and we can disregard t h e  e f f e c t  of second 
and higher harmonics of flapping on t h e  aerodynamic cha rac t e r i s t i c s  of t h e  ro to r .  

The geometric meaning of t h e  conditions of r o t o r  equivalence is  t h a t ,  upon
sa t i s fy ing  these conditions, t h e  pos i t i on  of t he  blades of both ro to r s  relative 
t o  t h e  velocity vector of t he  oncoming flow and t h e i r  s e t t i n g  angles at  a l l  azi
muths are iden t i ca l .  It i s  obvious tha t ,  i n  this case, t h e  t h r u s t  moment of t h e  
blade relative t o  t h e  a x i s  of r o t a t i o n  of a r o t o r  without flapping hinges i s  
equal t o  zero. 

If, f o r  a hel icopter  with a r o t o r  without flapping hinges, t h e  cyc l i c  varia
t i o n  of r o t o r  p i t c h  f o r  balancing t h e  longi tudinal  and t ransverse moments i s  
such t h a t  eqs .( 2.220) are not s a t i s f i e d ,  then t h e  aerodynamic cha rac t e r i s t i c s  
of t h e  r o t o r  d i f f e r  from those of a r o t o r  with f lapping hinges. For example, 
by creat ing a t ransverse moment by a la teral  shift of t h e  center  of g rav i ty  of 
t h e  hel icopter  toward t h e  s i d e  of t h e  advancing blade ($ = 90°), we can reduce 
t h e  angles of a t t ack  of t h e  blade sect ions a t  azimuth $ = 270' and thus eliminate 
flow separations f o r  a r o t o r  without flapping hinges. 

25. General FXpressions f o r  DetermininE t h e  Components 
of Blade P i t ch  Change yo, Cpl, and F1 
In  Subsections 23 and a,we presented a method of calculat ing t h e  aero

dynamic cha rac t e r i s t i c s  of a r o t o r  with a blade p i t c h  cyc l i ca l ly  varying i n  the  
first harmonic -- I 

?=YO -y1Cos $ - 'pl sin +. (2.223) 

Let us now derive formulas f o r  determining t h e  components of blade p i t c h  
change 'Po, TI, and cp1 

"he blade p i t c h  establ ished by t h e  con t ro l  units of t h e  helicopter - con t ro l  
of t he  o v e r a l l  r o t o r  p i t c h  and i n c l i n a t i o n  of t h e  automatic p i t c h  control  mecha
n i s m  - i s  represented i n  the  form 

O =  8,- 8, sin+- O2 cos +. (2.224.) 

We assume t h a t  t h e  design and working p r i n c i p l e  of t h e  automatic p i t c h  
con t ro l  are known t o  t h e  reader [see, f o r  example (Ref.12)I. 
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I n  addition, t he  blade p i t ch  of helicopters i s  usually changed during blade 
flapping, which i s  achieved by a spec ia l  arrangement of blade turning levers  and 
flapping hinges. The hubs of such ro tors  are cal led hubs with "flapping com
pensatorll. Let us examine several schemes of hubs with a flapping conpensator: 
Cardanic and non-Cardanic hubs d i f fe r ing  i n  control  of blade ro ta t ion  about t he  
&a1 hinge, and also hubs with an o f f se t  and with a turned flapping h i q e  
(fig.2.47) 

C d 

Fig.2.47 Schematic Sketches of Rotor Hubs. 
a - Cardanic; b - Non-Cardanic; c - With of fse t  

hinge; d - With turned hinge; v.h = Vert ical  
hinge; a.r = Axis of rotat ion;  

h.h = Horizontal hinge. 

I n  the  f irst  scheme (a) ,  t he  blade turning lever  does not par t ic ipa te  /127
i n  moving the  blade relative t o  the drag hinge but par t ic ipa tes  i n  others. I n  
t h e  t h i r d  scheme (c) ,  t he  flapping hinge i s  located such tha t ,  i n  horizontal  
f w n g  regimes, the blade ax is  is  prac t ica l ly  perpendicular t o  the  e s  of the 
flapping hinge and goes through t h e  middle between i t s  bearings. 

I n  these schemes, the interdependence of s e t t i ng  angle and flapping angle 
of the  blade i s  accompEshed by displacement of t he  ba l l  bearing of t he  blade 
lever A from t h e  a x i s  of t h e  flapping hinge ( n  # 0). In t he  fourth scheme of 
t h e  hub (d),  t h e  interdeperdence of p i t c h  and flapping angle i s  achieved by 
ro ta t ion  of t h e  ax is  of t h e  flapping hinge. 

In  a l l  schemes, the  blade i s  shown i n  a pos i t ion  inclined about t he  drag 
hinge through an  angle co = S a v .  The flapping angle of t h e  blade @ is  i n  a 
plane perpendicular t o  the  plane of ro ta t ion  and goes through the  ax is  of t h e  
blade. Since t h e  angle co i s  small, the angle of t u r n  about t h e  flapping hinge 
i n  the  first three schemes can be considered equal t o  t h e  flapping angle of the  

133 



blade: B h e h  = ' ~ B and, i n  the  four th  scheme, as equal t o  
cos co 

p
h.h 
L-.B_ _  

cos (a, -co) -
We derive t h e  formulas i n  the  following sequence: First we determine t h e  

mode of blade p i t c h  change i f  t h e  axial hinge had seized and t h e  b a l l  bearing 
of t h e  blade-turning l eve r  A was discon
nected from t h e  rod of t h e  automatic p i t c h  
cont ro l  mechanism. T h i s  change i n  blade 
pi tch,  taking p lace  without turning of t h e  
blade i n  t h e  axial hinge, is  cal led Ilkine
matic change of pitchll. We w i l l  denote it 
by b i n *  

W e  then  determined t h e  amount by which 
t h e  blade i s  turned i n  t h e  axial hinge, 
owing t o  t h e  f a c t  t h a t  t h e  point  A i s  con
nected by a rod with the  automatic p i t c h  
cont ro l  and cannot be displaced i n  flapping. 
T h i s  change of p i t c h  i s  designated by LqaBh. 
The ove ra l l  change of p i t c h  4, i s  equal 
t o  the  sum of @ k i n  and n(Paah : 

A% =A ' P h  +A Y a  h . (2.226) 

The kinematic change of blade p i t c h  i n  
Fig.2.48 Kinematic Change of flapping i s  due t o  the  blade ~s being per-

Blade Pitch.  	 pendicular t o  t h e  axis of t h e  flapping hinge. 
Its der iva t ion  i s  c l e a r  from Fig.2.48. 
Point B, r e f e r r ing  t o  t h e  leading edge of 

the  blade, during flapping of t h e  blade i s  displaced r e l a t i v e  t o  t h e  plane of 
ro t a t ion  by a grea te r  amount than point  B' r e fe r r ing  t o  t h e  t r a i l i n g  edge. COE
sequently, t h e  blade changes i t s  angle r e l a t ive  t o  t h e  plane of rotat ion:  

The der ivat ion of & ? k i n  i s  i l l u s t r a t e d  also by t h e  drawing shown i n  
fig.2.49 

It i s  obvious tha t ,  when the  flapping hinge r o t a t e s  together  with t h e  blade 
during flapping of t h e  blade r e l a t i v e  t o  the  drag hinge (hubs of Sikorsky heli
copters, Fig.2.50), t he re  i s  no kinematic change of p i tch .  Such a change i s  
v i r tua l ly  absent i n  t h e  scheme shown i n  Fig.2.47~ (hubs of Milt hel icopters)  
since, i n  horizontal  f l y ing  regimes C h u b  = co, 

A!&in =: e tan(c, -ChuJ % 0. (2 228) 

I n  t h e  scheme of a hub with a turned flapping hinge (scheme d i n  Fig.2.47; 
such a scheme f o r  t he  drag hinge i s  sometimes used f o r  t a i l  ro to r s  of single- /128 
ro to r  helicopters), 
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Now l e t  us f i n d  @a.h. If po in t  A i n  Fig.2.47 w e r e  not connected by a rod 
with t h e  automatic p i t c h  con t ro l  mechanism, then during flapping of t h e  blade 
it would be displaced relative t o  the  axis of r o t a t i o n  by an amount As = I-$ f o r  
a Cardanic (universal)  hub and AS = [n + ( t V e h  -n)c2, + tbc,le = [n  + t b C O @  f o r  

Fig.2.49 	 Kinematic Change of Fig.2.50 Schematic Sketch of Hub of 
Blade Pi tch.  Sikorsky Helicopter. 

a non-Cardanic (nonuniversal) hub. Since point  A cannot have such a displace
ment, t h e  blade i n  flapping tu rns  about t h e  a x i a l  hinge by an  amount .of 

f o r  t h e  universal  hub and 

~ c p , , ~  = - (++cO) P= - ( t a n ~ l + c o ) p  (2.231) 

for t h e  nonuniversal hub. 

For a hub with an o f f s e t  f lapping hinge, we have 

AT,,^ =-[tan01 +(Co -C,,)] B =:-tan alp. (2.232) 

For a hub with a turned hinge, = 0. 

Thus, t he  t o t a l  change of blade p i t c h  during flapping motion i s  equal to :  

f o r  a universal  hub 

A'pC=A.'Pki, +AYa.h =( - tana l+ tonCo)p~- ( tana l -C~)  p; (2 -233 

f o r  a nonuniversal hub and a hub with o f f s e t  hinge 

ATc= -tMa,.p; (2.234) 
f o r  a hub with turned hinge" 

x- For s impl ic i ty  i n  Subsection 16, we take co = 0, kp, = -e t a n  ol. 



The dependence of p i t c h  on the  angle B ,  i n  t h e  general  form, i s  expressed by 

A ' ~ ~ = - k k e  (2.236), I  

where k i s  a coef f ic ien t  of t h e  flapping compensator. 

The value of k i s  determined from eqs.(2.233) t o  (2.235). 

O u r  derived expressions f o r  k do not take  i n t o  account addi t iona l  changes 
i n  the  s e t t i n g  angle, such as those caused by inc l ina t ion  of t h e  rod of t h e  
automatic p i t c h  cont ro l  mechanism, e tc .  Therefore, t h e  quantity k should be 
corrected by measurements on a manufactured hub o r  i t s  model. T h i s  i s  deter- /129 
mined as the  p a r t i a l  der iva t ive  k = at  an  average blade p i t c h  and blade 

a g  
angle of def lec t ion  relative t o  t h e  drag hinge equal t o  coo  

For fur ther  computations, t he  

4 v e r a g e  e l a s t i c  t w t s t  
vo p e r  revolution 

a 0.7 50 7 
Fig.2.51 Rotor P i tch  and Blade 
Twist. with Consideration of 
Average E las t i c  Twist pe r  

Revolution. 

Comparing this with eq.(2.223), 

quantity k i s  conveniently represented as t h e  
tangent of some angle 6 :  

k=tan8. (2.237) 

The blade p i t c h  i s  equal t o  t h e  sum 
of the  angle 8 establ ished by t h e  con
t r o l s  and the  angle kpC: 

TJ= 6,- 8,  sin 9- e, COS 9- kp. (2.238) 

Subst i tut ing i n t o  eq.( 2.238) t h e  
expression f o r  fl with an  accuracy t o  t h e  
first harmonic. we obtain 

'p.=(eo -Ra,)-(8 -kb,) sin 0) 

-(e, -RU,)  COS q. 

we f ind  

W e  r e c a l l  t ha t ,  i n  the calculat ions by t h e  Glauert-Lock theory, t he  blade 
p i t c h  i s  counted from the  zero- l i f t  angle of t h e  p ro f i l e :  

'Po" p f L .  r6t- Qll=f)o -k a o  -a,. 
(2.240 '1 
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For a ro to r  with a flapping compensator, t h e  equivalent ro to r  theory does 
not take  i n t o  account t h e  change of blade p i t c h  with respect t o  harmonics higher 
than t h e  first, i n  v i e w  of t h e  f a c t  t h a t  this change i s  produced by higher har
monics of blade flapping. Higher harmonics of t h e  change of p i t c h  can be ac
counted f o r  by spec ia l ly  derived formulas. 

T h i s  a l s o  per ta ins  t o  t h e  average e l a s t i c  t w i s t  over t he  blade with respect 
t o  higher harmonics and a l s o  t o  higher harmonics of t h e  change of p i t c h  due t o  
e l a s t i c i t y  of t h e  automatic p i t c h  controlmec&nism. The average e l a s t i c  twist 
over t h e  blade i n  t h e  first harmonic Tlav and 31,v must be introduced i n t o  t h e  
expressions f o r  (pl and GI. The average twist pe r  revolut ion vo must be subdi
vided i n t o  average twist over t h e  blade w o a v  and var iable  twist over t h e  blade 
radius  w i  - voav; t h e  first i s  introduced i n t o  t h e  expression f o r  y o ,  and the  
second i s  added t o  t h e  geometric twist of t h e  blade Acp (Fig.2.51). 

Averaging of t h e  e l a s t i c  twist of t h e  blade (this can be determined i n  
f l i g h t  tests or .by  calculat ion;  an estimate of t h e  magnitude of twist can be 
made from the  magnitude of t h e  hinge moment of t he  blade) i s  car r ied  out by /130
means of t he  formulas 

I _ - - -
Y,, =3 0 

vlr2dr s vl-
r=0.7' 

(2.241) 

With consideration of t h e  e l a s t i c  twist of the  blade, eqs.(2.%0) take  t h e  
f orm 

With t h e  use of eqs.(2.161) and (2.162), we f i nd  

SolVing this system relative t o  Tl and we 	obta in  
- -
vlav+kVl~V-

-k a,,+ ~ b , ,  e2 + R e 1  +- - 1 7 ' 
. 

(2.245)1 + k2 + - l + k ?  
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26. 	 Determination of Flapping _Coefficients of 
Rotor with Flapping Compensator 

After subs t i t u t ing  eqs.(2.&5) and (2.246) i n t o  e q ~ ~ ( 2 . 1 6 1 )and (2.162), we 
obtain t h e  following expressions f o r  t h e  flapping coe f f i c i en t s  al  and bl: 

The first addends on t h e  right-hand s i d e  of eqs.(2.247) and (2.248) deter
mine t h e  flapping motions of a r o t o r  having a flapping compensator with an unde
f l e c t e d  automatic p i t c h  con t ro l  mechanism e2 = = 0 and without consideration 
of e l a s t i c  tw i s t .  For s impl i f i ca t ion  of t.he formulas we write them i n  t h e  form 

-6,= 
6le--kai, 

1 + k 2  * 

The presence i n  t h e  kinematic scheme of t h e  hub of a flapping compensator /131
g r e a t l y  a f f e c t s  t he  flapping coe f f i c i en t s  of t h e  ro to r .  Upon a n  increase of k 
t h e  i n c l i n a t i o n  of t h e  ax is  of t h e  r o t o r  cone t o  t h e  s i d e  of t h e  advancing blade 

bl 
(JI  = 90") Kl decreases. When k = we have bl = 0, and with a f u r t h e r  in

crease of k, gl becomes negative, i .e. t h e  a x i s  of t h e  cone i s  incl ined t o  t h e  
s i d e  of t h e  r e t r e a t i n g  blade (JI = 270"j. 

The backward i n c l i n a t i o n  of t h e  e s  of t h e  r o t o r  cone Z1upon a n  increase 
i n  k varies d i f f e r e n t l y .  A t  a small value of t h e  coe f f i c i en t  of t h e  flapping 

b l  
compensator (k < L),t h e  ax is  of t h e  r o t o r  cone i s  s t i l l  incl ined toward t h e  

a le 
advancing blade and t h e  s e t t i n g  angle of t h e  blade increases  a t  azimuth J I  = 90" 
(Ayk = -kB) and decreases a t  azimuth $ = 270". Therefore, t h e  coe f f i c i en t  Zl 

bl -increases .  A t  ,k= a e ,bl = 0 and t h e  s e t t i n g  angle at azimuth JI = 90' and 
10 

Jr = 270" w i l l  not change. Thus, zl= a le .  On f u r t h e r  increase i n  k, t h e  angle-
b, becomes negative and t h e  s e t t i n g  angle at azimuth JI = 90' decreases, whereas 
at azimuth Jr = 270" it increases .  Therefore, t h e  coe f f i c i en t  8, decreases. 



For a single-rotor helicopter,  t h e  t a i l  r o t o r  has no automatic p i t c h  con
t r o l  s o  t h a t  t h e  blade flapping i s  determined by t h e  quant i t ies  a,, Z,, b, ( t h e  
e l a s t i c  twist of t h e  t a i l  r o t o r s  being s m a l l ) .  

The h u m flapping angle of t h e  blade i n  this case i s  equal t o  

Equations (2.249) - (2.251) show t h a t  t h e  flapping compensator decreases 
t h e  magnitude of t h e  variable po r t ion  of t h e  flapping motion" A@ and changes t h e  

-
=azimuth at which t h e  flapping angle has an extreme value t a n  $ B , ~ ~  -bl. Both 

81 

t h e  first and second f a c t o r  may be of s ignif icance f o r  a single-rotor helicopter: 
t h e  f irst  decreases t h e  variable loads on t h e  blade of t h e  t a i l  r o t o r  and t h e  
second changes t h e  gap between t h e  blades of t h e  t a i l  r o t o r  and t h e  t a i l  boom. 

For hel icopters  of side-by-side configuration, t h e  gap between t h e  blades 
and t h e  fuselage i s  determined mainly by t h e  quantity b,. It i s  expedient t o  
s e l e c t  a kinematic scheme of t h e  automatic p i t c h  con t ro l  mechanism such t h a t  a 
de f l ec t ion  of this mechanism Will not influence t h e  quantity bl (usual ly  only 
course con t ro l  of a hel icopter  i s  accomplished by t h e  automatic p i t c h  control,  
i .e., change i n  a,), Consequently, f o r  hel icopters  of side-by-side configura
t i o n  we must t ake  i n t o  account, when se l ec t ing  t h e  magnitude of t h e  flapping 
campensator and disregarding t h e  e l a s t i c i t y  of t h e  automatic p i t c h  con t ro l  and-
of t h e  blades bl = bl, t h a t  t h e  quantity 5, should be higher or lower depending 
on t h e  d i r e c t i o n  of r o t a t i o n  of t h e  rotors .  

For coaxial  hel icopters  t h e  $ap between t h e  blades of t he  upper and lower 
r o t o r s  depends on t h e  quantity bl (because of t h e  mutual interference of t h e  
rotors ,  t he  aperating conditions of t h e  upper and lower r o t o r s  are not t h e  same 
so  t h a t  a l s o  t h e  difference of thf? coe f f i c i en t s  a, of t he  r o t o r s  has an influ
ence on t h e  gap). A s  we see from Fig.2.52this  gap i s  

It i s  obvious t h a t  t o  increase t h e  gap we mus& s e l e c t  a magnitude of t h e  /132
coe f f i c i en t  of t h e  flapping compensator such t h a t  b, 

u P. 
= 

b l l O W -
= 0 .  

The value of b, of single-rotor and fore-and-aft hel icopters  and t h e  value 
of a, of hel icopters  of any configuration are determined by balancing t h e  heli
copter. The p i l o t ,  de f l ec t ing  t h e  con t ro l  s t i c k  and ac t ing  on alto, and b lcon ,  

3:- R.A.Mikheyev determined t h a t  A@ decreases somewhat l e s s  than d m - f o l d ,  
s ince  ta i l .  r o t o r s  with k = 0 and k # 0 should be considered a t  an i d e n t i c a l  
angle of a t t ack  and s ince  CY, of a r o t o r  with k # 0 i s  less thana ,  of a r o t o r  
with k = 0; due t o  this f a c t ,  t he  quantity a,, of t h e  former, a t  equal t h r u s t ,  
i s  g rea t e r  t han  t h a t  of t h e  lat ter.  



es t ab l i shes  al, bl, h, and s i n  such a manner 
t h a t  t h e  hel icopter  i s  i n  balance. However, a t  

*=goo 
t h e  required values of al o r  bl t he  quan t i t i e s  

and blcondepend on and El; consequent
0 n 

,Lower r o t o r  ly, t h e  flapping compensator influences t h e  de
f l e c t i o n  of t h e  hel icopter  controls  i n  f l i g h t ,  

+o+b, i.e., i t s  11balancing curves". 

p=27Oo 

27. Determination of t h e  Components of Blade 

Fig.2.52 	 For Determining 
P i t c h  Change T1 and F1 after Deflection of -

t h e  Gap between Rotors of t h e  Automati;. P i t c h  contr_ol 
Coaxial Helicopters. 

The second addends on t h e  right-hand s i d e  
of eqs.(2.&5) and (2.246) determine the  incre

ment of t h e  components of cyc l i c  p i t c h  change and t h e  flapping coe f f i c i en t s  of 
a r o t o r  with a flapping compensator, after manipulation of t h e  automatic p i t c h  
control .  They represent t h e  change i n  pos i t i on  of t he  blade cone and t h e  direc
t i o n s  of forces  and moments r e l a t i v e  t o  t h e  r o t o r  s h a f t  when t h e  hel icopter  
controls  a r e  manipulated. We denote these by $loon and (plCon o r  aleon and blco : 

Let us now e s t a b l i s h  the  r e l a t i o n  between t h e  angles of i n c l i n a t i o n  of t he  
automatic p i t c h  con t ro l  and t h e  magnitude of t h e  angles el and �I2. 

Figure 2.53 shows a diagram of t h e  hub and automatic p i t c h  con t ro l  i n  top 
v i e w  along t h e  r o t o r  sha f t .  The arrangement of t he  flapping hinges i s  not shown, 
s ince  this has no influence on our der ivat ions (on ly  t h e  expression f o r  k de
pends on it). The segments AA' are project ions of t h e  incl ined rods of t h e  
automatic .pi tch controls;  point  A i s  t h e  coupling of t h e  rod with t h e  blade 
turning lever, w h i l e  po in t  A' i s  t h e  coupling of t h e  rod with t h e  automatic 
p i t c h  con t ro l  i t se l f .  

The r o t o r  blades are shown i n  pos i t i ons  a t  which Acp,,,, = e2 ($ = 180') and 
A % o n  = el ($ = 270'); here t h e  hub and automatic p i t c h  con t ro l  are turned, rela
t ive  t o  t h e  longi tudinal  9 s  of t h e  helicopter,  through t h e  angles $ h u b  = 
= 180' + co and q h u b  = 270 + c0. 

The angles of t u r n  of t h e  automatic p i t c h  con t ro l  w i l l  de denoted by t h e  
le t ters  x and Ti, where N. i s  t h e  t u r n  mainly causing de f l ec t ion  of t h e  blade cone 
i n  t h e  longi tudinal  plane of t h e  hel icopter  and 7 i n  t h e  t ransverse plane. 

ht t h e  automatic p i t c h  con t ro l  be def lected through an angle w relative t o  
t h e  axis 00' located a t  a n  angle A(rc0,, t o  t h e  t ransverse plane of t h e  helicopter.  



$=270° 
.A @=e. 
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Fig.2.53 Kinematic Diagram of Hub and Automatic 
P i tch  Control. 

Considering t h a t  t h e  v e r t i c a l  displacements of the  poin ts  A and A' are 
equal t o  (SA = S i ) ,  we f ind  

Similar expressions are obtained on def lec t ion  of t he  automatic p i t c h  cow 
t r o l  r e l a t i v e  t o  t h e  axis 00'' t h o u g h  an  angle 7 

Let us determine t h e  increments of t he  flapping coef f ic ien ts  of the  ro to r  
when t h e  automatic p i t c h  con t ro l  i s  def lected through the  a les  H and 7 ,  sub
s t i t u t i n g  t h e  obtained r e l a t ions  i n t o  eqs.( 2.252) and (2.2537 

a p )  = x  COS (011 -A+,--" -CO) +k sin (a11 -4 J W n  - CO) --
C W  l b  l + k Z .  

= X  	
R .  COS 6COS (all - -Co -6); 

(2.256) 

'b 

ai') = -q R~ cos 6sin (al1-qWn -c,, -6); (2,257)
con 'b 

b{:bn==x R1~ ~ 0 ~ 6 s i n ( a ~ , - ~ ~ ~ ~ - ~ ~ - 6 ) ;  (2.258)

'b 
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Usually, t h e  angles are so  selected t h a t  cos (oll - A$,,, - co - 6 )  3 
> s i n  (oll - A$,,, - co - 6 ) ;  consequently, t h e  de f l ec t ion  of t h e  automatic 
p i t c h  con t ro l  through a n  angle z t  mainly causes a change i n  t h e  coeff ic ient  al, /134.
whereas a de f l ec t ion  through a n  angle W i l l  change t h e  coe f f i c i en t  bl. The 

product ,eR 
cos 6 cos (oI1 - A$,,, - co - S ) ,  which i s  dependent on t h e  kine

matic scheme of the hub, cons t i t u t e s  a r e l a t i o n  between t h e  l o n g i t u d i n a l i n 
c l i n a t i o n  of t he  axis of t h e  r o t o r  cone and t h e  angle N. T h i s  i s  denoted by D,: 

R LIJ ~D, =-cos 6 cos (a,, -A + -~c,, -~ 8 ) .  (2.260)
[b 

The product R w  cos 6 s i n  (oil - A$,,, - co - 6 )  character izes  t h e  in
b 

c l i n a t i o n  of t h e  ax is  of t h e  r o t o r  cone i n  a l a t e r a 1 , d i r e c t i o n .  T h i s  i s  denoted 
by D,: 

n2 5 9  cos 5 sill ( G I ,  -A + -~co-~ 6).~ (2.261)
[ b  

The value of t h e  coe f f i c i en t s  D, and Dz can be refined by t e s t i n g  t h e  f u l l -
s c a l e  hub or i t s  model. For this, t h e  blades are set i n  a n  azimuthal pos i t i on  
(shown i n  Fig .2.53) and relative t o  t h e  flapping hinge a t  an angle p = B,, = ab. 
After def lect ing t h e  automatic p i t c h  con t ro l  through an angle N ,  t h e  increments 
of t he  s e t t i n g  angles, i.e., t h e  angles e2 and el, are measured. 

The values of El,D2, D,, and D, are found from the  expressions 

The quantity k i s  a l s o  found from tests ( see  Subsect.25). 

Thus, 

(2.262) 

(2.263) 
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Helicopter designers o f t en  accomplish the  kinematics of t he  automatic p i t c h  
cont ro l  i n  which D, = 0. T h i s  i s  done so tha t ,  wi th  a longi tudinal  def lect ion 
of t he  cont ro l  s t i c k  causing inc l ina t ion  of t h e  automatic p i t c h  cont ro l  by an 
angle H, only the  coef f ic ien t  a1 i s  changed, i.e., so  t h a t  t h e  resu l tan t  force 
i s  def lected s t r i c t l y  i n  t h e  longi tudinal  plane of t h e  helicopter.  T h i s  c rea tes  
a moment r e l a t i v e  t o  the  center  of gravi ty  of t he  hel icopter ,  a l so  ac t ing  i n  the  
longi tudinal  plane of t h e  c r a f t .  However, t he  motion of hel icopters  i s  s o  in
terconnected i n  a l l  d i rec t ions  t h a t  there  i s  no sense t o  rigorously i n s i s t  on 
t h e  condition of coincidence of t h e  d i rec t ions  of ac t ion  of t h e  moment and de
f l e c t i o n  of t h e  cont ro l  s t i ck .  

For hel icopters  of side-Q-side and coaxial  configurations, f o r  which 
spec ia l  demands are made on the  quantity bl, t h e  coef f ic ien t  D, should be equal 
t o  zero so  t h a t  bl does not change when the  automatic p i t c h  cont ro l  is  deflected 
longi tudinal ly  forward or  backward. 

W e  see from eq.(2.261) t h a t  D, = 0, when /135 
A+con = a l l  -co-6 .  (2 264 

If, i n  the kinematic scheme o f  the hub and automatic p i t c h  control,  a value 
of ol1 - co - 6 # 0 i s  obtained, then the  
plane of i nc l ina t ion  of the  cone axis w i l l  
not coincide with t h e  plane of i nc l ina t ion  
of t he  automatic p i t c h  cont ro l  but  w f l l  lead 
t h e  plane of i nc l ina t ion  of t he  automatic 
p i t c h  cont ro l  by an angle of 

C =a, -c,, -6. (2.265) 

Let us explain the  der ivat ion of t h e  
lead angle, assuming - f o r  s implici ty  - t h a t  
t he  coef f ic ien t  of t he  flapping compensator 
i s  equal t o  zero ( 6  = 0) .  In  this case, t he  
cyc l ic  change of t h e  s e t t i n g  angle i s  pro
duced exclusively by inc l ina t ion  of t h e  auto
matic p i t c h  control .  

Fig.2.54 Pos i t ion  of Blade a t  

Ins tan t  of Maximum Pi t ch  Change Figure 2.54 shows a blade i n  a pos i t i on  

(Hub without Flapping Compen- a t  which i ts  s e t t i n g  angle has a maximum 


sa to r ) .  	 value s ince the  poin t  A' of t h e  rod, connect
ing t h e  blade turning l e v e r  with t h e  auto
matic p i t c h  control,  l i e s  i n  the  plane of 

i nc l ina t ion  of t he  automatic p i t c h  control.  The plane of i nc l ina t ion  of t h e  
cone axis i s  perpendicular t o  the  blade posi t ion.  We see from F'ig.2.54 t h a t  
5 = oll - c0. The angle 5 i s  nonzero s ince the  mechanism changing t h e  p i t c h  i s  
designed such tha t ,  f o r  a change of blade p i t c h  a t  some azimuth $, t h e  
automatic p i t c h  cont ro l  will. be def lected a t  an azimuth d i f f e r ing  by an angle 
90' - oll + co . If oll # co, then t h e  plane of i nc l ina t ion  of t h e  automatic 
p i t c h  cont ro l  w i l l  not coincide with t h a t  of t h e  cone axis. 

A t  6 # 0, the cyc l ic  change of t he  s e t t i n g  angle i s  not only d i r e c t l y  due 
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t o  def lec t ion  of t h e  automatic p i t c h  cont ro l  but  a l s o  t o  t h e  f a c t  t h a t  t h e  
change of flapping, caused by def lec t ion  of t h e  mechanism, i n  t u r n  changes the  
angle of blade se t t i ng .  Here, t h e  azimuth of t h e  maximum t o t a l  change of s e t t i ng  
angle l ags  by angle 6 = tan-lk behind the  azimuth of t h e  maxi” change of set
t i n g  angle due d i r e c t l y  t o  inc l ina t ion  of t h e  automatic i t c h  control.  There
fore,  a t  6 # 0 the  lead angle is  determined by eq.(2.2657. 

For t h e  plane of i nc l ina t ion  of t h e  cone a x i s  t o  coincide with the  longi
tud ina l  o r  with t h e  t ransverse plane of t he  hel icopter  (so-called 15ndependentlI 
control) ,  t he  axes of i nc l ina t ion  of t he  automatic p i t c h  cont ro l  00‘ and 00” 
should be turned t o  the  longi tudinal  and t ransverse planes of t h e  hel icopter  
through an angle A$co,, = 5. 

It follows from e~p(2.260)  tha t ,  with 15ndependentIl control,  t he  coeffi
c ient  w i l l  be 

. RD,  =*COS 6. (2.266)‘b 

If f o r  a hub co = 0 the  rod of t he  automatic p i t c h  cont ro l  i s  ver t ica l ,  then 
/136 

Rasp- 1 (2 267 1 
and 

Ib c o s q 1  

cos 8
Dl=- .C O S O ~ ~  ( 2.268) 

28. 	 Sequence of Aerodynamic Calcglation of .a Rptor 
with Variable P i t ch  

Thus, t he  expressions f o r  the  components of cyc l ic  p i t c h  change are wr i t t en  
i n  the  form 

For brevity,  t h e  last  addends of eqs.(2.269) and (2.270) are omitted i n  
what follows . 

Let us now.derive t h e  expressions f o r  determining the  coef f ic ien ts  h and s: 

3-44 




The flapping coe f f i c i en t s  of t h e  r o t o r  are 

For hel icopter  f l i g h t  with s ides l ip ,  eqs.(2.269) - (2.274) should be cor
rected.  For example (Fig.2.55), 

s ince  t h e  inc l ina t ion  of t h e  cone axis and of t h e  aerodynamic force  produced by 
def lec t ion  of t h e  automatic p i t c h  cont ro l  i s  determined along axes re la ted  with 

the  hel icopter  regardless  of t h e  d i r ec t ion- of t h e-

" i  
veloc i ty  vector.  The angles al, al, bl, bl, j u s t  
as t h e  forces  H and S, are the  angles and forces  
along axes f ixed with respect t o  the  d i r ec t ion  of 
t h e  ve loc i ty  vector.  

If we represent he and s, i n  terms of coqo
nents lying i n  t h e  plane of t h e  blade t i p s  
[eqs.(2.207) and (2.208)1, we obtain 

h=h(K) +fai=h(K) $ f & $ f  (D1x- Dzq); (2.277) 

S=S(K)$fbl=S(K) +fb1+f(D1q+D2~).  ( 2  278) 

Equations (2.269) and (2.270) show tha t ,  f o r  /137 
a ro to r  with a flapping compensator, Cpl and de
pend not only on t h e  angles of def lec t ion  of t h e  

Fig.2.55 Decomposition automatic p i t c h  cont ro l  but  a l s o  on t h e  flapping 
of a l c o  n and blcon i n t o  coef f ic ien ts  of t h e  equivalent ro tor .  T h i s  sub-
Velocity Axes during s t a n t i a l l y  complicates t he  ca lcu la t ion  of a ro to r  
Helicopter Fl ight  with with a flapping compensator since, i n  determining 

Sidesl ip .  	 t h e  i n i t i a l  da ta  f o r  calculat ing t h e  equivalent 
r o t o r  A, ,  cp, p ,  it i s  necessary t o  know the  coeff i 
c i en t s  ale, bib, aO. However, when any f i v e  quanti

t i es  character iz ing t h e  operation of a ro to r  with var iable  p i t c h  are prescribed,
it i s  always possible  t o  s e l e c t  a c a l c u k t i o n  sequence (sometimes p r e a s s i g n i n g
several values of A,  or cp and constructing a d l i a r y  graphs) which w i l l  contain 
a l l  coef f ic ien ts  of forces,  moments, and flapping of t h e  ro to r .  

Let us give a t y p i c a l  example. A t  given t ( r o t o r  t h r u s t  approximately 
equal t o  hel icopter  weight), p,  eo, n, and TI, the  aerodynamic ca lcu la t ion  se
quence f o r  t h e  r o t o r  can be as folloI$s: Assigning various values of A, ,  t h e  
expression obtained from eqs. (2.157)" and (2.242) 

_ _  
.3t We r e c a l l  t h a t  cpo entered t h e  formulas i n  Subsections 3 - 24. For s implici ty ,  
t h e  subscr ipt  11011 of cp was omitted. 
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w i l l  yield cpo, after which eq.(2.50) w i l l  give t, = t. 

After determining, e i t h e r  by t r i a l  and e r r o r  o r  graphically,  t h e  values of 
A, and yo at  which t i s  equal t o  t h e  prescribed value, eq.(2.4O) w i l l  f u rn i sh  

-ao, "le and b,, Then, eqs.(2.2&9), (2.250), (2.2691, and (2.270) w i l l  be used 
f o r  determining Z,, bl, ql, and F1. We now have a l l  da t a  necessary f o r  calcu
l a t i n g  t h e  c h a r a c t e r i s t i c s  of t h e  equivalent r o t o r  and t h e i r  conversion i n  t h e  
a x i s  of a r o t o r  with variable p i t ch .  To determine h, s ,  and m, we can a l s o  use 
formulas- derived i n  Subsection a,obtaining - i n  t h e  above-described sequence -
cpl( k) , C p l (  k) , and A( k) from e q ~ ~ ( 2 . 2 2 2 )  

The aerodynamic calculat ion and t h e  ca l cu la t ion  of hel icopter  balancing a r e  
performed i n  t h e  same sequence. 

A s  shown i n  Subsection 23, t he  aerodynamic c h a r a c t e r i s t i c s  of a r o t o r  i n  a 
veloci ty  coordinate system - t, = f (t, , m, ) a t  constant values of p and M, - do 
not depend o n &  and G1; therefore,  t h e  computation can be performed from the 
cha rac t e r i s t i c s  of a r o t o r  with constant pi tch:  t,, = f(ty,,mte ) f o r  the same 
values of p (p  = V) and h. From t h e  aerodynamic calculation, we obtain the co
e f f i c i e n t s  t,, and ty,; a t  any value of 6,and F1 i n  a given f l y i n g  regime, t h e  
c h a r a c t e r i s t i c s  of t h e  equivalent rotor':' W i l l  not change and Will correspond t o  
t h e  found values of p ,  txe,and ty,. Thus, as a result of t h e  aerodynamic 
calculation, we will obtain a l l  cha rac t e r i s t i c s  of t h e  equivalent rotor .-
After this, we ca l cu la t e  eo = cpo + k+, xl, bl and, from eqs.(2.271), (2.272) 

/138 
o r  (2.277), (2.278), t h e  components h and s which do not depend on a lconand 
b l c o  n From the condition of helicopter balancing, ?.e., from the  condition of 
equating t o  zero t h e  longi tudinal  and t ransverse moments, we f i n d  a, and bl 

c o n  c o nand follow this by calculat ing u, 7 ,  a,, bl, h, and s .  

Section 3. Momentum Theory of Rotor 

In  t h e  momentum theory of a ro to r9  the  aerodynamic forces  and the  power re
quired by t h e  r o t o r  are found by applying general  theorems of mechanics t o  t h e  
flow around t h e  ro to r .  

T h i s  theory i s  used i n  approximate calculat ions i n  which both t h e  induced 

' 5  The cha rac t e r i s t i c s  of t h e  equivalent r o t o r  f o r  any g1 are t h e  same when as
suming t h a t  t he  p a r a s i t e  drag of t he  fuselage (and a l s o  t h e  angle of a t t ack  of 
t he  wing of a winged hel icopter)  does not depend on F1 and i s  determined as some 
average value (&),,[a = CY,- (Flav)l.Usually, this assumption i s  valid.  If 
i t  i s  not, it w i l l  be necessary t o  perform second-approximation calculat ions 
from the  value of q ,  obtained f r o m t h e  balancing calculat ion.  
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and p r o f i l e  power of t h e  r o t o r  are determined on t h e  basis of simplifying as
sumptions or from precalculated graphs.. I n  this case, t h e r e  i s  no need t o  de
termine the  angles of a t t ack  and elementary aerodynamic fo rces  i n  each blade 
section, a f a c t  responsible for t h e  s implici ty  of t he  formulas. 

I n  t h e  momentum theory, t h e  components of t h e  aerodynamic forces  of t h e  
r o t o r  along t h e  veloci ty  of f l i g h t  (drag) 
and normal t o  it ( l i f t )  are determined, 
which m a k e s  this theory convenient f o r  
use i n  hel icopter  calculations.  

1. The0.q of an I d e a l  -Hel icmter  Rotor 

When creat ing l i f t  and drag (or 
propulsive force) ,  t h e  r o t o r  t h r u s t s  an 
a i r  mass downward and forward (or back
w.ard) . 

Glauert postulated t h a t  t he  r o t o r  
a c t s  on an a i r  mass passing through t h e  
area of a c i r c l e  placed normal t o  the  
flow incident  on the  ro to r .  The diameter 
of t h e  c i r c l e  w a s  t o  be equal t o  t h e  
diameter of t h e  r o t o r  (Fig.2.56). T h i s  
pos tu l a t e  i s  based on t h e  f a c t  t h a t  t h e  

V V V 	 same flow boundaries are selected both 
f o r  t h e  p rope l l e r  and f o r  t h e  wing, with 
un i fo rm induced veloci ty  d i s t r ibu t ion .  
For the  propel ler ,  this i s  e n t i r e l y  ob
v ious since t h e  flow boundary i s  deter
mined by t h e  area swept by t h e  blades; 
f o r  t he  Wing, t h e  p o s s i b i l i t y  of select-

Fig.2.56 Model of Airflow around ing  such a flow boundary i s  given by the  
Rotor. 	 vortex theory. Recently developed vortex 

theo r i e s  of a r o t o r  rather. accurately 
confirm t h e  correctness of Glauert f s 

hypothesis concerning t h e  a i r  mass par t i c ipa t ing  i n  t h e  generation of t h e  aero
dynamic forces  of a ro to r .  

I n  t h e  i d e a l  r o t o r  theory (Ref.21), i t  i s  postulated t h a t  t h e  air flows a t  
the  same ve loc i ty  over t h e  e n t i r e  area of t h e  c i r c l e :  The air stream does not 
mix with t h e  surrounding air, so  t h a t  it i s  proposed t h a t  t h e  a i r  i s  an inv i sc id  
f l u i d .  Furthermore, it i s  assumed t h a t  p r o f i l e  l o s ses  of power and v o r t i c i t y  of 
t h e  stream are absent. 

A model of t h e  air f low and i t s  ve loc i ty  components i n  th ree  sect ions - far  
qpstream of t h e  r o t o r  ( sec t ion  0-0), along t h e  r o t o r  cuds ( sec t ion  1-l), and far  
downstream of t h e  r o t o r  ( s e c t i o n  2-2) - are shown i n  Fig.2.56. The induced ve
l o c i t y  corresponding t o  t h e  r o t o r  l i f t  Y i s  denoted by t h e  vector vy, w h i l e  t h e  
induced veAocity4corresponding t o  t h e  r o t o r  drag X, i s  represented by t h e  
vector v, (vy117, v, (13) and t h e  ve loc i ty  of t h e  undisturbed flow, by V. Au. 
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vectors are shown f o r  p o s i t i v e  direct ion,  with t h e  subscr ipts  corresponding t o  
t h e  sec t ion  number. 

From t h e  theorem of moment of momentum follow t h e  r e l a t i o n s  

Y=m(vy , -vyo)=mvy, ;  
X = m ( V - V2)=mv,, ,  

where m i s  the  air mass flowing p e r  second through t h e  sect ion 0-0, 1-1, or 2-2. 

The va r i a t ion  i n  k ine t i c  energy of t h e  per-second air mass i s  

1
E =  E2-E,=- 2 m ( V i  + vi, -V". 

Equating eq.(3.2) t o  t h e  expression of energy inparted t o  t h e  air by the  
ro to r  i n  u n i t  time 

After transformation, this expression i s  reduced t o  t h e  form 

V Y ,  ( V Y ,  -2vy,)=vx, (2vx,-v x , ) ,  

which ind ica t e s  t ha t ,  i n  t h e  examined flow, t h e  following conditions are satis
f ied:  

1 
v x ,  =1vx,. (3.5) 

These r e l a t i o n s  show t h a t  t he  induced ve loc i t i e s  i n  t h e  ro to r  plane are 
one half  those far downstream of t h e  rotor .  

The power supplied t o  an i d e a l  r o t o r  i s  expended only f o r  creat ing k i n e t i c  
energy of t h e  flow and thus i s  equal t o  it. Making use of eq.(3.3), we have 

75N=Yv,,  --x (V -v x , ) .  (3.6) 

The weight rate of flow of a i r  m p e r  second i s  equal t o  t h e  product of t h e  
mass densi ty  and t h e  volume rate of flow of air p e r  second: 

m=QFV', (3.7) 

where V' i s  t h e  r e s u l t a n t  of t h e  v e l o c i t i e s  V, vY1 and vxl : 



To account f o r  t h e  so-called t i p  losses  of t h e  rotor ,  t he  following /Ilea
method i s  used: In calculat ing t h e  forces  and induced ve loc i t ies ,  t he  air mass 
flowing through an e f fec t ive  area F, = E?F smaller than t h e  area swept by the  
blades i s  introduced. Usually, f o r  forward f l i g h t  regimes we take B2 = 
= 0.94 - 0.96 [ the  e f f ec t ive  radius  of t h e  r o t o r  R e f f  = BR = (0.97 - 0.98)RI. 
The power i s  calculated on t h e  basis of t h e  m a s s  of a i r  flowing through the  
ac tua l  area. Therefore, by means of eqs.(3.1) and (3.4) t o  (3.8), with consid
e ra t ion  of t i p  losses,  we ob ta in  

Y= 2B2eFv,, 1/(V-vx,)2+ vi,; (3.9) 

X =2B2eFvx,v ( V  -vs,)2+ vi,; 

75N=-	1 [Yv,, -X ( V  -v ~ , ) ] .
B2 

L e t  us now change over t o  dimensionless quant i t ies  - coef f ic ien ts  of forces,  
moments (power), and velocity:  

- 1
mt=-E2 [cy.,-c, (V-Zx)]. 

In these  expressions we omitted t h e  subscr ipts  since, from now on, we w i l l  
be concerned only with the  ve loc i t ies  i n  
sec t ion  1-1and, f o r  simplicity,  w i l l  not  
give them a subscr ipt .  

Equations (3.12) t o  ( 3 . a )  describe t h e  
general  case where any aerodynamic system 
crea tes  l i f t  and drag (or propulsion) and 
consumes o r  y i e lds  power. Therefore, these 
expressions a l so  are va l id  f o r  a propel le r  
and f o r  a wing. For a propel ler ,  C, = vy = 
= 0 must be subs t i tu ted  i n t o  eqs.(3.12) t o  
(3.l.4) 	 and f o r  a wing which does not . i n j e c t  

0.-engine power i n t o  the  flow, m, = (For a 
Fig.2.57 Decomposition of t h e  wing, one usually takes  V x  < V, vu < V. ) 
Resultant Aerodynamic Force of 
a Rotor i n t o  Velocity and Body- In t h e  ro to r  theory, it i s  conventional 

Fixed Axes. t o  use quant i t ies  i n  rotor-fixed coordinates 
C T ,  CH,  IJ.9 1, e t c *  

Introduct ion of t h e  angle of a t tack  of t h e  r o t o r  y i e lds  the following rela
t i o n s  between the  coef f ic ien ts  of forces  and ve loc i t ies ,  i n  d i f f e ren t  coordinate 
systems (F'igs.2.57 and 2.58): 

I 



- -  

- -  

C,= Cycos a+ C ,  sin a;  
-

vt=vy cos a +v, sin a; 

C,=C, cos a -Cy sin a; 

-
vh=vxcos a -vysin a ;  

- -P=(V COS a-vh)'+ (V sin a -v r ) ' = p 2 + ~ 2 ;  

- 
)i= Vsina-vf. 

(3.21) 

'Substi tuting eq.(3.12) and (3.13) i n t o  eqs.(3.15) and (3.17) we obtain 
formulas f o r  t he  coeff ic ients  C,  and C,: 

Let us now study the  velocity polygon of 	a ro tor  and derive a number of 
addi t ional  re la t ions f a c i l i t a t i n g  
the  calculat ion of ro tor  charac
t e r i s t i c s .  

The velocity and force poly
gons are shown i n  Figs.2.58 and 
2.59. The l a t t e r  diagram, as a 
supplement t o  fig.2.58, shows the 
vector of t he  resul tant  induced 
velocity 

+ 4  .-c -c * 
u =vy+v~,=vt+ vh 

as wel l  as the  angles 5 and 6 ,  as 
follows: 

5 - angle between the  ve-
Fig .2.58 Velocity Polygon of  Rotor. 	 l o c i t y  of the  undis

turbed stream ( f ly ing  
speed) and resul tant  

veloci ty  in the  ro tor  region, 5 > 0 a t  Cy > 0; 
S - angle between t h e  normal t o  the  veloci ty  of the  undisturbed stream 

and resul tant  aerodynamic force of rotor .  
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Since ZR ( 1  2, t he  angle between t h e  vectors TY and T'u win a lso  be equal t o  
6 .  

The angles 5 and 6 and the  f ly ing  speed 7 completely determine the  veloci ty  
polygon. To determine t h e  veloci ty  polygon i n  terms of vectors i n  a fixed co

ordinate system, one more quantity 
must be known, such as - f o r  ex- /ucz
ample - the  angle of a t t ack  of the 
r o t o r  CY. 

kt us wr i te  out the  main re
l a t ions  between forces  and veloci
t i e s  i n  the  veloci ty  polygon: 

Fig. 2.59 Velocity Polygon of Rotor. 

vy=ucos 6, 
v,=u sin 6. I 

Using these re la t ions ,  eqs.(3.12) - (3.a)can be w r i t t e n  i n  another form 

Cx=Cytan8; (3032) 
-
m =--1 [cyv,-cc,(V-.,)] =c'(V-;Jx

8 2  8 2  

(3.33) 

Equations (3.31) t o  (3.33) a r e  of i n t e r e s t  i n  t ha t  t h e  two independent -
variables  5 and 6 co r re l a t e  t he  coef f ic ien ts  Cy, C x ,  and Et a t  any value of V, 
which i s  a consequence of t h e  s imi l a r i t y  of t h e  veloci ty  polygons i n  regimes i n  

C
which the  r a t i o s  

CY and 1a r e  equal.
V2 T2 

HarLng assigned a series of values t o  t h e  angles 5 and 6 ,  we can f ind  ,&& 
Ct he  r a t i o s  -,CY A,5 and construct a graph f o r  t h e i r  correlat ion.  

~ q 2 B2T2 o3 



~ig.2.60 In te r re la t ion  of Coefficients of Eft, Propulsive Force, 

and Torque of an Idea l  Rotor 



A t  Cy = 0 (C = 0), e q ~ ~ ( 3 . 3 1 )t o  (3.33) are  not applicable; therefore, i n  
constructing the  graph, we used eqs .( 3.l3) and ( 3  .U>transformed in to  

Such graphs (~igs .2 .60 and 2.61) are  convenient f o r  solving problems of 
aerodynamic design. 

1 - 1 ,  I I I I I-

I 1-LLLLLL
I I 1 - 1  I 1 - 1
1 I I I I 1 1 - i/j)I)
I I I I I I I
I I I I I I I  1 1 I I I I 1 1 . 

10 IS 20 

Fig.2.61 In te r re la t ion  of Coefficients of Eft, Propulsive 

Force, and Torque of an Ideal  Rotor (A= 1.0 - 12.0).
B 2 F  

To determine the  quantit ies entering the  velocity polygon of a rotor,  we 
must know - i n  addition t o  V - angles 5 and 6 .  The angle 5 i s  determined rather  
accurately by means of graphs (see Figs.2.60 and 2.61), w h i l e  the angle 6 i s  de-

Ctermined from Cy and C,: 6 = tan-' a. 
C Y  



- - 

A t  small 5 and 6 ( l a rge  v, small C y )  eqs.(3.31) t o  (3.33) are s h p l i f i e d .  & 
Actually, we have 

Cy= 4BzPC; 
c, =Cy8; 

1mt- B2 C,V(C -6). 
(3-36) 

Subst i tut ing t h e  first two equal i t ies  i n t o  the  th i rd ,  we obtain 

A t  small angles of a t tack  

The expression f o r  ifit i s  generally used Ln this form i n  aerodynamic calcu
l a t i o n s  of a hel icopter  i n  f ly ing  regimes a t  V 2 0.15. 

To calculate  f ly ing  regimes with la rge  5 (at small v), which are not 
covered by t h e  graphs shown i n  figs.2.60 and' 2.61, we m u s t  use eqs.(3.12) t o  
( 3 . z ) .  Subst i tut ing i n t o  eq.(3-.13) 

and transforming, we obtain 

T h i s  expression permits constructing graphs f o r  t h e  aerodynamic character
i s t i c s  of a r o t o r  C, = f(iiit'>, f o r  any selected values of V and C y :  Assigning-v,, we f ind  C,, then T,, and f i n a l l y  Et from eq.(3.&) ( the  s ign of C, coincides 
with t h e  s ign  of 5,). 

To calculate  t h e  charac te r i s t ics  of an i d e a l  rotor ,  we can a l so  use the  
following expressions : 

CR=4B2iV'=4B2u v ( V - G  sin6)2+ ( G C O S ~ ) ~ =  

=4B2u I/-vZ-u (2l/sin 6- u). ( 3*41) 

Let us then transform eq.(3.41) i n t o  

I 




fromwhere it i s  obvious t h a t  we can construct t h e  graph of t h e  dependence of -
N 

N 


u =  J+ -
O n V =  G

and 6 .  Such a graph, borrowed from another publi 


4-B" 4B2 
ca t ion  (Ref.2), i s  shown i n  Fig.2.62. In this diagram, t h e  broken l i n e  is  the  
approximate curve which can be used as basis f o r  calculat ing t h e  vortex-ring 
state a t  6 = +60° and 6 = +90°.; f o r  this curve, t h e  i d e a l  ro to r  theory does not 
hold. 

A determination of t h e  induced veloci ty  of t h e  r o t o r  i s  of independent 
i n t e r e s t .  

If the  angles 5 and 6 are known, the  r a t i o  of t h e  induced veloci ty  t o  
the  f ly ing  speed can be determined by expres

- sions derived from eqs.(3.26) and (3.27): 
U 

tonC 

vx=vYtad. (3.44) 

If t h e  angle of a t t ack  of t h e  r o t o r  i s  
known, the  ve loc i t i e s  v, and v, can be ob
.tained from eqs.(3.16) and (3.18). 

-
I n  t h e  operating conditj-on C, = v, = 0, 

t h e  veloci ty  Ty i s  determined from the  ex
pression: 

A t  small angles 5 and 6 ,  t h e  r e l a t ion  
Tx < 7 i s  sa t i s f i ed ,  so t h a t  

o r  
Fig.2.62 Induced Vzlocity 

as a Function of V and 6 .  
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A t  7 2 0.15 and a t  small angles of a t tack  (more accurately, i f  2 2.0 and 

-at small ti where - i n  conformity with ~’ig.2.62 - u = -)1 t h e  simplified expresv 
sions widely used i n  the calculat ions w i l l  r a the r  accurately y i e l d  the  induced 
ve loc i t i e s  

I n  these cases, the  induced veloci ty  i s  denoted by the  l e t t e r  v without 
subscript ,  f o r  simplicity.  

2. 	 Derivation gf-the Ekpression f o r t h e  Torque C o e f f s e n t  
of a Real Rotog 

Equations (3.l.4) and (3.37) were derived above f o r  determining the  torque 
coef f ic ien t  of an i d e a l  rotor ,  when considering the  ro to r  as an ac t ive  disk in
fluencing i t s  own circumflow. These expressions a re  in t e re s t ing  i n  t h a t  Et i s  
represented as an exp l i c i t  function of t h e  coef f ic ien ts  of l i f t  and propulsive 
force C y  and C,. In  the  same form, the  expression f o r  Et can be derived a l s o  /uc7
f o r  a r e a l  rotor .  T h i s  der ivat ion was originated by L.S.Viltdgrube. The ob
tained equation i s  val id  f o r  nonuniform induced veloci ty  d i s t r ibu t ion  over t he  
r o t o r  disk and takes  i n t o  account t he  forces  of t he  p r o f i l e  drag of t he  blades. 

As i s  known from the c l a s s i ca l  theory (Sects.2 and 4.), t h e  conponents of 
t he  dimensionless veloci ty  of flow p a s t  t h e  blade sect ions (a t  t h e h  = 0, 
cos p = 1) are equal t o  

-
U ,  =%=r +v cos a sin +; (3.50)

w R  
- u, -
U, =-= V sin a -v - V cos a sin pcos 9 r - -. 

w R  d+ 

The components of t h e  aerodynamic forces  located i n  a plane perpendicular 
t o  the  blade ;uds are  expressed by the  equations 

Substi tuting, i n t o  eqs .( 3 4 2 )  and (3.53), t he  expressions 

we obtain 
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- -
dq=(c,,U,- cyUy)Ubdr. (3.55) 

solving eq.(3.54) relative t o  c,t& 

and subs t i t u t ing  this i n t o  eq.(3.55), we obtain 

The elementary torque of t h e  r o t o r  i s  

dmt=dqF. (3057) 

Fr m this, a f t e r  subs t i t u t ing  dq from eq.(3.56) and r f r  m eq.(3.50) we obtain 

-
dm,=c,,U3Gr - d t o y - d q v  COSa s in+  (3.58) 

For f u r t h e r  transformations of eq.(3.58) we use eq.(3.51) and the  expres
s ions f o r  t h e  elementary longi tudinal  and propulsive forces:  

dh =dqsin + - d t  sin @cos+; (3.59) 

dfx=dh COS a +dt'sin a.  (3-60) 

A s  a r e s u l t  we obtain /llc8 
-_ - - dedm,=c,,U3bdr+ d tv+d t ;  --ddtVsina+dt sin @ c o s + . c o s a 

d+ 
_ -- 

-dq  sin q~vcos a=cXpU3bdr+d tu+d t r -- de - d t v  sin a - ( 3  =61)
d+-

- de-dhV 	 cos a=cXpU3bdr+ d t ~ + d t r - - d t , ~ .  
d+ 

We t hen  i n t e g r a t e  t h e  elementary torques with respect t o  the r o t o r  area: 

The equation of blade flapping has t h e  form 
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1 
so t h a t  dtF i s  proport ional  t o  t h e  sum -7d2B + B - const. Therefore, 

0 dJI 

dBsince  fl and 7a t  I/I = 0 and JI = 2n have an  i d e n t i c a l  value [V.E.Baskin gives 

such a der ivat ion of eq.(3.63)1. 

Thus, the  expression f o r  m, can be represented as 

2 x  1 2 x  1 -
m -J’ cXpfl3l%d+ f d$J d t s-t, V .  
t-” 0 0 0 

For simplicity,  we derived the  expression f o r  m, on the  basis of eqs.(3.50) 
and (3.51) f o r  U, and v,. More accurate expressions, taking account of t he  com
ponent of induced veloci ty  v,,, 

will yield,  after analogous computations, t h e  following expression f o r  m,: 

2 r  1 - 2 x  I - 
m,=J J ~ ,~%8~d;d++jd+S(dt& -dt,v,)-t,V. (3.67) 


0 0  0 0 

The first i n t e g r a l  in.eq.(3.67) contains t h e  forces  of p r o f i l e  drag and t h e  
second the  forces  of induced drag. We designate them, respectively,  as 

fl& 


For an i d e a l  ro to r  f o r  which cXp = 0 and f o r  which the  induced ve loc i t ies  
are uniformly distribut,ed,  we obtain from eq.(3.6?) with an approximate consid
e ra t ion  of t i p  losses,  

-mt - B 2  
1 [tyv, ,- tx(V-~,)] 



or, multiplying both s ides  of t h e  equal i ty  by the  loading fac tor ,  

- 1 - - - C ~ ( V - - - G ~ ) ] .  (3m f -gZ--[[c,v, 

Equation (3.68) coincides with eq.(3.%) obtained i n  the  i d e a l  ro to r  
theory. 

We note t h a t  i n  the  expression f o r  m, used f o r  calculat ions i n  the  c l a s s i c a l  
theory, t h e  term taking account of t h e  p r o f i l e  drag of t h e  blades do& not 
coincide with t h a t  obtained above and, i n  conformity with eq.(3.55) and (3.57), 
i s  equal t o  

The discrepancy of these expressions i s  due t o  the  f a c t  t h a t  t h e  p r o f i l e  

drag forces  en ter  not only i n t o  the  expression f o r  	 dq but  a l s o  i n t o  the ex
d r  

pression f o r  -	dt and thus i n t o  t, and t, a s  well;  i f  cXp i s  taken i n t o  account 
dF 

a t  some f ixed values of t h e  angle of a t tack  a and the  p i t c h  cp of t h e  ro to r  (%.e., 
t r u e  angle of a t t ack  of the  sec t ion  as i s  done i n  calculat ions by the  c l a s s i c a l  
theory),  then  both m, (by an amount mir  ) and t, and t, a l s o  w i l l  change. When 
calculat ing mt  by eq.(3.67), t h e  term mpr determines the  increment i n  m,, pro
vided i d e n t i c a l  values of t, and t, are maintained, which obviously occurs a t  
d i f f e ren t  a and cp f o r  ro to r s  with d i f f e ren t  cXp. 

Since it i s  of grea te r  i n t e r e s t  t o  compare ro to r s  with d i f f e ren t  p r o f i l e  
drag of t h e  blades a t  i d e n t i c a l  t, and t,, the p r o f i l e  losses  of the  ro to r  a re  
estimated with respect t o  the  quantity mPr calculated a t  angles of a t tack  and 
p i tches  of t he  ro to r s  corresponding t o  the  same value of the  coef f ic ien ts  t, 
and t,. 

For t h e  reasons presented above it i s  obvious tha t ,  f o r  changing from an  
i d e a l  ro to r  with c e r t a i n  t, and t, t o  a real ro tor  with the  same t, and t,, the 
p r o f i l e  losses  must be determined from the  expression f o r  mpr 

It a l s o  follows from eq.(3.67) t h a t  the  influence of a nonuniform induced 
ve loc i ty  d i s t r ibu t ion  over t h e  ro to r  disk a t  given t, and t, i s  d i r e c t l y  deter
mined by t h e  quantity m i n d .  Furthermore, t he  form of the  induced veloci ty  dis
t r i b u t i o n  influences the  angles of a t tack  of t he  blade sect ions and thus a l so  
the  quantity mpr . 

The flapping angle of t h e  blades does not d i r e c t l y  en ter  i n t o  the  co- /150
e f f i c i e n t  m, owing t o  t h e  f a c t  t h a t  t h e  i n t e g r a l  (3.63) is  equal t o  zero. How
ever, flapping does influence t h e  d i s t r ibu t ion  of cXp ,  d t ,  and v over the  ro to r  
disk and hence the  quantity mPr and m i n d .  



3. Rotor P ro f i l e  Losses 

A s  shown above, a t  given values of t h e  coeff ic ients  t, and t, the  ro to r  
p r o f i l e  losses  are determined by t he  expression 

With consideration of t he  r a d i a l  veloci ty  component of flow pas t  t h e  blade 
(see Fig.2.91), t he  p r o f i l e  losses  are determined by the  expression 

0 0 '  

Equation (3.70) should be used a t  small values of M, and t,, i.e., i n  
cases when t h e  coef f ic ien t  cxp i s  determined mainly by f r i c t i o n  forces.  A t  
l a rge  M, and t, ,when regions of flow separat ion and an  increase i n  wave drag 
appear on t h e  rotor ,  the  p r o f i l e  drag of t h e  sect ions i s  determined by the  ve
l o c i t y  component of t h e  stream U normal t o  t h e  blade axis, and eq.(3.69) m u s t  
be used f o r  calculat ing mpr 

To calculate  %r it i s  necessary t o  kgow t h e  d i s t r ibu t ion  of the  p r o f i l e  
drag coef f ic ien t  cXp and veloci ty  of flow U about t h e  blade sect ions over t h e  
ro to r  disk.  Conseqvently, a calculat ion of mpr i s  a laborious task and, i n  
prac t ice ,  can be performed only on high-speed computers. 

Figures 2.63 - 2.70 give graphs of mp; as a funct ion of the  coef f ic ien ts  
- ORt,, t,, V, M, = a- f o r  a ro to r  with rectangular blades and a loading f ac to r  

of 0 = 0.091. The ro to r  blades (var iant  I1 i n  Table 2.10) have a l i n e a r  geo
metric twist Acp = 7'. The blade p r o f i l e  i s  as follows: a t  t h e  shank, up t o  F = 
= O.$5 - NACA 230 with a r e l a t ive  thickness C = l%, a t  t h e  end of the  veloci ty  
p r o f i l e  with a r e l a t i v e  thickness F = 9%. The coef f ic ien t  cXp obtained on ex
posing t h e  model t o  an airstream increased by AcXp = 0.002 and per ta ins  t o  a 
r o t o r  hav5ng a high p r o f i l e  drag owing t o  poor manufacture. The aerodynamic 
cha rac t e r i s t i c s  of t he  p r o f i l e s  are given i n  Section 4, 3. 

The ca lcu la t ion  was carr ied out by means of eq.(3.69). Here, it was as
sumed t h a t  t h e  induced veloci ty  i s  constant over t h e  r o t o r  disk and was  deter
mined by eq.(3.46). 

The method of ca lcu la t ion  and t h e  remaining a s s u q t i o n s  are described i n  
Section 4.2 and 4.4. 

We see from t h e  graphs t h a t  at numbers M, = 0.6 - 0.7 the quantity mpr 
g rea t ly  depends on t, and t,. 

At M, s 0.5, t he  quantity mPr depends l i t t l e  on t, and increases somewhat 
upon a n  increase of t,. 
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Fig.2.63- Coefficient of Prof i le  Power of Rotor 
( V  = 0.15; M, = 0.6; a = 0.091). 

Fig.2.64 -Coefficient of P ro f i l e  Power of Rotor 
( V  = 0.2; = 0.6; o = 0.091). 
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fig.2.65 Coefficient of Prof i le  Power Fig.2.66 Coefficient of Prof i le  Power 
of Rotor ( V  = 0.3; M, = 0.6; CY = 0.091). of Rotor ( V  = 0.4;Ivb = 0.6; cs = 0.091). 

Fig.2.67 -Coefficient of Prof i le  Power of Rotor 
( V  = 0.15; M, = 0.7; cs = 0.091). 
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Fig.2.68 -Coefficient of P r o f i l e  Power of Rotor 
( V  = 0.2; Mo = 0.7; o = 0.091). 

Fig.2.69 -Coefficient of P r o f i l e  Power of Rotor 
( V  = 0.3; Mo = 0.7; o = 0.091). 
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The materials f o r  determining /154.
qP f o r  blades with other  geometric
c h a r a c t e r i s t i c s  are presented below 
i n  Subsections 4 - 6. 

i j i  4. Certain Considerations i n  .Selecting. - - .-. 

0.010 mDp Blade ShaDe and s o f i l e  

The power expended t o  overcome 
p r o f i l e  l o s ses  of t he  r o t o r  consti
t u t e s  a l a rge  po r t ion  of t h e  t o t a l  re
quired power of t h e  helicopter.  A s  
shown i n  Fig.3.52, about 50% of t h e  
required power i s  expended f o r  over
coming t h e  p r o f i l e  drag of blades i n  
horizontal  f l i g h t .  

fig.2.70 Coeffisient of P r o f i l e  Since. t h e  induced lo s ses  consti-
Power of Rotor (V = 0.4.; M, = t u t e  a smaller po r t ion  of t h e  lo s ses  

= 0.7; o = 0.091). 	 than t h e  p r o f i l e  losses,  we can con
s i d e r  t h a t  t h e  conclusions as t o  t h e  
e f f e c t  of t h e  geometric cha rac t e r i s t i c s  

of t h e  blade on p r o f i l e  l o s ses  p e r t a i n  a l s o  t o  t h e  t o t a l  power of t h e  rotor ,  
especial ly  at high f l y i n g  speeds when t h e  induced v e l o c i t i e s  are small and t h e  
induced lo s ses  do not exceed 12 - 15%of t h e  t o t a l  power. 

Figures 2.71 - 2.74 contain comparative graphs of t h e  p r o f i l e  drag coeffi
c i en t  mpr f o r  r o t o r s  with f ive blade var iants :  

Variant I - t rapezoidal  twisted blade with high-speed p r o f i l e  a t  t i p ;  
Variant I1 - rectangular twisted blade with high-speed p r o f i l e  at t i p  
( r o t o r  described above) ; 
Variant I11 - rectangular twisted blade with NACA 23012 p r o f i l e ;  
Variant IV - rectangular twisted blade with symmetric NACA 0012 p r o f i l e ;  
Variant V - t rapezoidal  f la t  blade with high-speed p r o f i l e  at t i p .  

A de t a i l ed  descr ipt ion of a l l  blade var iants  i s  given i n  Table 2.10. 

A comparison of t h e  blades i s  carr ied out f o r  average and large l i f t  coef
f i c i e n t s ,  a t  two values of V: 0.2 and 0.4. 

A comparison shows t h a t  a t  low Mach number M, S 0.5 t h e  t rapezoidal  LE5 
twisted blade, at a l l  values of t h e  propulsive force,  has approximately 8% less 
p r o f i l e  power lo s ses  than t h e  rectangular twisted blade. Since, i n  horizontal  
f l i g h t ,  about one half  of t h e  required power i s  exqended t o  overcome t h e  p r o f i l e  
drag of t h e  blades, a decrease i n  mPr by 8%Will lead t o  a decrease i n  the  re
quired power coe f f i c i en t  m$. i by 4%. 

Therefore, f o r  l i g h t  hel icopters  f o r  which M, i s  small and ymax= 0.3, t h e  
optimum planform of t h e  blade is  trapezoidal.  

The plane blade i n  a n  autorotat ion regime does not d i f f e r  from a twisted 



Coefficient of P ro f i l e  
Power of Rotors 4 t h  Blades of 
Different Shape ( V  = 0.2; M, = 

= 0.6; cs = 0.091). 

blade, but becomes appreciably worse 
than t h e  twisted blade i n  hel icopter  
regimes, e s p e c i a l b  a t  la rge  V. It can 
be used f o r  a hel icopter  only a t  small 
and average values of t, and M, < 0.6. 

'When varying t h e  blade p r o f i l e  at 
small per ipheral  ve loc i t ies ,  mpr w i l l  
vary within 5 - 12%. The symmetric 
p r o f i l e  i s  somewhat better than t h e  
asymmetric; at V = 0.2, t h e  blade with 
a t h i n  high-speed p r o f i l e  on the t i p  
has smaller losses .  

We should mention t h a t  t h e  inf lu
ence of t he  qua l i ty  of manufacture of 
t h e  p r o f i l e  on mpr can prove t o  be 
grea te r  than  t h e  e f f e c t  of t he  type of 
p ro f i l e :  Am,, f o r  d i f f e ren t  p r o f i l e s  
i s  about 0.0002 ( the  maxi" difference 
at  l a rge  t, i s  not more than O.OOOl+.), 
whereas owing t o  difference i n  the type 
of construction and qual i ty  of manu
fac ture  of t h e  blade t h e  p r o f i l e  drag 
coef f ic ien t  of blade sect ions may d i f 
fe r  by an appreciable amount going 
as high as 0.003 - 0.004 (see Sect.4, 

/157 
3), which gives a difference i n  pro
f i l e  losses  - i n  conformity with 
eq.(3.71) - of 

Ampr=z3
4 

(1 +3.0.32)=0.001. 

A t  high Mach number M, (M, = 0.7; mR = 230 - 238 m/sec), t h e  use of a high-
speed p r o f i l e  at t h e  blade t i p  markedly reduces p r o f i l e  losses .  

The decrease i n  mpr amounts t o  0.0015 a t  7 = 0.2 and 0.004 at 7 = 0.4. 
T h i s  reduces mpr by 40 - 45% and t h e  t o t a l  required power, by 20 and 25% re
spectively. 

I n  f ly ing  regimes ( t ,  < 0) of helicopters,  mPr i s  g rea t ly  affected by t h e  
geometric twist of t h e  blade. A s t r a i g h t  blade i s  not used i n  hel icopter  
regimes, and i n  au toro ta t ion  regimes i t s  p r o f i l e  drag does not d i f f e r  from t h a t  
of a twisted blade. 

The t r apezo ida lb l ade  i s  better than the  rectangular one i n  autorotat ion 
regimes and a t  low propulsive force.  I n  hel icopter  regimes where the  angles of 
a t t ack  of t he  t i p  sect ions of t h e  t rapezoidal  blade are la rger ,  t h e  difference 
i n  mpr decreases w h i l e  a t  l a rge  t, the  rectangular blade becomes better. 

A t  moderate Mach number M, (M, = 0.6; coR = 197 - 204. m/sec) t h e  pecul iar i 
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fig.2.72 Coefficient of P ro f i l e  Power of Rotors with Blades 
of Different Shape (V = 0.2; & = 0.7; a = 0.091). 

76 

Fig.2.73 Coefficient of P ro f i l e  Power of Rotors with Blades 
of Different Shape (V = 0.4; Mo = 0.6; 0 = 0.091). 
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-t i e s  of t he  curves of m p r ,  which were noted at Ivb = 0.7 ( t o  a l a rge r  extent ,  a t  
V = 0.4.), begin t o  appear: The twisted blade with a high-speed p r o f i l e  at t h e  
t i p  becomes be t t e r ,  and t h e  s t r a i g h t  blade i n  hel icopter  regimes becomes ap
preciably worse than t h e  twisted blade. 

A cgnparison of rectangular  and t rapezoida l  blades for M, = 0.6 - 0.7 shows 
t h a t  at V = 0.4 and a l s o  a t  V = 0.2-for l a rge  t, the  former has the  advantage, 
whereas f o r  medium and small t, a t  V = 0.2 t h e  t rapezoida l  blade becomes of ad
vantage. I n  general, t h e  rectangular blade i s  preferable  f o r  heavy and medium 
hel icopters ,  whereas it i s  preferab le  t o  use t rapezoidal  blades f o r  rg tocraf t  
f o r  which t h e  coe f f i c i en t s  t, and t, of t h e  ro to r  a r e  small a t  la rge  V, owing t o  
t h e  i n s t a l l a t i o n  of a wing and a t r a c t o r  propel le r .  

F'ig.2.74 Coefficient of P r o f i l e  Power of Rotors w i t h  Blades 
of Different Shape (V = 0.4; M, = 0.7; 0 = 0.091). 

A t  7 = 0.4, t h e  p r o f i l e  losses  a re  qui te  l a rge  even with a high-speed /158
p r o f i l e  a t  t h e  blade t i p :  mrjr i s  twice t h a t  a t  Mo = 0.4. - 0.5. To estimate t h e  
p o s s i b i l i t y  of decreasing t h e  quant i ty  mpr , F'igs.2.75 and 2.76 give graphs of 
mPr for blades of t h e  var ian ts  I and I1 and a l s o  f o r  a rectangular blade with an 
increased geometric twist (va r i an t  V I ) ,  f o r  an expansible blade(Q = 0-5 ;  vari
an t  V I I ) ,  and f o r  a rectangular  blade with an increase  t o  F = 0.75 of t h e  p a r t  
with a high-speed p r o f i l e  (var ian t  V I I I ) ,  W e  see from Figs.2.75 and 2.76 t h a t ,  
in horizontal  f l i g h t  and espec ia l ly  i n  au toro ta t ion  regime, t he  t rapezoida l  
blade remains preferable .  A t  l a rge  values of  t,. , t h e  opthum blade i s  the  blade 
-with increased twis t ,  which reduces mpr a t  V = 0.2 by 20% (m, by 10%) and a t  
V = 0.4 by 10% ( m t h a f  by 5%). Consequently, t h e  use of a blake'with grea te r  
t w i s t  r a i s e s  t h e  dynamic a s  we l l  as t h e  s t a t i c  c e i l i n g  of t h e  hel icopter ,  in
creases  t h e  s t a t i c  t h r u s t  (see Fig.2.171), negl igibly increases  t h e  maximum 
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Fig.2.75 Coefficient of Prof i le  Paver of Fig.2.76 Coefficient of Prof i le  Power of 

Rotors with Different Blade Shapes . Rotors with Different Blade Shapes
(B = 0.2; Mo = 0.7; 0 = 0.091). ('ii 0.4; Mo = 0.7; 0 = 0.091). 




speed, and appreciably increases  the  r a t e  of descent i n  autorotation. An en
largement of t h e  blade port ion with t h e  high-speed p ro f i l e  s l i g h t l y  reduces t h e  
value of mpr .  

The obstacle i n  using blades with grea te r  geometric twist l i e s  i n  t h e  in
crease of dynamic s t r e s ses  i n  t h e  blade spar, whereas fo r  blades with an en
larged high-speed prof i le ,  t he  increase of hinge moments i s  the  obstacle. 

The expansible blade i s  preferable over t he  rectangular design only a t  very 
la rge  values of the  propulsive force coef f ic ien t  tx. 

A comparison of t h e  graphs of mpr for Mo = 0.6 and Mo = 0.7 shows that, i n  
a ro to r  with our high-speed profile a t  t h e  t i p ,  it i s  impossible t o  avoid a pro
nounced increase i n  p r o f i l e  losses  a t  Mo = 0.7, f o r  a l l  blade var iants .  

The method of u t i l i z i n g  graphs of mpr  fo r  ro to r s  with these  types of blades 
but with a d i f f e ren t  loading f ac to r  i s  described i n  Section 6. 

5. m r o x i m t e  Determination _of Rotor Prof i le  Losses 

The quant i ty  mpr  i s  most r e l i ab ly  determined from graphs plot ted f o r  each 
spec i f ic  rotor .  If t h e r e  a r e  no such calculations,  the  data  of Figs.2.63 - 2.74 
can be used for an approximate estimate of mpr.  

A t  small Mo, t h e  approximate equation (3.72), derived on the  assumption of 
constancy of t h e  coeff ic ient  cxD i n  a l l  blade sec
t ions,  c-an be used f o r  d e t e r d n g  m p r .  

TABLE 2.5 
Let us derkve eq.(3.72). For a rectangular 

blade, we have 5 = const = 1.0. Having taken 
-j l.o -1 0.94 i o.91 ‘p 

we obtain 

where cxp,, i s  t h e  average value of t h e  coefficient cxp over the  ro to r  disk.  

For t r apezo ida lb l ades ,  qr i s  smaller than fo r  rectangular blades. T h i s  
i s  taken i n t o  account by t h e  coeff ic ient  P which i s  pre-assigned i n  r e l a t i o n  t o  
t h e  blade taper  TI (Fig.2.77) i n  Table 2.5. 

To account for t h e  influence of t h e  r a d i a l  ve loc i ty  component of f l o w  past  
t h e  blade, mpr i s  calculated by eq.(3.70). An approximate est-+te (Ref.25, 36) 
shows tha t ,  t o  account f o r  this component, the  coef f ic ien t  of V i n  eq.(3.71) /160
should be changed from 3 t o  5. 
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A x i s  o f  r o t o r  r o t a t i o n  

\ I  

I 

Fig.2.77 For Determining Blade 

Thus, t h e  final formula f o r  d e t e r  
mining mpr reads 

I7 - 0  The average p ro f i l e  drag coeffi
brip 	 d e n t  c x p a vover t h e  disk i s  determined 

as a function of t he  average l i f t  coef
f i c i e n t  cyo over t h e  disk; the  l a t t e r  

Taper. i s  found from eq.(3.74) whose deriva
t i o n  i s  given beluw: 

0 0 

2 
0 0 

Substi tuting 

and integrating, we obtain 

Ekpressing Y i n  terms of the  dimensionless coefficient CY o r  ty,we find 

Having determined cyo, t he  p ro f i l e  polar i n  the  section F = 0.7 w i l l  
y ie ld  c ~ P ~ ~ . 

L.S.Vil*dgrube proposed t o  take i n t o  account t he  planform of the  blade by 
the coefficient P and t o  determine cxpavas a function of cy0. 

6. Effect of Air Compressibility on Rotor Prof i le  Losses 

A t  average and la rge  Mo (for prof i les  generally used a t  Mo > 0.55 - 0.6, 
i.e., a t  wR > 185 - ZOO m/sec) it i s  necessary t o  supplement mPr,  calculated 
from eq.(3.72), by the  term bowhich takes i n t o  account t h e  increment i n  



p r o f i l e  power produced by the  increase i n  p ro f i l e  drag coeff ic ients  of sect ions 
over which the  f l o w  has high &ch numbers. Thus, /161. 

(3.75) 

The coef f ic ien t  of t h e  increment in pro f i l e  power Amco should be determined 
with consideration of t h e  ac tua l  d i s t r i b u t i o n  of t h e  angles of a t tack  of t h e  

mprT 
OR15 

aor 

roo zoo 300 0" 

Fig.2.78 Variation i n  P ro f i l e  Power 
Coefficient of Blade with Respect t o  

Azimuth. 

blade sect ions over t he  ro to r  disk,  
s ince an increment i n  p r o f i l e  drag due 
t o  an increase i n  MO generally occurs 
i n  a l l  blade sections. Figures 2.78 
and 2.79 show M.N.Tishchenko's graphs 
of t h e  var ia t ion  i n  the  p r o f i l e  power 
coef f ic ien t  of a blade a s  a function 
of i t s  azimuthal posi t ion i n  t h e  
plane of rotat ion.  We see from 
Fk.2.78 tha t ,  a t  l o w  f ly ing  speed 
(V = 0.2) but a t  la rge  th rus t  coeffi
c ient ,  t h e  prof i le  power of t he  blades 
increases  a t  a l l  azimuths a s  t he  Mo 
increases. A t  high f ly ing  speeds 
(see F'ig.2.79), the increment i n  pro
f i l e  power occurs mainly a t  azimuths 
of 30 - 150". 

The graphs of Amco fo r  t h e  var iant  I1 of t h e  ro to r  a re  given i n  Figs.2.80 
t o  2.84. The quant i ty  Amco i s  defined as the  difference between the p r o f i l e  
power coefficient-m,, a t  the  examined Mo and a t  MO = 0.4 a t  i den t i ca l  values of 
t he  coeff ic ients  V, t,, t,: 

Amco(Ma)=mpp(Ma)-mav (M0=0.4)- (3.76) 

It follows from Figs.2.80 - 2.84 t h a t  Amco i s  a function not only of 7 and 
the  k c h  number MO but a l so  of the  coef f ic ien ts  t, and t,. The coef f ic ien ts  t, 
and t, have an espec ia l ly  strong ef fec t  a t  small V a t  which, i n  conformity
with Fig.2.78, the  increment in mpr occurs a t  a l l  azimuths. Upon an increase 
i n  V the  increment i n  mpr  occurs mainly in the  region 6 = 90" (see Fig.2.79) 
where the  angles of a t t ack  of t h e  sect ions &re close t o  zero regardless of t h e  
value of t,. Consequently, a t  V = 0.4 and V = 0.5 t h e  influence of t, and t, 
on t h e  quant i ty  Amco i s  ins igni f icant .  

We see from Figs.2.80 - 2-84 tha t ,  a t  la rge  Mor ?, and t,, A a o  i s  large.  
The quant i ty  Amco g e a t l y  increases  when Mo > 0.55 - 0.6. A t  n e a r s e p a r a t i o n  
values of t, when V = 0.15 and V = 0.2, hm,. has a high value already a t  
MO > 0.5. 

So a s  t o  keep the  increase i n  required power of a helicopter,  due t o  t h e  
compressibil i ty e f fec t ,  from excgeding 15 - le%, t h e  ro tor  of t h e  var ian t  I1 
should be used when Mo=,0.7 a t  V s  0.3, and when Mo = 0.65 a t  V 0.4. For 

=example, when Mo = 0.7, V = 0.3, t, = 0.15, and txhei -0.0075, t h e  increment 
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Fig.2.79 Azimuthal Variation i n  P ro f i l e  Power 
Coefficient of Blade. 

k=0.15 

F'ig.2.80 Increment i n  Prof i le  Paver Coefficient of 
Rotar, due t o  Air Compressibility. 
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0.004 
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0,OOl 

0.001 
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Fig.2.81 	 Increment in Profile Paver Coefficient of 
Rotor, due to Air Compressibility. 
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Fig.2.82 Increment i n  P ro f i l e  Power Coefficient of 
Rotor, due t o  Air Compressibility. 



-

V=O.Y.  G =0,09? 


Fig.2.83 Increment in Profile Power Coefficient of 
Rotor, due to Air Compressibility. 
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Fig.2.84 Increment in Profile Power Coefficient of 

Rotor, due to Air Compressibility. 


Fig.2.85 Increment in Angle of Attack of Rotor, due to Air 
Compressibility at Constant Coefficient of Propulsive Force. 

fig.2.86 Increment in Angle of Attack of Rotor, due to Air 
Compressibility at Constant Coefficient of Propulsive Force. 
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i n  p r o f i l e  power wil l  be Amco = 0.0016 which amounts t o  18%of m t h e i .  When 
=Mo = 0.65, 7 = 0.4, t, = 0.13, and txhef4.0133, t h e  increment i n  p r o f i l e  

power w i l l  be Amco = 0.002 which amounts t o  16%of m t h e f .  

Since, a t  l a rge  7, the  increment @ m p r $  occurs mainly at azimuths close 
t o  90°, t he  increase i n  Amco at  l a rge  V i s  int imately connected with the  rela-

Fig. 2.87 Increment i n  P ro f i l e  
Power Coefficient, due t o  Air 
Compressibility f o r  Rotors with 

Blades of Different Shape. 

t i o n  between the  Mach number of the  blade-
t i p  sect+ a t  Jr = 90°, equal t o  M i l  + MO = 
= Mo(1 + V), and the  c r i t i c a l  Mach number /167
of t h e  sect ion prof i le .  The c r i t i c a l  Mach 
number M,, i s  determined a t  CY = 0 since, i n  
t h e  t i p  sect ions at $ = 90°, we have Ol, = 0. 

These data  show tha t  a 1 5  - 18%in
crease i n  required power, due t o  t h e  com
p r e s s i b i l i t y  effect ,  occurs a t  M i l  + MO = 
= 0.91, i.e., M f l  + Mo i s  l a rge r  by 0.1 
than Mop of t h e  high-speed p r o f i l e  when 

= 0 (see Fig.2.99). A t  M f l  + Mo = M o r  + 

+ 0.15, t he  increase i n  required power i s  
about 30%. A t  M i l  + Mo = M,,, t h e  compres
s i b i l i t y  e f f ec t  i s  v i r t u a l l y  absent. These 
r e l a t ions  between Mo, M f l ,  and Mor of t h e  
blade p ro f i l e  can be used when se lec t ing  M O  
f o r  a hel icopter  with high f ly ing  speeds. 

Since, on an increase i n  Mo, the  angle of a t tack  of t h e . r o t o r  should be 
more negative so as t o  r e t a i n  i d e n t i c a l  va luesof  t h e  coef f ic ien ts  t, and tx, 

-

V =0.4; G =0.091 

A mco 
0.008 

0007 


0.006 


0.005 

Q004 


900: 
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Fig.2.88 Increment i n  P ro f i l e  
Power Coefficient, due t o  Air 
Compressibility for Rotors w i t h  

Blades of Different Shape. 
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I t  

t h e  graphs f o r  the  increment i n  ro tor  angle 
of a t tack  a r e  given i n  Figs.2.85 and 2.86: 

Auto (M,)=u (M0)- ~ ( M O z 0 . 4 ) .  (3.77) 

No graphs were constructed f o r  7 = 
-- 0.15 - 0.3 since, a t  a l l  t, and tx, the  
quant i ty  AcY,, does not exceed lo0 

Figures 2.87 and 2.88 show comparative 
graphs of Am,, f o r  ro to r s  with blades of t he  
v a r i a n t s  II, 111, and V. Calculations 
showed tha t  t h e  quant i ty  Am,, i s  grea t ly  
affected by the  type of p r o f i l e  (this i s  
seen from a comparison of t he  var ian ts  I1 
and 111) and by the  geometric twist of t h e  
blade (variant V, s t r a igh t  blade). The 
planform of the  blade plays a r o l e  only a t  
l a rge  t, i n  which case, f o r  t rapezoidal  
blades where f l o w  separation begins ea r l i e r ,  
Amco i s  greater  than for rectangular
blades. The planform of the  blade plays a 
minor r o l e  a t  l a rge  M O  i n  v iew of the  f a c t  
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t h a t ,  as w i l l  be shown i n  Section 4.7, a va r i a t ion  i n  planform will cause a 
change i n  the  angles of  a t t ack  of t h e  sect ions mainly a t  azimuths JI = 250 - 340' 
where p r o f i l e  l o s ses  a r e  small i n  t h e  pre-separation regime. 

A comparison of blades with a high-speed p r o f i l e  a t  t h e  t i p  (var iant  11) 
and without it (var iant  111)used i n  t h e  calculat ion,  will show t h a t  a high-
speed p r o f i l e  must be established a t  t h e  blade t i p  when Mo > 0.6 - 0.625. 

The graphs of Amco and A%, should be calculated f o r  each spec i f ic  rotor .  
However, i f  no such calculat ions a r e  available,  t h e  data  i n  Figs.2.80 - 2.88 
can be used f o r  an approximate estimate of Amco. 

The graphs i n  Figs.2.80 - 2.88 a r e  l a i d  out a l s o  f o r  taking i n t o  account /I&
t h e  influence of t h e  Mach number MO on t h e  aerodynamic cha rac t e r i s t i c s  of a 
ro tor ,  for cases i n  which the  ro to r  cha rac t e r i s t i c s  experimentally determined 
a t  l o w  Ma are t o  be used a l s o  a t  high Moo Furthermore, t h e  graphs are usefu l  
f o r  aerodynamic calculat ions t o  avoid in te rpola t ion  of t h e  Mach number Mo i f  t h e  
calculated Ma values do not coincide with those f o r  which the  graphs of t h e  
aerodynamic cha rac t e r i s t i c s  were plot ted.  

To use the  graphs shown i n  Egs.2.80 - 2.83 f o r  ro to r s  with similar blades 
but with a d i f f e ren t  loading fac tor ,  it i s  necessary t o  reca lcu la te  t he  coeffi
c i en t  t, f o r  0 = 0.091 (Sect.6). 

7. Induced Losses of a Real Rotor 

Assuming a constant induced veloci ty .over  t h e  e n t i r e  r o t o r  disk, t h e  torque 
coef f ic ien t  can be obtained fgr t h e  gra2hs i n  Figs.2.60 and 2.61. The i n t e r  
dependence of t he  r a t i o s  Cy/B V , Cx/B2v , and &/p,which w a s  derived i n  the  
theory of an i d e a l  rotor ,  i s  va l id  when these  r a t i o s  a re  determined w5th respect 
t o  t h e  t o t a l  forces  Y and X taken wi th  consideration of t h e  p r o f i l e  drag, s ince 
t h e  forces of the  p r o f i l e  drag a l so  c rea te  induced ve loc i t i e s  so t h a t  t h e  ve
l o c i t y  polygons and a l l  r e l a t ions  given i n  Subsection l remain i n  force. We 
must add t h e  p r o f i l e  losses  t o  t h e  Et obtained i n  t h i s  manner. 

Consequently, -

- mtjd - 
mf=--=v3- V 3 f m p r r  (3.78) 


where 
-


v 3  


The addend i n  the  expression f o r  Et, containing the  product of t he  aerody
namic force and the  induced ve loc i ty  G R ~ ,w i l l  be cal led the  induced losses  of 
t h e  rotor.  

In ca lcu la t ing  t h e  induced losses,  we introduce a correct ion f o r  taking 
i n t o  account t h e  nonuniform induced ve loc i ty  d i s t r i b u t i o n  over t h e  ro to r  disk. 

I 




As follows from eq.(3.67), the induced losses of a real rotor are deter 

mined by means of the formula 


However, to calculate ordinary helicopter regimes, at ty > tx, an approxi

mate expression is used 


First, just as in the ideal rotor theory, we determine mind under the as

sumption of constant induced velocity over the entire rotor disk. With this as

sumption and with an approximate consideration of tip losses, the expression
for m i n d  takes the simple form 

2x B 
1 
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0 0 

For flying regimes at 7 2 O.lS,.substitution of eq.(3.48) for 7 will yield 

We w i l l  demonstrate that eq.(3.82) holds not only for the assumption of 
constant induced velocity over the rotor disk but a l s o  for an induced velocity
distribution obeying the law 

_ _  

v (r,+)= G+ arcos +, (3*e3: 


where a is a constant. 


According to eq.(3.83), the induced velocity has a minimum value in the 
forward portion of the rotor disk ($ = I'T, F = 1)and increases linearly in the 
direction of the velocity flaw. In a direction perpendicular to the velocity 
f low,  the induced velocity remains constant. Thus, the form of the induced ve
locity diagram is a cylinder cut off by a plane turned toward the plane of rota
tion of the rotor about an axis perpendicular to the direction of motion (see
Fig.2.'6); the angle of turn is characterized by the quantity a; 7, the average
induced velocity of the disk, is determined from eqs.(3.&6) or (3.48). 

The induced velocity diagram described by eq.(3.83) is close in character . 
to the time-average induced velocity diagram found f r o m  experiment (see Fig.2.3, 

Let us substitute eq.(3.83) into eq.(3.80) and find 


2 x  1 2 x  1 2r. 1 

mind= d+ [dt (;+ arcos +)=; f d+ dt  +,a [ cos +d+ s dtr .  
0 6 6 0 6 0 



The i n t e g r a l  i n  t h e  first addend i s  equal t o  the  ro to r  t h r u s t  coeff ic ient .  
The i n t e g r a l  f o r  radius i n  the  second addend i s  proportional t o  t h e  sum (see 

Subsect.2) ,-
d2B + I3 - const f o r  a ro tor  with flapping hinges. With an accuracy 
d$ 1 

d2Bt o  t he  first harmonics of flapping, the  sum 7+ B = a o ;  consequently, PF 
d$ 

i s  a quant i ty  independent of t h e  azimuthal posi t ion of t h e  blade. Therefore, 
2l-r 1 
scos $ d$ldtF = 0. 
0 0 

Thus, f o r  the  induced ve loc i ty  d i s t r ibu t ion  i n  accordance with eq.(3.83) 
the  induced losses  a r e  a l s o  determined by eq. (3.81) . Calculations based on the  
vortex theory f o r  a ro to r  with an i n f i n i t e  number of blades show tha t ,  Owing t o  
differences i n  the  induced ve loc i ty  diagram from eq0(3.83), the4 induced losses  
of a ro tor  with twisted blades a r e  about 5% g r e ~ t e r .  Taking B = 0.92, the  in
duced lo s ses  of t he  ro to r  i n  f ly ing  regimes a t  V r  0.15 a r e  determined by the  
expression 

f2a
mind=-

1.05 fza =0.285 -.
V (3.84):

0.92 4 V 

In flying regimes with small ?, the  quant i ty  Eind i s  found from eq.(3.85) /170 
where i s  determined as a function of C R ,  v, and 6 from the  graph i n  F'ig.2.62: 

where, j u s t  as i n  eq.(3.8&), 1.05 i s  a coef f ic ien t  taking i n t o  account t he  in
crease i n  induced losses .  -


The dependence of on V can be refined by f l i g h t  t e s t s .  After determining 
the  required ro tor  power from f l i g h t  t e s t s  f o r  a rider of horizontal  f ly ing  
speeds and a f t e r  calculat ing the  paras i te  drag of t h e  helicopter,  we f ind C y h a f ,-
CXh.f (see Chapt.111, Sect.l.2) a s  wel l  as C R ,  m t h e f ,  and then ? and u from the  
expressions 

The graph of u = f(?) obtained from f l i g h t  t e s t s  of t h e  E-4 hel icopter  i s  
shown i n  Fig.2.89. 

The t e s t s  were performed a t  d i f f e ren t  heights between ro to r  and surface of 
t he  a i r f i e l d  h. In  f l i g h t s  close t o  the  ground, t he  quant i ty  was affected by 
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t h e  Ifair cushiont1. The values of u i n  t h e  influence domain of t he  I f a i r  cushionf1 

a r e  plot ted on the  graph f o r  d i f f e ren t  values of h = -.	h 
R 

The graph of u i n  Fig.2.89 was  obtained f o r  l o w  horizontal  f ly ing  speeds, 
when 6 = 6h.f = 0. However, t h e  diagram can be used approximately f o r  val2es 
of 6 within limits from +5O t o  -20". . Calculations made from the graph 3Rf u,
shown i n  Fig.2.62, reveal  t h a t  instead of determining the  product ~ C R,we can 
ca lcu la te  t he  product "U?'(Cy = CR cos 6>, determining u f o r  6 = 0 and V = -
= 1.96 7.v .  

Thus, i n  calculat ing the  ro to r  cha rac t e r i s t i c s  a t  low f ly ing  speeds, E i n d  

T
t
$
T 


iI 

i 

1. u 

Fig22.89 -Induced Velocity u as a Function 
of V and h (Based on Fl ight  Tests of t h e  

Mi-4 Helicopter). 

i s  determined from t h e  expression 

Fquation (3 .89)  can be used 
both f o r  calculat ing the  ro tor  
paver required f o r  horizontal  
f l i g h t  a t  low f ly ing  speeds and 
f o r  determining t h e  propulsive 
force of t h e  ro tor  when calcu
l a t i n g  the  takeoff dis tance of a 
hel icopter  or the  towing force of 
a t d n g  helicopter.  These 
calculat ions a re  substanti a l l y  
simplified because of the  f ac t  
t h a t ,  f o r  d e t e r g n i n g  t h e  veloci
t y  coeff ic ient  V, it suf f ices  t o  
know C y  and not CR. 

The graph of t he  average in
duced ve loc i ty  u f o r  a ro tor  
system (with consideration of 
mutual interference)  of t h e  
Yak-% fore-and-aft hel icopter  i s  
shown i n  Fig.2.90. Figure 2.90 
a l so  contains the  curve ?; f o r  t he  
Mi-4 hel icopter  outside the  
earth 's  influence. This graph 
can be used approxhaXely f o r  de
termining 6 of all hel icopters  
of single-rotor configuration /171
and of fore-and-aft hel icopters  
with an excess of ro to r s  (see 

Fig.3.8) close t o  y k  = 0.057, j u s t  as f o r  t h e  Yak-&. 
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Turning t o  these  curves, we can f ind  5 f o r  fore-and-aft hel icopters  with 
other  3; and a l s o  f o r  hel icopters  of side-by-side configuration, after determining
C at high f ly ing  speeds ( V r  0.15) from eq.(3.87), based on data  of an aerody
namic calculation. Such a curve i s  p lo t t ed  i n  Fig.2.90 f o r  a hel icopter  of 

side-by-side configuration with a 
coef f ic ien t  of mutual induction 
uss = -0.4. 

I t i s  in t e re s t ing  t o  note t h a t  
at low V f o r  a fore-and-aft heli
copter t h e  induced veloci ty  coeffi
c ien t ,  owing t o  the  mutual i n t e r 
ference of the  rotors ,  i s  grea te r  
than i n  a hovering regime. Conse
quently, i t s  required power a t  low 
f ly ing  speeds is  grea te r  than i n  
the  hovering regime. 

Thus, a fore-and-aft heli
copter has poor f ly ing  character
i s t i c s  a t  low f ly ing  speeds ( i n  ac
celerat ion,  i n  takeoff runs when 
taking off  l i k e  an airplane,  and i n  
towing) ; they are subs tan t ia l ly  
worse than  those of single-rotor 
and side-by-side helicopters.  

Since 5 depends on the  r a t i o  

which i s  d i r e c t l y  propor-

K't i o n a l  t o  t h e  r a t i o  -V (p being
6 

Fig.2.90 Induced Velocity 5 vs. ? f o r  the load pe r  square meter of t he  
Helicopters of Various Configurations. 

ro to r  area, p = -),T t h e  f ly ingF 

speed has a d i f f e ren t  e f f ec t  on the  required power f o r  hel icopters  with d i f - /l72 
f e ren t  p. Therefore, for hel icopters  with a l a rge r  p, t h e  wind i n  t h i s  case 
lowers the  required power less o r  increases  the  maximum ro to r  t h rus t  i n  hovering. 

>?. * 35 


Thus, f o r  calculat ing t h e  torque coef f ic ien t  of a lift-producing ro to r  and 
a propulsive force with coef f ic ien ts  ty, t, exposed t o  an a i r  stream with di
mensionless veloci ty  v 2 0.15, we can use t h e  following expression: 

(3.90)
t 2  a 

=m p r S0,285-S -1.04tXv.
V 
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Owing t o  the  necessi ty  of taking t i p  lo s ses  i n t o  account, t h e  coe f f i c i en t s  

B2 are o f t en  omitted i n  t h e  term -1 t,fi so t h a t  eq.(3.90) takes  t h e  following
f om: B2 

t2a 
mt=mp +0.285 Z- -t,V. (3.91) 

V 

The coe f f i c i en t  %r i s  determined as indicated i n  Subsections 3 - 6 of this 
Section. 

8. Determination of Angle of Attack and P i t ch  of Rotor /173 
The momentum theory gives no da ta  on t h e  angle of a t t a c k  of t he  ro to r .  

Determination of t h e  angle of a t t ack  of t he  rotorcu and i t s  cha rac t e r i s t i c s  i n  a 
rotor-fixed coordinate system (forces  T, H),  however, i s  necessary f o r  calculat
ing  t h e  r o t o r  pi tch,  f o r  r e f in ing  t h e  magnitude of p a r a s i t e  drag of t h e  non-lift
producing p a r t s  of t h e  helicopter,  and mainly for determining t h e  equil..ibrium
conditions of t h e  hel icopter  moment r e l a t i v e  t o  t h e  center  of gravi ty  (balancing) 
and i t s  s t a b i l i t y .  

It i s  obvious t h a t ,  when forces  with coe f f i c i en t s  Cy and Cx are generated 
during some operating regime of t h e  rotor ,  the determined mean dimensionless in
duced ve loc i t i e s  ;, and TX over t h e  disk must correspond t o  these operating con
d i t i ons .  However, t h e  angle of a t t ack  of t he  r o t o r  may d i f f e r  here and depends 
on t h e  type of r o t o r  (hinged o r  r i g i d ) ,  on t h e  blade shape, e t c .  To determine 
t h e  angle of a t t ack  of t h e  r o t o r  use must be made of t h e  c l a s s i c a l  theory, 
wherein t h e  found magnitude of t h e  angle of a t tack depends on t h e  assumptions 
contained i n  this theory. 

kt us determine t h e  angle of a t t ack  and p i t c h  of t h e  ro to r .  

To each point  of t h e  curves of mpr  (see Figs.2.63 - 2.74) the re  corresponds 
a c e r t a i n  ro to r  angle of a t tack.  The angles of a t t ack  are l a i d  off on these 
curves so  t h a t ,  i n  determining mpr  from Figs.2.63 - 2.74, t he  angle of a t t ack  of 
t h e  r o t o r  can be located. The r o t o r  s e t t i n g  i s  found from graphs of t, = f ( a ,  
eo, V) (see Figs.2.115 and 2.116) or from eq.(2.50) of t h e  Glauert-Lock theory 
(Sect.3), wherein 1-1 and h are determined from eqs.(3.20), (3.21). 

Jf t h e  p r o f i l e  power coe f f i c i en t  i s  determined from eq.(3.72) r a the r  t han  
from t h e  graphs i n  Figs.2.63 - 2.74, thencu, which i s  t h e  angle of a t t ack  of an 
equivalent r o t o r  (see Sect .2), i s  calculated from t h e  approximate equation (3.95).
T h i s  formula i s  derived on t h e  basis of t h e  following r e l a t ions :  

t,= t sin a,+ h,cos a, =ta,+ he. ( 3092) 

A s s u m i n g  he = t a le ,  we f i n d  from eq.(3.92) 

.. . ... .- -. . . 




I l l 1  I l l 1 


The flapping coe f f i c i en t  ale can be expressed by t h e  approxLmate r e l a t i o n  
[eq.(3.94)1 derived from formulas of t h e  Glauert-Lock theory: 

a,,=2V 
- [t (l- 4B2P 

-vu,. (3.94)" >  - 1  
After transformation of eqs.(3.93) and (3.94), we obtain t h e  formula f o r  

determining CY^ : 

(3.95) 

A t  l a rge  Mach numbers M, f o r  V 2 0.4, t h e  increment i n  angle of a t t ack  i s  
found from the  graphs i n  Figs.2.85 and 2.86. 

After CY, i s  determined, p, A ,  cp, and other  da t a  are found. 

Having determined a, eqs.(3.15) and (3.17) will permit f inding t h e  coeffi
c i e n t s  of t h r u s t  and long i tud ina l  force of t h e  ro to r .  

Section 4. 	Classical  Rotor Theory. Method of 
Numeric a1 Integrat ion 

When calculat ing t h e  aerodynamic cha rac t e r i s t i c s  of a r o t o r  i n  regimes with 
l a rge  V, M,, and ty,many of t h e  assumptions of t h e  Glauert-Lock theory lead t o  
subs t an t i a l  errors .  For commonly used rotors ,  we can consider t h a t  V 2 0.3-0.35; 
Mo 2 0.55 - 0.6; and ty close t o  tY,,, based on t h e  condition of flow separation. 

I n  calculat ing such regimes it i s  primarily necessary t o  discard t h e  ap
proximation of t h e  p r o f i l e  cha rac t e r i s t i c s  s t i pu la t ed  i n  t h e  Glauert-Lock theory: 
c y  = amur and cxp = cxp,,, where a, and cxp,, a r e  constants a t  a l l  po in t s  of t he  
d i sk  regardless of t he  angle of attackcu, and t h e  Mach number of t h e  blade sec
t i o n .  

I n  p rac t i ce  it i s  impossible t o  give a s u f f i c i e n t l y  accurate ana ly t i ca l  
expression f o r  t h e  dependence of cy and cxp o n a  and M. Therefore, i n  t he  re
f ined calculat ion methods t h e  angle of a t t ack  and t h e  Mach number are found a t  
each point  of t h e  swept d i sk  after which cy  and c x p  are determined from the 
graphs of t h e  p r o f i l e  cha rac t e r i s t i c s .  

For calculat ing t h e  d i s t r i b u t i o n  of t he  angles of a t tack,  t h e  flapping 
angle of t h e  blade @ must be known; however, this can be determined only i f  the  
t h r u s t  moment r e l a t i v e  t o  t h e  flapping hinge i s  known. The l a t t e r  can be found 
when t h e  d i s t r i b u t i o n  of t h e  angles of a t t ack  i s  known. Therefore, t h e  calcula
t i o n  can be constructed e i t h e r  on the  basis  of determining, by the method of 
successive approximations, t h e  flapping coe f f i c i en t s  with respect t o  the  first 

2 - 3 harmonics, o r  on t h e  basis of determining and aby numerical integra
dJr 
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t i o n  of t h e  equation of flapping; t h e  second method of calculation, which has 
become widespread, 'icLllbe described below. 

P rac t i ca l  appl ica t ion  of such a laborious computational process i s  possible
only with t h e  use of high-speed d i g i t a l  computers. Under this condition, t h e  
previously used assumptions f o r  overcoming mathematical d i f f i c u l t i e s  can be dis
carded. Unavoidable assumptions are only those due t o  our lack of knowledge of 
individual  problems a t  t h e  present  state of art of r o t o r  aerodynamics. Such as
sumpt i ons  include : 

Determination of cy and cXp of sections,  neglecting t h e  angles of side

s l i p  (equal to- 	 " )  and var ia t ions i n  t h e  boundary layer  produced byU 
cent r i fuga l  forces  a r i s ing  on blade ro ta t ion ;  cy and cXp of t h e  sect ions 

are determined from t h e  aerodynamic cha rac t e r i s t i c s  of t h e  p r o f i l e  ob

tained i n  a plane-paral le l  flow. 

Neglect of t h e  e f f e c t  of unsteady c i r cu la t ion  of flow about t h e  blade 

sections,  which involves a complex motion, on t h e  aerodynamic character 

i s t i c s  of t h e  Drofi le .  

Neglect of 
others.  

The method of 
t i o n s  g v e n  above) 

t h g f u s e l a g e  and hub e f f ec t s  on r o t o r  aerodynamics, and 

ca lcu la t ion  permits taking i n t o  account (within the  assump
indiv idua l  features of t he  blade p r o f i l e s  and t o  se l ec t  a 

p r o f i l e  on the  basis of quant i ta t ive 
da ta  r a the r  than of qua l i ta t ive  con
siderat ions,  as w a s  done previously. 

The aerodynamic charac te r i s t ics  
can be calculated together  with calcu
l a t i o n  of blade deformation and with 
consideration of t he  induced veloci ty  
d i s t r ibu t ion  caused by a vortex system 
of arbitrary form; the  computational 
e f f o r t  depends on t h e  accuracy require
ments and on t h e  capabi l i ty  of t h e  
computer such as memory capacity and 
speed of computation. 

1. Formulas- f o r  Calculating Forces a 
and Moments of a Rotor 

Fig.2.91 For Determining t h e  Com
ponent of Relative Velocity of F i r s t ,  l e t  us der ive formulas f o r  

Flow around t h e  Blade Section. 	 determining t h e  components of t he  r e l a  
t i v e  veloci ty  of flow about t h e  blade 
sect ions.  These d i f f e r  from the 

formulas derived i n  Section 2 i n  t h a t  they take i n t o  account t he  spacing of t h e  
flapping hinges and do not consider t he  angles f! and @ t o  be small, 

The component U, (Fig.2.9la, b) i s  d i rec ted  perpendicular t o  t h e  blade ax is  
and i s  located i n  a plane p a r a l l e l  t o  the  plane of r o t a t i o n  (or located i n  t h e  



-- 

plane of ro t a t ion  when t h e  flapping angle of t h e  blade relative t o  t h e  flapping 
hinge i s  zero). As shown i n  Fig.2.91, U, is  composed of t h e  pro jec t ion  of t h e  
f ly ing  speed, equal t o  V cos a s i n  $, and the  per iphera l  speed of t h e  sec t ion  
w [ r  - l h . h )  cos B + t h . h ] :  

Ur=o [(r-Zhh) cos p+ Zhh] +V cos a sin $. (4.11 
Changing t o  relative qual i t i es ,  we obtain 

where 

p=-- V c o s a  -V cos a. (4.3)UR 

S t r i c t l y  speaking, with consideration of flow stagnat ion i n  the  region of 
t h e  ro to r  equal t o  t h e  induced veloci ty  vh, the flow ve loc i ty  i n  the  plane of 
ro t a t ion  i s  equal t o  V cos CY - v,. Therefore, t he  dimensionless coef f ic ien t  p 

xis 


Fig.2.92 For Determining t h e  
Posi t ion of Blade, Hub, and 
Longitudinal Axis of t h e  H e l i 
copter Relative t o  t h e  Fl ight  

Direction. 

must be determined from eq.(3.20). T h i s  in
troduces no complications i f  the  calcula- /176
t i o n  is  made at a give; p, and t h e  dimen
s ionless  f ly ing  speed V i s  determined from 
eq.(3.20) when Th i s  already kn2w-n. If t h e  
ca lcu la t ion  i s  made a t  a given V, then  f o r  
s impl i f ica t ion  we w i l l  determine p by t h e  
approximate equation (4.3). 

In this Chapter, we w i l l  not discuss  
blade flapping r e l a t i v e  t o  t h e  drag hinge. 
The var iable  p a r t  of t he  angle of def lec t ion  
of t he  blade about t h e  drag hinge i s  negli
g ib l e  and it can be considered tha t  a l l  
blades t u r n  about t h e  drag hinge through an 
i d e n t i c a l  angle cav = c0. Therefore, at 
some azimuthal pos i t i on  of t he  blade Q ,  t h e  
ro to r  hub i s  turned through an angle Q + co 
toward the  pro jec t ion  of t h e  f ly ing  speed 

and through an angle Q + co - Bss t o  t he  longi tudinal  a x i s  of t h e  helicopter,  
if t h e  c ra f t  is  f ly ing  with s ides l ip  (Fig.2.92). 

The component U, ( see  Fig.2.9la, c )  directed along t h e  blade axis, i s  
equal t o  

Uzs V cos a cos +cos p. (4.4) 

T h i s  component determines t h e  angle of s ides l ip  i n  flow through t h e  blades. 
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The component U, i s  d i rec ted  perpendicular t o  t h e  blade axis and i s  located 
i n  t h e  blade flapping plane (being a ra l le l  t o  t h e  shaf t  ax is  when the  flapping 
angle of t h e  blade is  equal t o  

A s  	shown i n  F i g . 2 . 9 1 ~ ~t h e  component U, i s  composed of t h e  following speeds: 
pro jec t ion  of t h e  speeds perpendicular t o  t h e  plane of ro t a t ion  of t h e  
ro tor ,  V s i n  CY - v,; 
p ro jec t ion  of t h e  component of f l y ing  speed, V cos CY cos $; 

per iphera l  speed of flapping, (r  - t h a h )  *. 
The sum of these speeds i s  equal t o  

d eU,=(V sin a -v) cos -V cos a cos + sill p-( r-l,,~,)-, (4.5)d t  

where v i s  the  induced veloci ty  component perpendicular t o  t h e  plane of rota
t i o n  (v, i n  ~ e c t . 3 ) .  

On replacing t h e  d i f f e r e n t i a t i o n  with respect t o  time by a d i f f e ren t i a t ion  
with respect t o  t h e  angle of blade ro t a t ion  ( Q  = w t )  and changing over t o  rela
t i v e  quant i t ies ,  we obtain 

- U Y  - - u -- -= (V sin a -v) cos p -V cos a cos +sin (3 
y - oR 

de -.- ( r - lh-h)  - = ~ ( r , + ) c o s ~ - ~ c o ~ o ) ~ i n ( 3 - ( r - l ~ . ~ )  
d4J d4J 

Here t h e  flow coef f ic ien t  h ( r ,  4 )  a t  nonuniform induced veloci ty  d i s t r ibu t ion  /177
i s  equal t o  

whence 

-
A =  V sin a -U ,  (4.7') 

where -

v and AF (r, Q )  = mean and variable port ions of t h e  dimensionless induced 


veloci ty;  
h = average flow coef f ic ien t  over the  disk.  

The geometric sum of t h e  components U, and U, i s  equal t o  t h e  r e l a t ive  flow 
veloci ty  through t h e  blade sec t ion  i n  a plane noma1 t o  t h e  blade axis :  

-

U =vu: +E.  (4.81 


The angle l3 and t h e  angular veloci ty  
d$ 

of t h e  flapping motion of t h e  



blade, which are determined from t h e  flapping equation, e n t e r  t h e  expressions 
f o r  U,, Uy, U,. 

or ,  i n  dimensionless form, 

h.h I 

To ca l cu la t e  t he  f l y i n g  regimes common f o r  a helicopter,  we can assume a 
small value of t h e  angle f 3 .  Then t h e  flapping equation i s  simplified t o  

h h  

To determine the angle of a t tack of t h e  blade sect ion CY,,we examine t h e  
drawing (Fig.2.93) i n  a plane perpendicular t o  t h e  
blade axis (View along t h e  arrow C i n  Fig.2.91). 

Figure 2.93 shows t h a t  a i r  with a r e l a t i v e  ve- /178
l o c i t y  U, d i rected a t  an angle B t o  t h e  plane of ro
t a t i on ,  will flow over t h e  blade sec t ion  turned 
through an angle cp t o  t h e  plane of r o t a t i o n  (cp being 
t h e  blade p i t c h  i n  the  studied sect ion) .  The angle of 
a t t ack  of t he  blade sec t ion  i s  equal t o  

a,=cp+ @; (4.13) 

CJ=tan-'  U Y-; (4.uc> 
Fig.2.93 Speeds and u x  

__ 
f fY  U ?Aerodynamic Forces of 

a, -- cp + tan-' -= 'p+tan-' A. (4015 1Blade Element. 
U X  U X  

The blade p i t c h  i n  the  examined sect ion depends on t h e  following: o v e r a l l  
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p i t c h  of t h e  r o t o r  �lo equal t o  t h e  blade p i t c h  i n  t h e  sec t ion  F = 0.7 a t  fl = 0 
and without cycpic change of p i t ch ;  angle of twist Acp of t h e  sect ion relative 
t o  t h e  sect ion F = 0.7; flapping angle of t h e  blade i n  t h e  presence of a flap
ping compensator; cyc l i c  change of blade p i t ch .  The sum of these terms i s  equal 
t o  

where 
�ll and �I2= components of cycl ic  change of blade pi tch,  with de f l ec t ion  

of t h e  automatic p i t c h  control;-

v, and Fn = components of e l a s t i c  twist of t h e  blade. 

The aerodynamic forces  p e r  u n i t  length i n  the sec t ion  r are determined by 
t h e  coe f f i c i en t s  cy and c, f o r  t h e  p r o f i l e  of t h e  sec t ion  under s tudy, . taken i n  
r e l a t i o n  t o  cy, . Since, i n  determining cy,, t h e  induced veloci ty  i n  the  sect ion 
was taken i n t o  account, t h e  coe f f i c i en t s  cy and c, are taken f o r  a p r o f i l e  with 
in f in i te  elongation. 

The Mach and Reynolds numbers i n  the sec t ion  are 

Since t h e  Re f o r  hel icopters  i s  r a t h e r  high, t h e  coe f f i c i en t s  cy and cXp of 
t h e  sect ions will be considered ( f o r  s implif icat ion)  t o  depend only on the Mach 
nmber  i n  t h e  section. Therefore, t h e  aerodynamic cha rac t e r i s t i c s  of t he  pro
f i l e  for eachM a r e  taken at R e  corresponding t o  a given Mach and mean chord and 
f l i g h t  a l t i t u d e  : 

Re=(%)aybo.7 M. (4.19) 

The l i f t  and drag p e r  u n i t  length of t h e  sec t ion  w i l l  then be 

w h i l e  t h e i r  components directed along t h e  axes relative t o  t h e  rotor ,  i.e., /179
t h e  t h r u s t  dT and t h e  r e s i s t ance  t o  r o t a t i o n  dQ, wil l  read 



Subst i tut ing,  i n t o  eqs.(4.22) and (4.23), t h e  expressions f o r  cos Q and 
s i n  CP from eqs.(&.&) and (4.25) 

COS a?=(I.. (4.24)u' 


UYsin Q =-u (4.25) 

and t h e  expressions f o r  d Y S C O - and d X , e c *  from eqs.(4.20) and (4.21), we 
f inal ly  obtain d r  d r  

or,  i n  r e l a t ive  quant i t ies ,  

- -= 
~ = ( c , ~ , + c , U y )dr Ub; 

- - _
% = ( c X p x  -cyU,)u b: 
dr 

The ant i torque moment of t h e  blade pe r  un i t  length, o r  t he  sec t ion  torque, 
i s  determined from the  formula ( i n  r e l a t i v e  quant i t ies)  

After in tegra t ing  t h e  loads per  un i t  length over t h e  blade radius, we ob
t a i n  expressions f o r  determining the  forces  and torque of t h e  blade. Since these 
quant i t ies  depend on the  blade pos i t ion  i n  t h e  plane of ro t a t ion  (its azimuthal 
pos i t i on  J I ) ,  they are given the  subscript  JI : 

1 

t P = l  d t d ?d r  

ih.h 

(4.31) 


h.h 

1 

(4.33) 


h.h 


The blade t h r u s t  is  directed a t  an angle fl t o  t he  axis of t he  rotor .  Its 
project ions onto t h e  r o t o r  ax is  and onto t h e  plane of ro t a t ion  are equal t o  
t 4  cos p and tq, s i n  fl . 
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On mapping t h e  blade forces  i n  /180
the  plane of r o t a t i o n  onto t h e  longi
tud ina l  and t ransverse axes of t h e  
rotor ,  we f i n d  t h e  longi tudinal  and 
t ransverse forces  of t h e  blade- (Fig.2.94):vcosoc 

h+= --+sin pcos++q+sinq; (40%) 
s+= -t+sin psin +-q+cos q. (4.35) 

The component tq cos fi creates  t h e  
longi tudinal  and la teral  moments of 

F’ig.2.94 For Determining Coeffi-
aerodynamic forces  mZA

Jr and mxA$6: 
-c ien t s  of Longitudinal and Trans- mzAo =- t+COS P Z , , ~COS +; (4.36

verse Blade Forces. 
mxA* =- t ,  cos Fhohsin +. (4-37) 

In  order t o  determine t h e  blade forces  and moments i n  a dimensionless form, 

t h e  dimensionless coef f ic ien ts  must be multiplied by 1 -	1 po(wR)’F and
2 

- L _  

2 
p o ( ~ R ) ~ F � t .  

‘b 

The instantaneous value of r o t o r  forces  and moments can be found by s d n g  
t h e  forces  and moments of a l l  blades a t  a selected in s t an t  of t i m e  (one blade 

being at an angle $, t h e  second at an  angle $ + a,t h e  t h i r d  a t  an  angle $ + 
‘b 

+ 2 -$,and so on). 

The average per-revolution forces  and moments created by t h e  blade are 
equal t o  t h e  i n t e g r a l  with respect t o  $ from eqs.(4.31> - (4.37) divided by 2n. 
On multiplying the  result by t h e  number of blades, we f ind  the  average forces  
and moments of t he  ro to r  p e r  revolution. 

I n  a dimensionless form, t h e  average per-revolution forces  and moments of 
aerodynamic forces  are determined by t h e  expressions 

2 X  



2r /181
S= -ss+d+; (4.41)1 

2% , 

0 

A force equal t o  the  sum of the i n e r t i a  forces  of blade flapping i s  trans
mitted through the  flapping hinge t o  the  ro to r  hub (Fig.2.95). Its projection, 
directed p a r a l l e l  t o  t h e  ro tor  shaft  axis, 

creates  longitudinal and lateral moments of t he  ro to r  

(4.45) 

which should be summed with the  moments of aerodynamic forces  [see eqs.(4.42) 
and (4.43)l. 

We note t h a t  t h e  in t eg ra l  expressions (4.42), (4.43), (4.45), and (4.46)
contain s i n  Jr or cos $, due t o  

7T
Y =y 

V C O S ~  -


Fig.2.95 Generation of Rotor Moment 
.Created by I n e r t i a  Forces of Flapping 

Motion. 
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which the  moments are created by 
the  first harmonics of th rus t  and 
i n e r t i a  forces.  Therefore, t he  
moments of t he  i n e r t i a  force are 
grea te r  i n  magnitude than the  
moments of the  aerodynamic force, 
s ince the  first harmonic of t$is  
small because of blade flapping. 

The l i f t  and drag coeffi- /182
c ien ts  of t he  ro to r  are determined 
by changing from the  body-f k e d  
system of axes t o  a velocity 
system: 



- 

t ,= tcosa-hs ina;  (4.47) 
t,=t sin a + h  cos a.  (4.48) 

2. M e t  hod of Calculation 

The in i t ia l  da ta  f o r  ca lcu la t ion  are t h e  dimensionless r o t o r  character is= 
t i c s :  geometric blade cha rac t e r i s t i c s  (va r i a t ion  i n  twist AT, relative chord 5, 
and p r o f i l e  over t h e  blade length),  load f a c t o r  of t he  rg to r  o, aerodynamic 
p r o f i l e  charac te r i s t ics ,  s tagger  of t h e  flapping hinges t h a h ,  m a s s  and weight 

cha rac t e r i s t i c s  of t h e  blade (-& - p b o *  R4 and gsh- ), coef f ic ien t  of t h e  
21h- h w2 'h.h 

f lapping compensator k. 

The operating regime of t h e  ro to r  is  given the  following dimensLonless 
data:  angle of a t t ack  of r o t o r  CY,coeff ic ien ts  of veloci ty  and l i f t  V, ty,Mach 
number Mo, def lec t ion  of controls  H, ll (o r  angles �I1 and 0 , ) .  

The sequence of t h e  ca lcu la t ion  is  as follows: I n  first approximation, t he  
magnitude and d i s t r ibu t ion  of t h e  induced veloci ty  v and the  r o t o r  p i t c h  �Io are 
assigned. The induced veloci ty  can be taken from eq.(3.46) o r  from experimental 
data.  The r o t o r  p i t c h  is  determined e i t h e r  by t h e  Glauert-Lock theory with con
version by means of eq.(2.&2) or i s  assigned arbitrarily ( f o r  example, eo = $) .  

Let us  se l ec t  t h e  azimuth with which t o  begin t h e  ca lcu la t ion  $o and t h e  

i n i t i a l  values of Bo and 8: ( f o r  brevi ty ,  we denote: 8 '  = 

Usually, we take  Jl0 = 0 o r  q0 = 270'; Bo and 86 can be determined by the  
Glauert-Lock theory o r  we can assume Bo = Bo' y 0 (which, f o r  a l l  p r a c t i c a l  
purposes, does not lengthen t h e  ca lcu la t ion  s ince t h e  natural osc i l l a t ions  of 
t h e  blade decay rapidly) .  

A t  t h e  i n i t i a l  azimuth we ca lcu la te  p ,  A ,  E,, zy, 5, cp, CY,,and M a t  a l l  
r ad i i ,  and then determine c y  and cXpfrom the  graphs of t h e  aerodynamic charac

terist ics of t h e  p ro f i l e s .  N e x t ,  -	dt and m h e h  are determined, and from t h edF 
flapping equation (4.10) we f ind  8;. From f36, e:, and Bo we f ind,  by numerical 
integrat ion,  and 8 '  at t h e  next azimuth and continue t h e  ca lcu la t ion  i n  this 
sequence a t  o ther  azimuths. 

I n  t h e  method of ca lcu la t ion  compiled and programmed by M.N.Tishchenko, 
i n t eg ra t ion  of t h e  flapping equation of t h e  blade with respect t o  azimuth i s  
performed by t h e  f i l e r  method with conversion. From t h e  values of p i ,  B;, 8; 
at azimuth $i we f ind  t h e  preliminary values of and p i + l p ,  at azimuth 
$i+l from t h e  expressions 

~ J ; + I , , = P ; + ~  A"; 

193 



where A$ = - ti 
Then, from eq.(4.10) we ca lcu la te  t h e  preliminary value of t h e  t h r u s t  

moment coef f ic ien t  r e l a t i v e  t o  t h e  flapping hinge (mh.h)i+l 
p r  = f (p i+ lp r ,

B1+1,, 1. 
Furthermore, assuming first t h a t  i n  the  sec t ion  between azimuths Q i  and 

Q i + l  there  i s  a uniformly accelerated motion with an average accelerat ion 

-$- ( B t  + B[+lpr ) and secondly t h a t  can be found from eq.(4..10) with re

spect t o  (mheh ) i + l p r  and t h e  system of equations 

e;+ 1p' +e; 
e ; + 1 = e ; +  A+; 

w i l l  yield,  by t h e  i terative method, t he  f inal  values of B[+l and Then, 
knowing and we ca lcu la te  t he  f i n a l  values of mh.hiC1 and . 

The calculat ions showed tha t ,  with this method, i n t eg ra t ion  can be per
formed with an i n t e r v a l  AQ = 12'. 

Integrat ion of t h e  loads pe r  unit length over t he  radius,  as w e l l  as forces  
and moments of t h e  blade with respect t o  azimuth, i s  accomplished by t h e  trape
zoidal  method. For example, 

Here, k i s  the  number of blade sect ions (Tk= 1, Tl i s  t h e  root section),  
and n i s  t h e  number of calculated azimuths. 

Using the  described method, we then ca lcu la te  one or two revolutions of t h e  
ro to r  and compare t h e  values of p '  and B" with those which had been a t  this 
azimuth i n  t h e  preceding revolution. The obtained value of t, is  compared with 
t h a t  assigned. If these  values do not agree wi th in  the  s t ipu la ted  accuracy, 
then t h e  difference tYObttY*,d i s  used f o r  re f in ing  t h e  value of eo and-
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calculat ing another revolut ion of t h e  ro tor .  

The calculat ion i s  considered completed as soon as t, i s  equal t o  t h e  as
signed value, t o  t h e  required accuracy, and as soon as p and p '  i n  t he  last  and 
preceding revolutions coincide 

A s  a result of t h e  calculat ion,  we determine the  average forces  and moments 
pe r  revolution, the  d i s t r i b u t i o n  of t he  sec t ion  angles of attack, t he  thrust co
e f f i c i en t ,  and the  blade f lapping angle, which are represented as Fourier s e r i e s  
with an accuracy t o  f i v e  terms: 

5 

tQ=t +	2 (T, cos n+ + sin nci,); 
n =1 

5 

B=a, -2 (a,cos nci,+6, sin nq). 
n=l 

Only the  average induced veloci ty  over the  disk, determinable by eq.(3.46'), 
was  taken i n t o  account i n  thecalculationswhose r e s u l t s  a r e  presented below /184.
i n  Subsections 4 - 7. The blade was considered t o  be absolutely r ig id  i n  bending 
and tors ion.  

The in tegra t ion  i n t e r v a l  was 12", t h e  number of calculated r a d i i  12, and 
the  accuracy within which t,, p ' ,  and p had t o  coincide was 1 A t ,  I m . x  = 0.002; 
IAp ' ImaX = 0.002; l A p I , , ,  = 0.002. 

A t  t h e  blade t i p ,  dt and 3were calculated f o r  cy  = 0 and cxp corre
dF dF 

sponding t o  c y  = 0. A t  sect ions r 0.975, the calculat ion was made without aqy 
corrections for taking t i p  losses  i n t o  account. 

The calculat ion t h e  of one f ly ing  regime on a computer performing 20,000 
operations p e r  second, i s  40 - 75 sec. 

- _ _ 
3. -A e r o d m c  Characterist ics- of P r o f i l e s  f o r  Rotor Blades 

Below we give the  aerodynamic charac te r i s t ics  of NACA 230 and NACA 00 pro
f i l e s  and a l s o  of a high-speed p r o f i l e  su i tab le  f o r  use a t  t h e  t i p  of hel icopter  
blades. The f irst  two p r o f i l e s  a r e  taken a t  a relative thickness of 12% and the  
last prof i le ,  of 9%. 

The aerodynamic cha rac t e r i s t i c s  of t h e  p r o f i l e s  were obtained from t e s t  
data  on a rectangular a i r f o i l  model i n  a wind tunnel, wi th  conversion t o  infinite 
aspect r a t i o  and t o  fu l l - sca le  Reynolds numbers taken f o r  each Mach by means of 
eq*(4*19): 

Re =($>,"60.7M=20 106M. 

The aerod namic cha rac t e r i s t i c s  of t he  p r o f i l e s  i n  t h e  angle of a t tack  range 
from -2" t o  15;Y and Mach numbers from 0.3 t o  0.9 a r e  given i n  Tables 2.6 - 2.8. 
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TABLE 2.6 

PROFILE NACA 23012 
- ~ 

. .  


-2 1.0 1 3.5 7 9 11 12.5 14.5 15 

~ 


0.3 -0.085 0.205 0.46 0.81 1.035 1.21 1.365 1.525 1,525 
0.4 -0.10 0.20 0,445 0.80 1.01 1.20 1.33 1.42 1.42 
0.5 -0.085 0.225 0.485 0.85 1 .o 1.185 1.24 1.25 1.245 

CY 0.6 
0.7 

-0.085 
-0.085 

0.225 
0.245 

0,485 0,843 0.94 1 .o 
0.505 0.715 0,785 0.837 

1.03 
0.87 

1.048 
0.91 

1.05 
0.915 

0.8 -0.065 0.285 0.43 0.556 0,625 0.675 0.715 0.76 0.77 
- - - -0.85 -0,065 0.185 0.30 0.435 0.490 


0.9 -0.075 0.09 0.22 - - - - - 

~- ... . - 


0.3 0.008 0.008 0,010 0.015 0.018 0.022 0.029 0.045 0.05 

0.4 0.008 0.008 0.010 0.015 0.023 0.0355 0.043 0.07 0.074 
0.5 0.008 0.008 0.010 0.019 0.031 0.0575 0.083: 0.121 0.130 
0.6 0.008 0.009 0.013: 0.036: 0.0765 0.128 0.167 0.218 0.230 
0.7 0.009 0.013 0,027: 0.09 0.138 0.181 0.213 0.254 0.262 

0.8 0.0125 0.03 0,067 0.130 0.177 0.121 0.253 0,294 0.304 

0.85 0.028 0,049 0.080 0.145 0.185 - - - 


- - - - - 
0.9 0.069 0.08 0.107: 


TABLE 2.7 

PROFILE NACA 0012-
-2 1 3.5 15 


____ 
 ~ 
 ~

~ 


0.3 -0.185 0.085 0.32 0,645 0.835 1.02 1.155 1.34 1.39 

0.4 -0.18 0.095 0.335 0,665 0.85 1.035 1,175 1.25 1.25 

0.5 -0.215 0.10 0.355 0.71 0.915 1.08 1.1 1.1 1.1 

0.6 -0.215 0.11 0.375 0.75 0.91 0.94 0.95 0.96 0.965 

0.7 -0.235 0.11 0.395 0.735 0.81 0.84 0.860 0.863 0.865 

0.8 -0.245 0.135 0.40 0.57 0.65 0.72 0.765 0.765 0.75 

0.85 -0.19 0.095 0.29 0.50 0.61 0.71 - - 

0.9 -0.08 	 0.02 0.14 0.40 0.56 0.70 - - 


-
 __ 


0.3 0.009: 0.007 0.009 0.0125 0.0165 0.021 0.024( 0.029 3.034 

0.4 0.009: 0.007 0.009 0.0125 0.0165 0:021 0,024: 0.061 1.080 

0.5 0.009: 0.007 0.009 0.013 D.0185 0.031 0.051 0.106 1.126 

0.6 0.010 0.007 0.0105 0.021 0.039 0.074 0.109: 0,171 1.186 

0.7 0.010 0.0085 0.0185 0.061 0.0955 0.135 0.167: 0.211 1.221 

0.8 0.0245 0.016 D.046 D.095 0.131 0.1675 0.195 0.2285 1.236 

0.85 0.0415 0.036 D.061 0,1065 D.141 0.180 - 

0.9 0.069 D.069 D.M95 0.118 D.149 0.187 - -




TABLE 2.8 

HIGE-SPEED PFDF1L;E 
-


3.5 7 12.5 14.5 15 

-	 . - -

I 
0.3 -0.065 0.235 0.485 0,835 1.035 1.18 1.165 1.115 1.1 

0.4 -0.065 0.23 0.485 0.835 1.035 1.10 1.09 1.06 1.05 

0.5 -0.065 0.245 0.50 0.86 1.015 1.015 1 .o 0.99 0.99 

CY 0.6 -0.065 0.26 0.53 0.90 0.98 0.96 0.965 0.96 0.96 
0.7 -0.07 0.30 0.60 0.96 0.96 0.935 0.935 0.95 0.95 

0.8 -0.07 0.36 0.63 0.81 0.87 0.87 0.89 0.935 0.945 

0.85 -0.12 0.325 0.55 0.77 0.86 0.86 - - 
0.9 -0.165 0.175 0.46 0.815 - - - - 


~ 


0.3 0.008 0.007 0.009 0.011 0.012 0.024: 0,065 0.12 0.133 

0.4 0.008 0,007 0.009 0.011 0.012 0.055 0.0975 0.142 0.15 

0.5 0.008 0.007 0.0095 0.0125 0.046 0.093 0.13 0.1765 0.1885 


C3P 	
0.6 0.008 0.007 0.010 0.025 0.060 0.110 0.147: 0.195 0.205 
0.7 0.008 0.0071 0.015 0.061 0.10 0.143 0.175 0.195 0.221 
0.8 0.012, 0.012 0.037 0.092 0.128 0.165 0.194 0.212: 0.2415 
0.85 0.021 0,026 0.053 0.11 0.15 0.19 - - 
0.9 0.044 0.04 0.069 0.131 - - - - -

I n  the  calculat ions whose r e s u l t s  a r e  given below, when M < 0.3 we took 
the  p r o f i l e  cha rac t e r i s t i c s  f o r  M = 0.3, whereas when M > 0.9 the  coef f ic ien ts  
cy and cxp were determined by l i n e a r  extrapolation with respect t o  M = 0.85 and 
M = 0.9. If the  angle of a t tack  of t he  blade sect ions varied within 72' t o  180' 
and -7' t o  -180', the  cha rac t e r i s t i c s  of a l l  p r o f i l e s  were determined regardless 
of M from Table 2.9. A t  angles of a t tack  from 15' t o  72' and from -2' t o  -7O, 
a l i n e a r  in te rpola t ion  was  made between the corresponding values of cy and c X p .  

-
a' I 72 105 170 I -170 -105 

CY 10.35 -0.33 -0.62 0.77 0.27 
C X P  1.1 1.1 0.04 0.15 1.08 

-85 1--70 1 -7 

-0.2 -0.32 -0.62 

1.08 I 0.87I. 0.04 


Figures 2.96 and 2.97 contain graphs of t he  coef f ic ien ts  cy and cxp as a 
funct ion of CY a t  a l l  th ree  Mach values. 

For se lec t ing  a p r o f i l e  a t  a small por t ion  of t he  blade ( f o r  example, a t  
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t h e  t i p  port ion) ,  graphs of t h e  aerodynamic cha rac t e r i s t i c s  of t he  p r o f i l e s  as 
a funct ion of angle of a t t ack  are more cha rac t e r i s t i c  than t h e  p r o f i l e  polars,  
s ince  the  angle of a t t ack  of t h e  examined blade sec t ion  depends l i t t l e  on cy of 
this sec t ion  and i s  determined mainly by t h e  f l i g h t  regime (ty,V, a) and t h e  
blade shape. Consequently, when t h e  p r o f i l e  i s  changed, t h e  angle of a t t ack  of 
t h e  sec t ion  is not changed (bearing i n  mind t h a t  a. of t h e  p r o f i l e s  d i f f e r  by 
less than 1t o  1.5') . To se l ec t  t he  p r o f i l e  f o r  a blade as a whole, t h e  ' p ro f i l e  
po lars  or t h e  graphs of t h e  aerodynamic cha rac t e r i s t i c s  of p r o f i l e s  constructed 
as a funct ion of a - cy, are more charac te r i s t ic .  

I n  Figs.2.98 and 2.99 we have constructed t h e  graphs of acr and a* as a 
funct ion of t h e  Mach number (cy,, is  the  c r i t i c a l  angle of a t t ack  at which cy of 
t h e  sec t ion  begins t o  decrease o r  a previous increase stops; cy = cy . X ,  a+$i s  
t h e  angle of a t tack  at which a marked increase i n  cxp begins, owing 10 flow 
separat ion o r  owing t o  wave drag). Since t h e  Mach number of t h e  blade sec t ion  
i s  approximately equal t o  

M=MoUr=Mo (F+ V sin $) =F M o + M , ~  sin$, 

t h e  graphs i n  F'igs.2.98 and 2.99 give the  value of a at which an increase i n  
p r o f i l e  drag begins and separation phenomena appear as a funct ion of a combina-

t i o n  of M,, ,M,, r, and 4 f o r  t he  blade section. These graphs w i l l  be used i n  
Subsection 8. 

The graphs i n  Figs.2.96 and 2.97 ind ica te  tha t ,  f o r  M = 0.3, t he  NACA 23012 
p r o f i l e  has cy, ~x = 1.53, whereas t h e  thinner high-speed p r o f i l e  has cy,,, 
= 1.18 a t  acr = 11'. For t h e  latter, a steep increase i n  cxp begins as soon as 
a > 10.5'. The NACA 0012 p r o f i l e  has cymax= 1.4. 

A t  M = 0.6 - 0.7 and a t  average angles of a t tack,  the  p r o f i l e  characteris
t i c s  are close together,  whereas a t  M = 0.9 t h e  high-speed p r o f i l e  i s  more ad
vantageous, having the  lowest value of cXp a t  small angles of a t tack  and a 
normal slope of dependence of c y  o n a .  

The results of calculat ing r o t o r  p ro f i l e  losses  f o r  d i f f e ren t  p r o f i l e s  are 
described i n  Section 3.4: A t  low M,, t he  ro to r  with symmetric NACA 0012 p r o f i l e  
and, i n  ce r t a in  cases, ro tors  with the  t h i n  high-speed p r o f i l e  on the  blade t i p  
have p ro f i l e  losses  severa l  percentages lower than ro to r s  with other  p ro f i l e s ;  
a t  high M,, t h e  r o t o r  with t h e  high-speed p r o f i l e  at t h e  blade t i p  de f in i t e ly  
has t h e  upper hand. 

The maximum permissible value of t h e  l i f t  coef f ic ien t ,  i n  terms of flow /188
separation (see Subsect.7) of a r o t o r  with a NACA 23012 p r o f i l e  i s  by a f a c t o r  
of 0.01 - 0.02 l a rge r  than f o r  a r o t o r  with a high-speed p r o f i l e  at t h e  blade 
t i p .  

The aerodynamic cha rac t e r i s t i c s  of p r o f i l e s  should include correct ions t o  
account f o r  t h e  qual i ty  of manufacture and design features of t h e  blades. The 
p r o f i l e  drag as w e l l  as t h e  quantity cyma. are influenced by t h e  f l e x i b i l i t y  
and roughness of t he  surface ( f a b r i c  sk in  o r  plywood cover, spacing of ribs), 
by the  presence of project ing p a r t s  especial ly  near t h e  nose of t h e  p r o f i l e  
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0 5 I O  

0 5 10 

Fig.2.96 Lift Coefficient of 

CY 

-NflCR 23012 
NACU 0012 - - - H i g h - s p e e d  

p r o  f i  1 e 

Different  P ro f i l e s .  

IM '0.3 

0 5 10 75Oco 

Fig.2 .97 Prof i l e  Drag Coefficient of Different  Prof i.les. 

199 




(de-icing system, r i v e t s ) ,  leakage i n  t h e  j o i n t s  of t h e  blade segments, and 
l o c a l  deviations from the  t h e o r e t i c a l  s ec t ion  p r o f i l e .  

On t h e  bas i s  of calculations,  it is  recommended t o  increase t h e  cxp values 
of t h e  p r o f i l e ,  obtained from model wind-tunnel tests, by Acxp equal to:  

f o r  blades with a nose i n  the  form of a continuous spar  of metal, 
p l a s t i c ,  o r  wood and with r i g i d  shanks: 0.0 - 0.001; 
f o r  blades of segments with metal s k i n  and ribs: 0.0015 - 0.0025; 
f o r  blades with veneer o r  f a b r i c  covering: 0.0025 - 0.005. 

One o r  another value of AcXp i s  selected from t h e  indicated in t e rva l ,  de
pending on t h e  qual i ty  of blade manufacture. 

Fig.2.98 C r i t i c a l  Angle of Attack of Fig.2.99 Angle of Attack a* at which 
P r o f i l e s  as a Function of M. the  P r o f i l e  Drag Begins t o  Increase, 

as a Function of M. 

4. Distr ibut ion of ~ Aerodynamic Forces-over t h e  Rotor Disk-

Only t h e  average induced veloci ty  over t h e  disk was taken i n t o  account i n  
the calculat ions whose r e s u l t s  are described i n  Subsections 4 - 7; the e r r o r  
thus introduced i n t o  the  t o t a l  -average c h a r a c t e r i s t i c s  of t h e  r o t o r  revolution 
a t  l a rge  and average values of V i s  small. The blade was considered t o  be abso
l u t e l y  r i g i d  i n  bending and twisting. Calculations show t h a t  flexural deforma
t i o n s  have p r a c t i c a l l y  no e f f e c t  on t h e  average aerodynamic per-revolution 
cha rac t e r i s t i c s  of t he  r o t o r  whereas p a r t i a l  deformations, i f  t h e  blade is  in
s u f f i c i e n t l y  r ig id ,  do have a noticeable e f f ec t .  Preassigned t o r s i o n a l  deforma
t ions  can be taken i n t o  account by subs t i t u t ion  i n t o  eq.(4.16). 

The calculat ions were performed f o r  eight va r i an t s  of geometric blade /190
cha rac t e r i s t i c s ,  given i n  Table 2.10, with t h e  following in i t ia l  data: CT = 

Y= 0.091; k = 0 and 0.4; -aoJ = 0.9 and 1.2; t h . h  = fI1 = �I2 = 0. 

In  this Subsection, we Will e d n e  the  d i s t r i b u t i o n  of aerodynamic forces  
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TABLE 2.10 

Cho-rd b Geometric Blade  P r o f i l e  

No. o f  
Taper Twis t  - . -

B1 ade B1 a& Shape ' Tip 
R a t i o  , from 

From Root -From r 4 . 7 5- . 
From r=0.85r=lV a r i a n t  r=O t o  , t o  F=0.75 t o  r-0.85 

, t o  -

I Trapezoida l  t v n s t e d  wi th  h i g h - s p e e d  1.82 0.625 2.9 /I 7 23012 Tr a n s i  ti on a1 High-speed ,  

p r o f i l e  

11 R e c t a n g u l a r  t w i s t e d  wi th  h igh-speed  1.o 1.o 1.o 7 23012 T r a n s i t i o n  a1 High- speed  
p r o . f i l e  

Ill R e c t a n g u l a r  t w i s t e d  1.0 1 .o 1.0 7 NACA 23Q12 

IV R e c t a n g u l a r  t w i s t e d  wi th  1.o 1.o 1.o 7 NACA 0012 
symmetric p r o f i l e  

V Trapezoida l  f l a t  w i t h  h i g h - s p e e o  1.82 0.625 2.9 0 23012 T r a n s i t i o n a l  High- speed  
p r o f i l e  

VI R e c t a n g u l a r  with h igh-speed  1.o 1.o 1.o 15 23012 T r a n s i t i o n a l  High- speed  
p r o f i l e  and i n c r e a s e d  t w i s t  

VI1 Expanding wi th  high- s p e e a  0.59 1,176 0.5 7 23012 T r a n s i t i o n a l  High-speed 
p r o f i l e  

I 


I - -VI11 R e c t a n g u l a r  wi th  l a r g e r  p o r t i o n  1.o 1 .o 7 From r o o t  From r=0.65 From r=0.75 
o f h i  gh- sp eed p ro  f i  1e t o  r=0.65, t o  7=0.75, 

t o .-r=l 
23012 T r a n s i t i o n  a1 h i g h - s p e e dI 



--- 

- -  

over t h e  ro to r  disk.  The assumption of constancy of induced veloci ty  and t h e  
absence of blade deformations leads t o  e r ro r s  i n  ca lcu la t ing  t h e  forces  d i s t r i 
buted over t he  r o t o r  disk; consequently, the da ta  i n  this Subsection are only 
approximate 

Let us examine ro to r s  with blades of var iants  I and I1 i n  two hel icopter  
f l y ing  regimes: one close t o  horizontal  f l i g h t  and one close t o  autorotat ion of 
t h e  ro tor ;  both regimes a re  taken at equal l i f t  coef f ic ien ts  t, = 0.16, dimen
s ionless  veloci ty  v = 0.3, and M, = 0.6. The results of r o t o r  calculat ions i n  
these regimes are given i n  Table 2.11. 

TABLE 2.11 

._ 
ty  =0.16; V =0.3; Mo =0.6 

Horizon t a1 F1 i g h  t A u t o r o t a t i o n~

~ 
 -


Ret t an g u l  ar  Trapezoidal  Rectangular  rr ap e z o i  dal 
B1 ade B1 ade . B l a d e  B1 ade 

~ ~~ 

k=O k=0.4 k=O I k-0 k=O k=0.4 k=O 
.. . . .. - ~ - .  - ... -~ 

-9.4 -9.4 -9.4 -10.3 1.4 1.4 1.4 
-0.0610 -0.06103 -0.061 0 -0.065 -0.0048 -0.0048 -0.0048 

7.820 9.957 8.0320 8.45 3.576 5.62 3.530 

-0.0095 -0.0101 -0.0079 -0.01 0.0168 0.0172 0.0180 

0.0084 0.008698 0.0079 0.0086 0.00047 0.00036 -0.0001 5 
0.0168 0.0162 0.0181 0.0186 0.0129 0.01327 0.0140 
0.0997 0.09667 0.0949 0.0958 0.0926 0,09247 0,0877 
0.0973 0.09535 0. IO8 0.1096 0,06938 0,07166 0.0772 
0.0398 0.003355 0.0408 0.0405 0.0367 0.00857 0.0.368 
0.0069 0.006043 0.0078 0.0076 0.00559 0.00515 0.0062 

-0.0025 -0.003146 -0.0024 -0.00276 -0.00203 -0.00269 -0.0012 
0.0004 -0.000548 0.0005 0.00062 0.0003 0.00045 0.0003 
0.0001! -0.000263; 0.0002: 0.00017 0.00014 0. oooi7, 0.0003 

-0,0059 0.003116 -0,0062 -0.00623 -0.0053’ -0.0054 -0.0058 


0.0219 0.0249 0,0233 0.0227 0.0289 0.0285 0.0312 


0.0309 0.03466 0,0377 0,0364 0,0249 0.0267 0,0300 


-0.0143 -0.00963 -0.0 149 -0.0167 -0.01 20 -0.01 53 -0.0138 


0.0062 0.0062 0.0078 0.00859 0.00427 0,00623 0.0051 


0.0033 0,0089 0.0055 0.00407 0.00348 0.00317 0,0049 
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Table 2.11 shows tha t ,  i n  horizontal  f l i g h t ,  t he  flapping motion of the 
b h d e  i s  g rea t e r  t han  i n  autorotat ion and t h a t  it i s  g rea t e r  f o r  t he  trapezoidal

/191. 
than for t h e  rectangular blade. A comparison of t he  cha rac t e r i s t i c s  of r o t o r s  
with rectangular and t r apezo ida l  blades shows tha t ,  a t  equal C Y ,  ty ,and V, t he  
r o t o r  with t rapezoidal  blades has l a r g e r  eo, h, al, b, and a smaller absolute 
propulsive coe f f i c i en t  t,; at equal t,, ty,V (see t h e  column with CY = -10.3") 
t h e  r o t o r  with t r a p e z o i d a l b l a d e s  has a more negative angle of a t tack,  and the  
difference i n  t h e  quant i t ies  e,, h, al, bl increases  even more. T h i s  i s  re
sponsible f o r  t h e  change i n  balancing cha rac t e r i s t i c s  of a helicopter when t h e  
t rapezoidal  blades are replaced by rectangular types (for exanple, t he re  is a 
decrease i n  de f l ec t ion  of the automatic p i t c h  c o n t r o l  forward, owing t o  a de
crease i n  t h e  longi tudinal  fo rce  H and i n  t h e  coe f f i c i en t  c,). 

0.25 0.55 0.75 0,975 F 

Fig.2.100 Angles of Attack of Sections as a 
Function of Blade Radius. 

Figure 2.100 shows graphs of t he  va r i a t ion  i n  angles of a t t ack  of a r o t o r  
with rectangular blades with respect t o  blade radius a t  fou r  azimuths: 0, 90, 
180, and 270". The s o l i d  l i n e s  r e f e r  t o  horizontal  f l i g h t  and t h e  dashed l i n e s  
t o  autorotation. 

In  horizontal  f l i g h t ,  t h e  angles of a t t ack  are negative a t  t h e  blade root, 
at JI = 0 and 270". A t  azimuth JI = 0 when t h e  f l a p  i n g  angle i s  small, t he  
v e r t i c a l  veloci ty  component equal t o  about V(CY+ B p  - v = V(CY + a, - al)  - v 
(Fig.2.101) i s  l a rge  and d i r ec t ed  downward, due t o  which the  angle of a t t ack  a t  
t h e  blade root  i s  small o r  negative a t  this azimuth. A t  azimuth (I = 2.70" t h e  
roots  are close t o  t h e  zone of t h e  backwash and are washed backward and upward. 
Therefore, they have l a rge  negative angles of a t tack.  

I n  t h e  middle and t i p  sect ions of the blade, t h e  angles of a t t ack  are 
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P l a n e  o f .  grea t ly  influenced by t h e  pe r iphe ra l  ve
l o c i t y  of flapping. T h i s  increases  t h e  

T;flvp-i!-&=o angles of a t t ack  a t  azimuths of 270' 
and O', where t h e  blade i s  sh i f t ed  down-

V ward and decreases them at azimuths of- 90' and 180'. The geometric twist of /192 
-d t h e  blade reduces t h e  increase i n  angles 

$6=180" of a t t ack  toward t h e  blade t i p  at azi
muths of 270' and 0' and decreases them 

I"igg.2.1Ol Component of Air Veloci- even more a t  azimuths of 90' and 180'. 
t i e s  Normal t o  Blade kcis a t  Azi- The angles of a t t ack  are negative a t  t h e  

muths $ = 0 and $ = 180'. blade t i p  at azimuth of 90'. 

In autorotation, t h e  angle of a t t ack  
of t h e  r o t o r  i s  pos i t i ve  s o  t h a t  t h e  angles of a t t ack  of t h e  blade root  sect ions 
have a l a rge  pos i t i ve  value. A t  t h e  blade t i p s ,  t h e  angles of a t tack of t he  sec
t i o n s  are less than i n  horizontal  f l i g h t ,  s ince i n  autorotat ion the  r o t o r  has a 
small p i t c h  and less flapping motion. 

The d i s t r i b u t i o n  of t h e  sect ion angles of a t t ack  over t h e  e n t i r e  r o t o r  disk 

A e c t a n g u  1 a r  b I a d e  
v a r i a n t  I I ,  a =-9.4" 

Fig.2.102 Distr ibut ion of Angles of 
Attack over Rotor Disk (Horizontal 

Fl ight  ). 

with twisted rectangular blades i s  
i l l u s t r a t e d  by t h e  graph i n  
Fig.2.102 (horizontal  f l i g h t ) .  The 
hatched c i r c l e  i n  this diagram i s  
t h e  zone of backwash, along whose 
boundaries t h e  sec t ion  angle of 
a t t ack  i s  close t o  *90°. Regions 
with negative sect ion angles of 
a t t ack  are a l s o  shown by hatching. 

Figure 2.102 shows t h a t ,  i n  
t h e  zone bounded by azimuths of 
270 - 300' and r e l a t i v e  r a d i i  
0.7 - 1.0, t he  angles of a t t ack  
reach a maximal value ( f o r  un
twisted blades, t he  angles of at
tack are maximum a t  E; = 1.0). 
T h i s  region, i n  which flow separa
tion-takes place on increase i n  t, 
and V, has a noticeable e f f e c t  on 
r o t o r  operation as a whole. I n  /193
autorotat ion t h e  separation region 
i s  located i n  t h e  root po r t ion 'o f  
t h e  blade a t  azimuths of 200 - 300'. 

Calculations show t h a t  t h e  
maximum angles of a t t ack  of a trape
zoidal  blade a r e  subs t an t i a l ly  
l a r g e r  than those of a rectangular 

blade. For a r o t o r  with a flapping compensator,-the maxi-" angles of a t t ack  
a t  (r = 270' decrease somewhat. 
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The l i n e a r  t h r u s t  i s  extremely unevenly d i s t r ibu ted  over t h e  radius  and azi
muth ( see  Fig.2.28), which i s  responsible f o r  t he  occurrence of t h e  l a rge  vari
able bending moments of t h e  blade. It follows from Table 2 . l l  t h a t ,  f o r  t h e  
r o t o r  with t rapezoidal  blades and f o r  t h e  r o t o r  with a flapping compensator, the 
variable po r t ion  of t h r u s t  increases.  The r o t o r  with a flapping compensator has 
a l a r g e r  fou r th  harmonic. These p e c u l i a r i t i e s  of r o t o r s  must be taken i n t o  ac
count when estimating v e r t i c a l  vibrat ions of helicopters.  The magnitude of t h e  
variable thrust component depends on t h e  r o t o r  cha rac t e r i s t i c  p (or  7) :  t h e  
l a r g e r  p,, t h e  l a r g e r  t h e  variable component. A t  cos JI - t,, the  coeff ic ient  of 
t h e  first harmonic of t h r u s t  i s  very small; consequently, at s m a l l  spacing of 
t h e  flapping hinges t h e  aerodynamic moment of t h e  r o t o r  relative t o  t h e  trans
verse &s m [eq.(4.43)] need not be taken i n t o  consideration. 

= A  

Fig.2.103 Torque Coefficient of Blade Fig.2.104 Acceleration Moment i n  
vs. Azimuth (Horizontal Fl ight) .  Blade Section dQ = dXPBe c .  X 

x cos iP - dY,,,. s i n  iP < 0. 

The torque coe f f i c i en t  of t h e  blade m, e varies  g rea t ly  with t h e  azimuth 

(Fig.2.103). A t  azimuths where t h e  sec t ion  angles of a t t ack  increase (quad
ran t s  I11 and IV), m, e markedly decreases. I n  an autorotat ion regime, mtQ i s  

negative i n  the  quadrants I11 and I V .  This i s  due t o  t h e  f a c t  t h a t ,  a t  t hese  
azimuths, t h e  blade sect ions have l a rge  pos i t i ve  inflow angles 4,  as a result of 
which t h e  p ro jec t ion  of t h e  l i f t  of t h e  blade sect ion i s  directed forward and 
produces an accelerat ing moment (Fig.2.104). Thus, it i s  obvious t h a t ,  i n  
forward f l i g h t  i n  autorotat ion regime, decelerating moments are produced i n  the  
quadrants I and I1 and accelerat ing moments i n  quadrants I11 and IV (during 
v e r t i c a l  descent of a hel icopter  i n  a n  autorotat ion regime, t h e  decelerat ing 
moments are produced by t h e  t i p  sect ions of t h e  blade and t h e  accelerat ing 
moments by t h e  root  sect ions) .  

It should be noted t h a t  a very l a r g e  variable torque component, i n  a r o t o r  
with t h e  usual s tagger  of drag hinges (rv..,< 0.05), produces a small (within
1") flapping motion relative t o  t h e  drag hinges, s ince t h e  eigenfrequency of 
blade o s c i l l a t i o n  i s  by a f a c t o r  of about 4 lower than  t h e  r o t o r  rpm, i.e., t h e  
frequency of change of m, 4-

In Section 2, we noted t h a t ,  at equal ty,t,, and 7, t h e  quantity m, does && 
not depend on t h e  amplitude of cyc l i c  change of blade p i t ch ,  whereas a change 
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of  mte with respect t o  azimuth’does. Actually, as shown i n  F’ig.2.103, f o r  a 
r o t o r  with a flapping compensator m,

Jf 
d i f f e r s  with respect t o  magnitude and 

phase 

5 .  Aerodynamic Character is t ics  of Rotor 

The aerodynamic c h a r a c t e r i s t i c s  of a r o t o r  are presented i n  graphs i n  i h e  
form of t h e  dependence t, = f(mt) with parameters t,, a a t  Mi, = const ( o r  V = 
= const), M, = const. These graphs are convenient f o r  detem&ning t h e  coeffi
c i e n t s  t,, m,, and t h e  angle of a t t ack  a from values of M,, ,V, M,, t, known 
from an aerodynamic calculation. 

Fig.2.105 Aeroaynamic Character is t ics  of Rotor 
(Mfl = 0.0975; = 0.15; M, = 0.65; 0 = 0.091). 

Such graphs f o r  a r o t o r  with rectangular twisted blades with a high-speed 
p r o f i l e  a t  t h e  t i p  (var iant  I1 of blades) are shown f o r  M, = 0.65 i n  
Figs.2.105 - 2.109. 

We see from t h e  graphs t h a t  t h e  dependence of t h e  propulsive coeff ic ient  t, 
on t h e  torque coe f f i c i en t  m, i s  p r a c t i c a l l y  r e c t i l i n e a r ,  with t h e  exception of 
near-separation values of t, a t  negative t,, where t h e  rate of increment of m, 
increases  owing t o  an increase i n  p r o f i l e  losses .  I n  these cases, cmves with 

206 



d i f f e ren t  t, become nonequidistant . The i n t e r v a l  between the  curves increases  
with increasing t,, which can a l so  be a t t r i bu ted  t o  an increase i n  p r o f i l e  
losses  with increasing t,. 

Curves corresponding t o  very small values of the  l i f t  coef f ic ien t  
(t, < 0.1 - 0.08) closely approach or i n t e r sec t  t h e  curves corresponding t o  

/195 
l a rge  values of t,. This means t h a t  a decrease i n  ro to r  t h rus t  coeff ic ient  ( f o r
example, when using a wing on a hel icopter)  t o  t, = 0.08 and l e s s  it not recom
mended since, i n  this case, t he  propulsive force of t he  ro to r  does not increase.  
The upward def lec t ion  of t he  curves with smallt, upon a decrease i n  m, shows 
tha t ,  a t  small t,, the  ro to r  i s  not i n  an autorotat ion regime. 

t r  
0.Oj 

0.02 

0.01 

0 


-0.01 

-0.02 

-0.0; 

Fig.2.106 Aerodynamic Character is t ics  of Rotor 

(Mfl= 0.13; v = 0.2; Mo = 0.65; B = 0.091). 

The advantages of t he  described graphs comprise: simple shape of the  
curves, f a c i l i t y  of in te rpola t ion  upon var ia t ions i n  t h e  coef f ic ien t  t,, and 
the  p o s s i b i l i t y  of using them f o r  d i f fe ren t  s o l i d i t y  r a t i o s  (see Sect.6). With 
t h e  use of these graphs f o r  calculat ing balancing and s t a b i l i t y ,  we can deter
mine the  coef f ic ien ts  t and h by means of t h e  conversion formulas (3.15) and 
(3.17) 

To determine r o t o r  p i t c h  i n  t h e  calculation, we use the dependence 8, = 
= f(m,) with t h e j a r m e t e r  t, a t  V = const, Mb = const, o r  t, = f(a) with the  
parameter 8, a t  V = const, Mo = const. The graphs of t h e  r e l a t i o n  t, = f ( a )  a r e  
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F'ig.2.107 Aerodynamic Characteristics of Rotor 
( M i l  = 0.195; T = 0.3; M O  = 0.65; o = 0.091). 
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Fi .2.108 Aerodynamic Characteristics of Rotor 

?Nil = 0.26; = 0.4; M, = 0.65; o = 0.091). 
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shown i n  Figs.2.115 and 2.116. 

The aerodynamic cha rac t e r i s t i c s  of ro to r s  with blades of d i f f e ren t  shapes 
a re  not presented here since, with t h e  accepted assumption that regardless  of 
blade shape t h e  induced ve loc i ty  i s  d i s t r ibu ted  uniforgly over t h e  ro to r  disk, 
t he  difference i n  t h e  coef f ic ien t  m, at given ty,t,, V, M, is  determined m
e n t i r e l y  by t h e  difference i n  m p r .  Therefore, our conclusions concerning t h e  
e f f e c t  of blade shape obtained i n  examining graphs of mPr i n  Section 3.3 r e d n  
unchanged. 
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Fig.2.109 Aerodynamic Character is t ics  of Rotor 
(Mfl = 0.325; v = 0.5; M, = 0.65; CT = 0.091). 

6. kodynamic-- Character is t ics  of  Rotor i n  Autorotation Regime 

The graphs of t h e  cha rac t e r i s t i c s  of a ro to r  of t he  var iant  I1 i n  an auto-
ro t a t ion  regime - polars  t, = f ( t x 0), r o t o r  performance K,, p i t c h  e,,, and angle 
of a t t ack  a, - a re  shown i n  Figs.2.110 - 2.U3. 

The graphs ind ica te  t h a t  t h e  r o t o r  performance i s  lower than t h a t  of 5 Wing 
( f o r  more d e t a i l s  on r o t o r  performance see Sect.7 of Chapt.11). A t  small V, 
au toro ta t ion  of t he  r o t o r  takes  place at l a rge  pos i t i ve  angles of a t tack.  Upon 
an increase i n  r o t o r  r p m  (of M,) t h e  r o t o r  performance drops, t h e  p i t c h  de
creases,  and t h e  angle of a t tack  increases .  

It i s  known that au toro ta t ion  of a r o t o r  is  possible  i n  t h e  absence of 
forward speed and at any low f ly ing  speed. Therefore, t h e  minimal permissible 
speed of an autogiro or hel icopter  on engine failure is  not determined by flow 
separat ion at t h e  wing, c o n t r o l l a b i l i t y  l o s s  or spinning, as would be t h e  case 
i n  regular  a i r c r a f t ,  but by t h e  permissible v e r t i c a l  rate of descent. I n  ve r t i 
c a l  descent, t he  r o t o r  develops approxbmtely t h e  same drag as a p l a t e  (c ,  = 
= 1.28) with an area equal t o  t h e  r o t o r  d i sk  area, with t h e  v e r t i c a l  speed of 
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Fig.2.110 Polar of Rotor i n  Autorotation Regime (CJ= 0.091). 

0.08 0.10 0.12 0.14 0.16 0.18 

Fig.2 .u1 Rotor Performance i n  Autorotation Regime (0 = 0.091). 
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Fig.2.1l-2 Rotor P i tch  i n  Autorotation Regime. 

Fig.2.113 Angle of Attack of Rotor i n  Autorotation 
Regime (0 = 0.091). 



descent of an aubogiro being 

G 
vyz1/ 112-1.28 @OAF 

I n  autogiros, t h e  value of p was small and t h e i r  r a t e  of v e r t i c a l  descent 
was low. 

Figure 2.104 shows t h a t  t h e  accelerat ion (negative) moment i n  an auto- /x)o
ro t a t ion  regime i s  created by t h e  pro jec t ion  of l i f t ;  consequently, autorota

ft&in 
0,ro 

qos 
a70 0.20 0.30 0.40 ii 

Fig.2.1& 	 M i n i "  Lift Coefficient i n  
Autorotation Regime. 

small coef f ic ien t  t,, autorotat ion occurs 
regimes. 

t i o n  i s  not possible  a t  small ro to r  
l i f t .  Figure 2.1& gives a graph of 
t h e  m i n i "  l i f t  coef f ic ien t  i n  
au toro ta t ion  (tyc), =, which is  
e i t h e r  t h e  autorotat ion limit or t he  
value of t, at  which autorotat ion is 
generated at very la rge  angles of 
a t tack  and negative p i tch .  

I n  a hel icopter  with a la rge
wing, t h e  r o t o r  l i f t  markedly de
creases during autorotation, and, 
s ince  t h e  r o t o r  cannot have a very 

a t  a lower rpm than i n  hel icopter  

To estimate t h e  influence of t h e  geometric blade cha rac t e r i s t i c s  on t h e  
autorotat ion regime of a helicopter,  we present  t he  following data.  

A t  optimum gl id ing  speed (7 = 0.2) when M o  = 0.7 f o r  a hel icopter  with a 
r o t o r  not having a high-speed p r o f i l e  a t  t h e  blade t i p ,  t he  v e r t i c a l  rate of 
descent increases by 1.7 m/sec and t h e  f l ight-path angle efl., by 2'; t he  p i t c h  
should be 0.5' smaller. The angle of a t tack  increases  by 1.8' while the  p i t c k  
ing  moment i s  retained (AS - Brr + A0, l.p 0 )  

A t  M, = 0.6, t he  de te r iora t ion  i n  au toro ta t ion  cha rac t e r i s t i c s  i s  less by 
a f a c t o r  of 2 - 3. 

Change-over t o  t rapezoida l  b h d e s  reduces t h e  v e r t i c a l  rate of descent by
0.65 m/sec and the  f l igh t -pa th  angle by 0.8'. 

7 .  	E m i t  of Permissible Helicopt-e-r FgEht--@gime.s 
lFlow S a a r a t i o n  W t )  

As shown i n  Subsection 4, a ro to r  with flapping hinges has areas with la rge  
angles of a t tack  of t h e  blade sections.  I n  hel icopter  f l i g h t  regimes (hori
zonta l  f l i g h t ,  gain i n  a l t i t u d e )  these a re  located at t h e  blade t i p  a t  azimuths 
of 270 - 300' and i n  the  autorotat ion regime, at t h e  blade root  at azimuths of 
200 - 300'. 
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An increase i n  l i f t  coe f f i c i en t  t, causes formation of a zone of super-
c r i t i c a l  angles of a t t ack  on t h e  rotor .  

Furthermore, t h e  r o t o r  d i sk  contains zones of high and s u p e r c r i t i c a l  angles 
of a t tack,  a t  si tes where t h e  blade passes close t o  vo r t i ce s  shed by t h e  pre
ceding blades. Here t h e  blade en te r s  a region of high upward-directed l o c a l  
induced v e l o c i t i e s  causing an increase i n  t h e  angles of a t t ack  of individual  
sections.  

A s  soon as t h e  zones of s r p e r c r i t i c a l  angles of a t t ack  become large,  t h e  /a1 
r o t o r  c h a r a c t e r i s t i c s  change noticeably: The dependence of t, on t h e  p i t c h  and 
upward angle of a t t ack  becomes nonlinear, and t h e  coe f f i c i en t s  of flapping, 
longi tudinal  and lateral  forces,  and p r o f i l e  drag of t h e  r o t o r  all increase. 

The limit of permissible regimes with respect t o  flow separation conditions 
i s  determined by t h e  magnitude of t h e  r o t o r  l i f t  coe f f i c i en t  t, character iz ing-
t h e  average level of t h e  sec t ion  angles of attack, by t h e  veloci ty  coe f f i c i en t  V 
characterizing t h e  degree of nonuniformity of d i s t r i b u t i o n  of t h e  sec t ion  angles 
of a t t ack  over t h e  rot,or disk,  by t h e  r o t o r  angle of a t t ack  determining t h e  
character of t h e  d i s t r i b u t i o n  of t h e  sect ion angles of attack, and a l s o  by t h e  
blade shape and t h e  separat ion c h a r a c t e r i s t i c s  of i t s  p r o f i l e .  

From the e q r e s s i o n s  for t h e  coe f f i c i en t  t, and 

it i s  obvious t h a t ,  on a decrease i n  r o t o r  rpm and an increase i n  f ly ing  speed 
and a l t i t ude ,  t h e  coe f f i c i en t s  t, and V Will increase so t n a t  t h e  hel icopter  may 
e n t e r  a flow-separation regime. The phenomenon associated with flow separat ion 
a t  t h e  r o t o r  blades can be stopped rapidly by decreasing t h e  pi tch,  increasing 
t h e  r o t o r  rpm,  and reducing t h e  f l y i n g  speed. 

Deep penetrat ion i n t o  t h e  flow-separation zone sometimes ends i n  catastrophe 
f o r  t h e  helicopter.  One of t h e  most important problems of s e l ec t ing  t h e  heli
copter parameters i n  designing and determining i t s  f l i g h t  cha rac t e r i s t i c s  i s  t o  
ensure absence of flow separat ion i n  a l l  permitted f l y i n g  regimes. Owing t o  t h e  
p o s s i b i l i t y  of enter ing t h e  flow-separation zone, t h e  &mum f l y i n g  speeds and 
a l t i t u d e  are l imited on hel icopters  and any decrease i n  r o t o r  r p m  below an 
established limit i s  impedssible.  I n  order t o  avoid flow separation a t  high 
f l y i n g  speeds, a wing is  i n s t a l l e d  on hel icopters  t o  reduce r o t o r  l i f t .  

Fl ight  tests show t h a t  flow separat ion manifests itself by a n  increase i n  
blade stresses and i n  blade hinge moments, increase i n  hel icopter  vibrations,  
imbalance of t h e  helicopter,  and deter iorat ion.  of con t ro l l ab i l i t y .  Consequently, 
t h e  manifestations of flow separat ion differ widely and are c o q l e x  f o r  deter
mining t h e  limit of separat ion by calculat ion.  Fl ight  tests and wind-tunnel 
tests of r o t o r s  y i e l d  i n s u f f i c i e n t  da t a  f o r  es tabl ishing t h e  o v e r a l l  limit of 
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flow separation. Therefore, t h e  l imi t ing  values of t h e  l i f t  coe f f i c i en t s  t,,, 
obtained by calculat ion are given below. 

Calculated graphs of permissible values of t h r u s t  coe f f i c i en t s  are given 
i n  t h e  literature ( R e f  .20, &). In t h e  first of t hese  papers, t h e  l imi t ing  
f l i g h t  regime i s  t h a t  regime a t  which t h e  average l i f t  coe f f i c i en t  of t h e  blade 
a t  azimuth JI = 270' becomes equal t o  t h e  maximum l i f t  coe f f i c i en t  of t h e  pro
f i l e  c y m a x .  I n  t h e  second paper, t h e  c r i t e r i o n  of flow separation i n  hel icopter  

f l i g h t  regimes i s  taken as t h e  equal i ty  of t h e  angle of a t t ack  at t h e  blade t i p  
a t  azimuth $ = 270' t o  some c r i t i c a l  value cy,, : cy,, = 12' i n  a regime corre
sponding t o  t h e  start of separation phenomena, and cy,, = 16' at t h e  l imi t ing  
f l i g h t  regime with a l a r g e  separation zone. 

A shortcoming of both methods i s  t h a t  one does not know how t o  s e l e c t  cYmrx 

or CY,, f o r  a blade with a set of p ro f i l e s .  Furthermore, t h e  degree of nonuni
fo-ty of d i s t r i b u t i o n  of t h e  angles of a t t ack  over t h e  r o t o r  disk depends /202
on V; at t, = tYorand at  l a rge  v, t h e  zone of increased angles of a t t ack  occu
p i e s  a smaller po r t ion  of t h e  disk than at small 7. Therefore, t h e  appearance 
of s u p e r c r i t i c a l  angles of a t t ack  a t  l a r g e  V has a-less pronounced influence on 
t h e  change i n  r o t o r  c h a r a c t e r i s t i c s  than at small V; this i s  not taken i n t o  ac
count i n  the  method presented i n  the  second paper (Ref.&). 
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Fig.2.115 Change of Coefficient t, as a Function of 
Angle of Attack and P i t c h  of Rotor 

(7 = 0.2; M, = 0.7). 

In t h e  separation limits constructed below, it i s  assumed t h a t  t h e  permis
sible magnitude of t h e  coe f f i c i en t  t, i s  the  value at which t h e  character of t h e  
dependence of t, on t h e  angle of a t t ack  and p i t c h  of t h e  r o t o r  begins t o  change. 
Such limits are constructed f o r  rotors with different  geometric cha rac t e r i s t i c s  
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Fig.2.116 Change i n  Coefficient 5 as a Function of 
Rotor Angle of Attack and P i t ch  ( V  = 0.4; M, = 0.7). 
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Fig.2.ll7 Dmendence of Coefficients 
of IongitudiAal and Lateral Forces h 
and s and of  Flapping al Snd bl on 

Rotor Angle of Attack (V = 0.4; 
M, = 0.7; e, = 11,). 
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F i g . 2 . U  Dependence of Coefficients 
of Torque m, and P ro f i l e  Power mpr on 

Rotor Angle of Attack (v = 0.4;
M, = 0.7; 8, = 11"). 
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on the  basis of calculat ions by t h e  method presented i n  Subsection 2. 

Figures 2.115 and 2.116 give graphs f o r  t h e  dependence of t he  coef f ic ien t  t, 
on t h e  angle of a t t ack  and p i t c h  of a r o t o r  with blades of t h e  variant 11, a t  a 
flapping compensator coef f ic ien t  of k = 0.4. Figure 2.115 indica tes  t ha t ,  a t  
V = 0.2 when t, reaches a ce r t a in  value, t h e  increase i n  t, p rac t i ca l ly  stops. 
The coef f ic ien t  t, has a l i g i t i n g  value which it cannot exceed a t  any cy and 0;. 
Thus, because of t h e  small V, t he  flow separation extends over a la rge  zone and 
there  is  a marked change i n  charac te r i s t ics .  Since the  inc ip ien t  def lec t ion  of 
t he  curve from the  l i n e a r  segment is  not well-defined, we w i l l  use,at  V = 0.2 
and f o r  tYc,,a value of t, less than  t h e  maxi" by an  amount corresponding t o  
Acu = 2' (At, = 0.01). 

A 4  7 = 0, t h e  maximum possible  value of t, i s  taken f o r  t,, (Sect.8). A t  
l a rge  V (see Fig.2.116), t h e  increase i n  t, with respect t o  cy markedly slows 
down a t  some value of t,,. The value of t, a t  which the  curve deviates  from the 
l i n e a r  l a w  by bcu = 0.5' i s  taken f o r  tYcr 

Figures 2.115 and 2.116 indica te  t h a t  t h e  w a n t i t y  tYcrat  given and M, 
depends l i t t l e  on t h e  r o t o r  angle of a t tack.  

Figures 2.11'7 and 2.118 give graphs f o r  t h e  dependence of t h e  coeffi- /204.
c ien t s  of longi tudinal  and la teral  

tJ.,, 
0.35 
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0.20 

0.15 
0 


F'ig.2.U9 Dependence of tYcron 
and M, (Rectangular Twisted Rotor 
wi th  Kgh-Speed P ro f i l e  a t  t h e  

Blade Tip). 

forces  h and s, flapping al and bl , 
torcpe m,, and p r o f i l e  power mpr on t h e  
ro to r  angle of a t tack.  These coeffi
c i en t s  a l s o  change when t, = t,,, : The 
forces  of t h e  r o t o r  and t h e  flapping 
motion of t h e  blades increase backward 
and t o  the  s ide  of t he  advancing blade 
(4 = 90°), and the  p r o f i l e  power coeffi
c ien t  increases  markedly. The var iable  
por t ion  of ro to r  th rus t ,  i.e., the  
second and higher harmonics, a l so  in
creases subs tan t ia l ly .  

Thus, at v > 0, the  value of tyor 
i s  smaller than t h e  maxi" possible  
values of t,; however, it can be assumed 
tha t ,  as soon as t, = tYcr, the.above
mentioned phenomena associated with flow 
separat ion wi l l  become manifest. 

The-curve f o r  t he  dependence of 

t ~ c  on V and M, i s  p lo t ted  i n  fig.2.119.r 
It i s  obvious t h a t  t he  quantity tYcrde
creases g rea t ly  upon an  increa,se in-7. 

A t  small and med ium 7, t,,, decreases with increasing Mor whereas at l a rge  V 
t h e  e f f e c t  of M, i s  ins igni f icant .  
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Fig.2.120 Dependence of tyoron 7 of Rotors with 
Blades of Different Shapes (M, = 0.4.). 

U 0.3 
-

Fig.2.la Dependence of tYcron V of Rotors with 
Blades of Different Shapes (M, = 0.7). 
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Distr ibut ion of. P r o f i l e  hsses Over. Rotor Disk. 
Dependence of P r o f i l e  Losses on Aerody-wnic 
Character is t ics  o f  Blade P r o f i l e s  

Figures 2.120 and 2.121 give graphs of tyc,f o r  blades with d i f f e r e n t  geo

metric cha rac t e r i s t i c s .  The r o t o r  with rectangular blades of NACA 230 p r o f i l e  
(var iant  111)has t h e  l a r g e s t  value of tYc,.The sane r o t o r  with a high-speed 
p r o f i l e  at t h e  t i p  (var iant  11)has values of tYcrsmaller by 0.01 - 0.02. An 
increase i n  geometric twist of t h e  blade increases  tYc,by approximately 0.01 

(va r i an t  I V ) .  The r o t o r  with t rapezoidal  blades (var iant  I) has t h e  smallest  
value of tYcr.  

The graphs of tYcrare approximate and obtained by calculation, but they 
do permit the hel icopter  designer t o  determine the  Limit of safe f ly ing  speeds 
before conducting s p e c i a l  hel icopter  f l i g h t  tests. Fl ight  tests show t h a t  we 
can obtain a s l i g h t l y  l a r g e r  value of t, than t h e  calculated values of tYcr. 
This i s  explained by t h e  f a c t  t h a t  our accq$ed tYcrare smaller than t h e  m a x i 
mum possible  values of ty, and a l s o  by t h e  f a c t  t h a t  f a c t o r s  t h a t  increase cy,,, 
w e r e  not taken i n t o  account i n  the  calculations,  namely effect of cen t r i fuga l  /206
fo rces  on t h e  boundary l aye r  and unsteady f l o w  through t h e  r o t o r  blades. 

8. 	Distr ibut ion of. P r o f i l e  hsses Over. Rotor Disk. 
Dependence of P r o f i l e  Losses on Aerody-wnic 
Character is t ics  o f  Blade P r o f i l e s  

I n  Section 3.3 we examined graphs of t h e  coe f f i c i en t s  of r o t o r  p r o f i l e  
losses .  Let us define t h e  extent of influence of aerodynamic cha rac t e r i s t i c s  
of t h e  blade p ro f i l e ,  per ipheral  speed, and blade shape on t h e  d i s t r i b u t i o n  of 
p r o f i l e  l o s ses  over t h e  r o t o r  disk and t h e i r  t o t a l  magnitude. 

The required power of t h e  rotor ,  referred t o  all-up weight, i s  proportional 
t o  EtMg [see eq.(5.16) i n  Chapt.1111: 

where 
-

3m,M ;  =const2+mppMn. 

G -Thus, t h e  required power of a hel icopter  a t  given M f l ,  H, p = F, c, = 

c c  s+i s  determined by t h e  quantity &,MZ calculated at values of CYME and C,Mg 

corresponding t o  t h e  given quant i t ies .  For example, a hel icopter  has a load p e r  
square meter of t h e  r o t o r  disk area of p = 35 kg/m2 and a p a r a s i t e  drag coeffi
c i e n t  of E, = 0.0075; t h e  calculated (operating) f l i g h t  regime i s  V = 275 km/h.r 
a t  a height of H = 1000 m. Under these conditions, t h e  dimensionless coeffi
c i e n t s  of a hel icopter  are equal t o  

2C y M o  =JL=0.00545; 
'/,ea2 
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Fig.2.122 Angle of Attack a t  Blade Tip Sect ion as a 
Function of M, f o r  Three Values of Per ipheral  

Rotor Speed (G). 

0 100 200 300 v* 

F’ig.2.123 P r o f i l e  Iosses i n  Blade Tip Sect ion as a 
Function of Azimuth Posi t ion  of Blade, f o r  Three 

Values of Rotor Per ipheral  Speed (&) . 



VMfl =-a =0.227; 

Let  us give t h e  results of calculat ions per ta in ing  t o  t h e  t i p  sec t ion  of 
t h e  blades F = 0.975. F'ig.2.122 is  a graph f o r  t h e  angle of a t tack  change of t h e  
t i p  sec t ion  of a rectangular  blade (var iant  11, o = 0.091) with respect t o  azi
muth, p lo t t ed  as a funct ion of M of t h e  sec t ion  f o r  three values of t h e  per i 
phe ra l  speed (G). We see from the  graphs that t h e  sec t ion  has la rge  angles of 
a t t ack  at small M and small negative angles at l a rge  M. By means of these 
graphs, it i s  easy t o  determine the  loca t ion  of flow separat ion zones a t  in
creased p r o f i l e  drag. For this, it i s  necessary t o  p l o t  t h e  curves of aor and 

f o r  t h e  p r o f i l e  of t he  invest igated sec t ion  (see Figs.2.98 and 2.99) on t h e  
graphs i n  Fig.2.122. I& i s  obvious tha t ,  f o r  a high-speed p r o f i l e  and f o r  I$, = 
= 0.7 (wR = 235 m/sec, V = 0.325, t, = 0.1228) t h e  maximurn angles of a t tack  a r e  
low (1.5' lower than t h e  c r i t i c a l  values) but at azimuths 4 = 35 - a0' deep 
penet ra t ion  i n t o  t h e  region of hi h cXp takes  place.  A t  Mo = 0.655 (wR = 
= 2x) m/sec, V = 0.347, t, = O.l.47 t h e  m a x i "  angles of a t t ack  a r e  close t o  
c r i t i c a l  and there  a r e  two zones of high p r o f i l e  drag: a t  azimuths Jr = 55 - 120' 
and at azimuths I/I = 270 = 0' when cy = 10 - 5' and M = 0.41 - 0.62. When M, = 
= 0.61 (wR = 205 m/sec, V = 0.373, t, = 0.161) t h e  t i p  sec t ion  a t  azimuths JI = 
= 250 - 350' penetrates  i n t o  t h e  flow-separation zone and i n t o  the  zone of high 
p r o f i l e  drag. There are no increases  of p r o f i l e  losses  at la rge  M a t  azimuth /208.
J, = 90'. 

The permiss ib i l i ty  of deeper penetrat ion of t h e  t i p  sec t ion  i n t o  t h e  flow-
separat ion zone from t h e  poin t  of view of r o t o r  behavior as a whole i s  charac
t e r i zed  by t h e  graph i n  Fig.2.119. In conformity with this graph, a f l i g h t  
regime with M, = 0.61 i s  permissible. 

A s  shown above, t h e  required power of a hel icopter  and the  p r o f i l e  losses  
of t h e  ro to r  are determined by t h e  quantity mpr@ which, f o r  t h e  examined sec
t ion ,  i s  equal t o  

(4.53) 

Figure 2.123 gives raphs f o r  t he  product c x P p  p lo t t ed  against  azimuth. 
The i n t e g r a l  of eq.(k.53 i s  equal t o  (Table 2.12): 

TABLE 2.12 
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Consequently, the greatest  p ro f i l e  losses i n  the section under study occw 
at M, = 0.7 and the smallest losses, at M, = 0.61. A t  M, = 0.655, the p ro f i l e  
losses are  somewhat greater than at M, = 0.61, but l oca l  separation phenomena 
are  abserrt. 

Now l e t  us assume that we w e r e  t o  change the  p ro f i l e  i n  this section. Its 
angles of attack would then change s l ight ly ,  w h i l e  the  zone of flow separation 
and high p ro f i l e  losses might change substmtial7y. The curves of CY,, and CY" 
are a lso  plot ted i n  FSg.2.122 f o r  the  NACA 23012 prof i le .  Obviously, a t  a l l  M, 
t he  section would have no separation zones but would have a large zone of high 
p ro f i l e  losses at azimuths Q = 280 - 0 - 170'. Especially high Will be the  
losses at Jr  = 90°, where M is  greater than Mc, by 0.1 - 0.2. Since cy, < CY^, a t  
a l l  J r ,  t he  rpm of a ro tor  with this p ro f i l e  could be reduced. 

Thus, the graph i n  Fig.2.122 gives the  optimum dependence of CY,, and cy" on 
M of the  prof i le ,  f o r  t he  section under study at one of the  design f l i g h t  
regimes. 

For example, the rotor  p ro f i l e  losses would decrease i f  the prof i le  had 
M o r  = 0.9 at cy = 0 w h i l e  retaining CY$* = 7.5 - 5.5' a t  M = 0.5 - 0.6. Then the  

best  rotor  rpm would corre
spond t o  M, = 0.7. The th in  
symnetr i c  high-speed prof i le  
has a high value of Mor a t  

CY = 0, but a law value of cy" 
a t  M = 0.5 - 0.6. 

The prof i le  with M,, = 
= 0.8 a t  cy 0 and = 
= ll+- 7" a t  M = 0.4. - 0.6 
would be sui table  f o r  the  ex
amined f l i g h t  regime f o r  the 
case of M, = 0.61. A highly 

0.4 0.5 0.6 47 0.8 M concave prof i le  with a small 
re la t ive  thickness does have 

Fig.2.124 Angle of Attack of Blade Tip such character is t ics  ; however, 
Section as  a Function of Mach Number. 	 i ts  use would considerably in

crease blade tors ion and con
t r o l s  s t r e s s  of the  helicopter. 

In  selecting the  prof i le ,  it must be considered tha t  the  dependence CY, = 
= f ( M )  W i l l  be different  i n  different  f l i g h t  regimes. Figure 2.124 gives a 
graph f o r  a regime corresponding t o  f l i g h t  close t o  the dynamic ceil ing: M,, = 
= 0.122; C$lz = 0.0103, C,Mg =' -0.00012, M, = 0.7. W e  see from Fig.2.124 that ,  
i n  this regime, the p ro f i l e  losses are  very high. I n  conformity with Fig.2.ll9, 
this regime l i e s  at the  boundary of flow separation. In  hovering f l i g h t  near /209
the  ground, at a lower peripheral  speed, the  examined section W i l l  have CY, = 
= 2.7', M = 0.65. 

By sui table  select ion of blade shape, a cer ta in  influence can be exerted 
on the  change in angles of a t tack at the  blade t i p  with respect t o  azimuth and a 
be t t e r  combination can be obtained of the  dependence CY, = f(M) with the  p ro f i l e  
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cha rac t e r i s t i c s .  A s  t y p i c a l  example, raph of cy, = f ( M )  f o r  
t h e  t i p  sec t ion  of blades of t h e  , I1 (rectangular),
V I  (rectangular with increased twist) and a t  t, = 0.12, t, = 
= -0.013, D = 0.4, Mo = 0.7. 

I I  I 

I I  I-

I I

I I
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Fig.2.125 A n g l e  of Attack of Blade Tip Section as a 

Function of Mach Number, f o r  Rotors with Blades 
of Different Shapes. 

Figure 2.125 shows t h a t  the t rapezoidal  blade, f o r  which a reduction of 
chord at the  t i p  (Etia < 1)leads t o  a decrease i n  p r o f i l e  losses,  has t h e  
l a rges t  angles of a t t ack  at M = 0.4 - 0.7. The expanding blade, a t  these values 
of M, has angles of a t t ack  by 1' lower than those of t h e  rectangular blade. The 
blade with increased twist has angles of a t t ack  by 1.7' lower a t  a l l  azimuths 
than those of other  blade var iants .  

The i n t e g r a l  i n  eq.(4.53) should be calculated t o  obtain a quantitative /210
estimate of t h e  e f f e c t  of a change of blade shape and p r o f i l e .  

It is  c l e a r  from the foregoing t h a t  t h e  azimuthal d i s t r i b u t i o n  of p r o f i l e  
losses  i n  each blade sec t ion  depends on f l i g h t  regime, per ipheral  speed, and 
blade p r o f i l e .  Main emphasis should be placed on se l ec t ing  a suitable p r o f i l e  
i n  the blade t i p  sections,  where t h e  l a rges t  p r o f i l e  l o s ses  OCCLW. For i l l u s 
t r a t ion ,  ~ig.2.126 shows the  d i s t r i b u t i o n  of p r o f i l e  l o s ses  over t h e  radius of 
a blade of var iant  I1 f o r  M,, = 0.227, M, = 0.655 a t  four azimuths, as w e l l  as 
t h e  d i s t r i b u t i o n  of t h e  average circumferential  p r o f i l e  l o s ses  over t h e  blade 
radius. Figure 2.126 ind ica t e s  t h a t  about 35%of p r o f i l e  l o s ses  are accounted 
f o r  by t h e  t i p  po r t ion  of t h e  blade from F = 1.0 t o  F = 0.9. 

Section 5. Vortex Theory of Rotor 

1. Problems i n  Vortex Theory 

The main problem i n  the  vo r t ex theory  of a r o t o r  l i e s  i n  the  determination 
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of aerodynamic loads on the  blade, with consideration of t h e  nonuniform induced 
veloci ty  f i e l d .  

The so lu t ion  of this problem permits: 

1. Refining t h e  aerodynamic cha rac t e r i s t i c s  of t he  ro tor .  These refine
ments are less important f o r  t h e  single-rotor hel icopter  and more important f o r  

- ~ ~ e e i  

.NAY 73012 profil 
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Fig.2.126 Distr ibut ion of P r o f i l e  
Losses over Blade Radius. 

multirotor- helicopters,  where t h e  
mutual induced e f f e c t  i s  very strong 
and has a subs tan t ia l  influence on 
t h e i r  f l i g h t  charac te r i s t ics .  

2. Determining both t h e  constant 
and var iable  aerodynamic loads of /211
the  blade and from these loads calcu
l a t i n g  t h e  osc i l l a t ions  of t he  blade 
anti i t s  deformations. Without con
s idera t ion  of t h e  nonuniform induced 
veloci ty  f i e l d ,  any determination of 
t h e  var iable  aerodynamic loads on the  
blade i n  a number of f l i g h t  regimes 
i s  quite inaccurate.  Therefore, t h e  
ro to r  vortex theory must introduce the  
component of blade osc i l l a t ions  and 
the  determination of variable s t r e s ses  
i n t o  t h e  calculation, i.e., i n t o  t h e  
stress analysis  of t h e  blade. 

O n l y  by means of t h e  vortex theory 
i s  it possible  t o  explain such phe
nomena as the  marked increase i n  vari
able loads on the  blade and vibrat ions 
of t he  hel icopter  i n  low-speed regimes 
as w e l l  as t h e  appearance of l o c a l  
flow separation zones at medium and 
high speeds. 

I n  low-speed regimes, the  induced 
veloci ty  f i e l d  i s  pa r t i cu la r ly  non
uniform. T h i s  leads t o  t h e  occurrence 

of appreciable variable aerodynamic forces  ac t ing  on the  blade. The blades 
begin t o  vibrate at increasing amplitude. Extensive var iable  stresses are set 
up i n  the  blades. The var iable  forces  t ransferred from the  blades t o  t h e  hub 
lead t o  increased vibrat ions of t h e  e n t i r e  helicopter.  The explanation of this 
phenomenon i s  possible  only by making use of t h e  vortex theory. 

A t  high and medium f ly ing  speeds, a phenomenon i s  observed which we can 
c a l l  induced flow separation. This phenomenon is  a consequence of l a rge  induced 
ve loc i t i e s  a r i s ing  i n  t h e  region of vor t ices  shed from t h e  blade t i p s .  When t h e  
next blades pass  below these vort ices ,  appreciable surges i n  aerodynamic loads 
and, i n  c e r t a i n  regimes, even flow s a ra t ion  are created. T h i s  phenomenon was 
p a r t i a l l y  described elsewhere (Ref .13and has been confirmed i n  f l i g h t  tests. 
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A no less important problem of the  vortex theory i s  t h e  determination of 
%he induced veloci ty  f i e l d  caused by t he  r o t o r  i n  t h e  stream flowing pas t  t h e  
hel icopter  and i t s  individual  components i n  f l i g h t .  

The character of flow pas t  t h e  wings of a helicopter,  i ts  fuselage, and 
s t a b i l i z e r  i s  la rge ly  determined by the  veloci ty  f i e l d  induced by the  ro tor .  
The occurrence of induced ve loc i t ies  leads t o  addi t iona l  d o w a s h  and t o  a change 
i n  the  t r u e  angles of a t tack  of t he  l i f t i n g  elements and hence i n  the  forces  
ac t ing  on a l l  outer  surfaces of t h e  hel icopter  components. Therefore, t o  study 
t h e  flow around these pa r t s ,  it i s  necessary t o  determine the induced ve loc i t i e s  
at various poin ts  i n  the space surrounding t h e  hel icopter .  

Thus, t h e  vortex theory permits determining t h e  induced d o w a s h  i n  the 
region of t h e  hel icopter  wing and i t s  s t a b i l i z e r  and hence the  aerodynamic 
forces act ing on them. Therefore, t h e  theory a l s o  introduces the  following com
ponents i n t o  the  calculat ions of aerodynamic charac te r i s t ics :  balancing of t h e  
helicopter,  cha rac t e r i s t i c s  of i t s  stabil i ty,  and con t ro l l ab i l i t y  features i n  
which these forces  play a subs tan t ia l  ro le .  

There are other  phenomena f o r  whose ca lcu la t ion  the  vortex theory i s  used. 
A su f f i c i en t ly  de ta i led  descr ip t ion  of a l l  these  phenomena is  possible  only i n  
spec ia l  works. Therefore, i n  this Section we Will give only a brief account of 
t h e  most important elements of the vortex theory, without de ta i led  substantia
t i ons .  

2. 	 Theoretical  Schemes f o r  t he  Vortex Theory of a 
Rotor with a F'inite NmBer -of Blades 

I n  the  vortex theory, t he  ro tor  is replaced by a system of bound and free 
vort ices .  T h i s  system can be represented by a vortex sheet  covered with horse

/212 
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Fig.2.127 Flow around Blade P ro f i l e  
i n  Scheme of Efting-Vortex Surface. 

where 

shoe vort ices  ( see  Fig.2.128). The 
semen t s  of these eddies located a t  
t h e  blade are known as bound vort ices .  
Depending on t h e  purpose of t he  calcu
la t ion ,  we can use schemes i n  which 
the blade i s  replaced e i t h e r  by a 
bound l i f t i n g  vortex ( l i f t i ng - l ine  
scheme), o r  by a bound vor t i c i ty  l aye r  
(scheme of a l i f t ing-vortex surface).  
I n  t h e  la t ter  case (Fig.2.127), t h e  
blade i s  replaced by a system of bound 
vor t ices  d is t r ibu ted  over t he  blade 
chord with some s t rength  y b  SO t h a t  

r =  veloci ty  c i r cu la t ion  over a contour encompassing t h e  blade sec t ion  
(Fig. 2.128) ; 

Y b O  = c i rcu la t ion  p e r  u n i t  length of t h e  bound vor t ices  d is t r ibu ted  over 
t h e  p r o f i l e  chord. 
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The scheme of a l i f t ing-vortex surface more accurately r e f l e c t s  t he  
physical  p a t t e r n  of f l a w  around t h e  blade but i s  more complex i n  calculations.  
Therefore, t o  simplify calculations,  t h e  l i f t ing-vortex surface i s  o f t en  re
placed by a l i f t ing-vortex l i n e .  I n  determining t h e  induced v e l o c i t i e s  a t  a 
s u f f i c i e n t  dis tance from t h e  blade, 

vortices 


this s implif icat ion does not produce exces
s ive  e r r o r s  i n  t h e  results and 
therefore i s  o f t en  used i n  calcu
l a t ions .  The induced ve loc i t i e s  
close t o  the  blade must be deter
mined by t h e  scheme of a l i f t i n g -
vortex surface. 

During operation of the ro to r ,  
t he  conditions of flow around t h e  
blade a t  d i f f e r e n t  r a d i i  are dis
similar. Thus, t he  magnitude of 
circulat5on of t h e  bound vor t i ce s  
varies over t h e  blade radius.  A 
change i n  c i r cu la t ion  i s  accom- /213
panied by the  formation of so-
cal led longi tudinal  vo r t i ce s  ( see  
Fig.2.128). The longi tudinal  
vort ices  are a continuation of t h e  

Fig.2.128 Diagram of Formation of a bound vor t i ce s  located on t h e  
Vortex Sheet i n  Circulation of Flow blade and form the  t a i l s  of horse-

about the Blade. shoe vo r t i ce s  extending t o  in
f i n i t y .  

The s t rength of t h e  longi tudinal  vo r t i ce s  should be equal t o  the  change i n  
c i r cu la t ion  of t he  bound vor t i ce s  over t h e  blade radius: 

( 5  *2) 

where 
Y l o  = s t r eng th  of longi tudinal  vo r t i ce s  p e r  un i t  length;

J? = t o t a l  c i r cu la t ion  of t h e  bound vortices.  

If t h e  c i r cu la t ion  of t he  bound vortex changes i n  time, a l s o  transverse 
vo r t i ce s  Will trail from t h e  blade. The c i r cu la t ion  of t ransverse vo r t i ce s  i s  
equal t o  t h e  change i n  c i r c u l a t i o n  of the bound vort ices  with respect t o  time 

dry E-

fr d t  ’ (5.3) 

where ytr is  t h e  c i r c u l a t i o n  of transverse vort ices  shed by t h e  blade i n  u n i t  
t i m e .  

The s t r eng th  of t h e  t ransverse vo r t i ce s  p e r  u n i t  length can be determined as 
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where U i s  t h e  ve loc i ty  component of r e l a t i v e  flow, normal t o  the  blade axis. 

Transverse vort ices ,  j u s t  as bound vortices,  form p a r t  of the horseshoe 
vo r t i ce s  and merge along t h e  edges with the  longi tudinal  vortices.  A s  a conse
quence, t h e  c i r c u l a t i o n  of t h e  longi tudinal  vo r t i ce s  i s  variable over t h e i r  
length and changes by t h e  magnitude of c i r c u l a t i o n  of t h e  transverse vo r t i ce s  
merging there .  

Under conditions of axial flow p a s t  t he  rotor ,  the c i r cu la t ion  i n  the blade 
sec t ion  I? remains constant i n  time. Therefore, a vortex sheet consisting only 
of longitudinal vort ices  Will be shed by t h e  blade. Their s t r eng th  proves t o  be 
constant over t he  length of the free vortex. 

3. Form of Free VQrtJces 

Under f ly ing  conditions, the free vor t i ce s  shed by &he blade are carr ied 
away from the r o t o r  a t  a rate equal t o  the  relative veloci ty  of the flow passing 
through t h e  rotor .  These veloci t ies ,  generally speaking, are d i f f e ren t  a t  d i f 
f e ren t  points  of this flow. Therefore, t h e  f r e e  vo r t i ce s  t r a i l i n g  from the  
blades are carr ied away from the  r o t o r  a t  d i f f e r e n t  rates. As  a r e su l t ,  a 
r a t h e r  complex vortex system will exLst downstream of t h e  rotor ,  which, more
over, i s  continuously being deformed due t o  the mutual interference of t he  vor
t i c e s .  A t  some dis tance from t h e  rotor ,  t he  vortex sheet begins t o  be dislodged 
and f i n a l l y  lo ses  i t s  o r i g i n a l  form. 

It i s  extremely d i f f i c u l t  t o  take i n t o  account deformations of t h e  system 
of t r a i l i n g  vort ices .  Therefore, i n  t h e o r e t i c a l  methods of calculat ion f e w  at
tempts have been made t o  take these deformations i n t o  consideration. Usually, 
most authors assume t h a t  t h e  f r e e  vortex sheet i s  carr ied away f r o m t h e  ro to r  /2uc
a t  a constant rate equal t o  the mean veloci ty  of flow through t h e  rotor .  

The components of this veloci ty  with respect t o  t h e  coordinate axes, re
ferred t o  t h e  per ipheral  speed of t h e  blade t i p  wR, are usually taken as equal 
t o  p and h o a v  ( A o a ,  being t h e  average ve loc i ty  of t h e  flow of t h e  stream along 
t h e  ax is  of t h e  rotor ,  referred t o  wR). 

The average flow veloci ty  hoav i s  determined by t he  well-known formula: 

CT 


With such an a s s u q t i o n ,  the t r a i l i n g  vort ices  are arranged over a downwash 
spiral surface. The longitudinal free vort ices  are located along downwash spiral 
l i nes ,  whereas the  transverse vort ices  are arranged over t h e  r a d i a l  generatr ix  
of this spiral surface. Therefore, as applied t o  a hel icopter  ro to r  it i s  
preferable t o  divide t h e  t r a i l i n g  vo r t i ce s  i n t o  s p i r a l  and r a d i a l  r a the r  than 
i n t o  longi tudinal  and transverse,  as is  done i n  t h e  a i r f o i l  theory. 

All free vort ices  t r a i l i n g  f r o m t h e  blades are located within an incl ined 
cy l ind r i ca l  surface r e s t ing  upended on t h e  circumference of t he  rotor .  The 
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vortex system enclosed within this surface i s  usual ly  ca l led  a vortex column o r  
a vortex cylinder. 

Let us der ive t h e  equation of t he  l i n e  along which are located t h e  free 
vor t ices  shed from t h e  blade at an a r b i t r a r y  radius  p .  T h i s  l i n e  coincides with 
t h e  wake of t he  blade i n  the  flow passing through t h e  ro to r .  Neglecting devia
t i o n  of t he  blade from t h e  plane of rotat ion,  the  coordinates of this l i n e  (see, 
f o r  example, the coordinates of po in t  A i n  Fig.2.130) can be wr i t ten  as follows: 

where 
- 0 )  < 9 < $0; 

O < p < R ;  
Q0= azimuth of t he  blade a t  the  in s t an t  of time i n  question; 
9 = azimuth of t h e  blade a t  the  in s t an t  of time of shedding the  vortex. 

A l l  computations given below W i l l  be based only on such a form of the  free 
vort ices .  We w i l l  disregard refinements introduced by consideration of t h e i r  
deformation. 

4. 	-Determination of t h e  Induced Veloci t ies  W the  
Biot-Savart Formula 

If t h e  form of t h e  free vor t ices  i s  known, the  Biot-Savart formula can be 
used f o r  determining t h e  induced ve loc i t ies .  T h i s  formula permits determining

+ 
t h e  elementary veloci ty  dv induced a t  t h e  poin t  M by a vortex element of length 
dS (Fig.2.129). In vec to r i a l  form, the  formula can be wr i t t en  as 

where 
dv = vector of t he  elementary induced ve loc i ty  caused a t  the  poin t  M by 

a vortex element of length dS; 
I? = c i r cu la t ion  of t h e  vortex; 
+ 
dS = vector of t h e  vortex element; 

-B
1 = vector proceeding from t h e  point  M where t h e  induced veloci ty  i s  /215 

calculated t o  t h e  locus of t h e  vortex element dS; 
1 = 11I = distance from the  point  M t o  t h e  vortex element dS. 

--t 

The d i rec t ion  of t h e  vector  dv i s  perpendicular t o  t h e  plane formed by t h e  
d + 

vectors dS and 1. 

To determine the  induced veloci ty  from the  t o t a l  vortex, eq.( 5.6) m u s t  be 
integrated with respect t o  i ts  length: 
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Having taken such i n t e g r a l s  over t h e  length of a l l  vortices,  located both 
on t h e  blade and shed by t h e  rotor,  we can obtain t h e  t o t a l  induced velocity at 
any point  of space around t h e  helicopter.  

5. Use of t h e  Biot-Savart_ -Formu& i n  DeveLoping-the 
Vortex Theory of a Rotor 

Equation (5.7) can be used as basis of t he  r o t o r  vortex theory. For this, 
it i s  necessary t o  determine t h e  induced downwash i n  t h e  r o t o r  plane and take 

F'ig.2.129 Diagram f o r  Calculating 
Induced Velocit ies by t h e  Biot-

Savart Formula. 

this i n t o  consideration when determining 
t h e  t r u e  angles o f . a t t a c k  of t h e  blade 
sections.  After this, t h e  loads on t h e  
blades can be determined by formulas of 
t h e  type 

T=.- I ryebU2, (5.8) 

where t h e  value of cy i s  taken with re
spect t o  p r o f i l e  wash, for angles of at
tack calculated with consideration of in
duced downwash. 

To determine t h e  induced downwash 
on t h e  r o t o r  blade it su f f i ces  t o  c a l c w  
late only t h e  axial ( p a r a l l e l  t o  t h e  
ro to r  ax is )  component of t h e  induced ve
l o c i t y  vy. Then t h e  d o m a s h  angle can 
be approximately determined by the  formula 

where Day i s  the  change i n  angle of a t t ack  of t h e  blade element due to.downwash. 

According t o  t h e  r u l e s  of vector analysis,  t he  p ro jec t ion  of t h e  product /216 
of t h e  vectors X ?' onto t h e  y-axis can be calculated i n  the  following manner: 

4 

where dS, and dS, are project ions of t he  vector dS, w h i l e  1, and 1, a r e  projec
4 

t i o m  of t h e  vector 1 onto the  x- and z-axes; t h e  d i r ec t ion  of t h e  x- and z-axes 
i s  shown in Fig.2.130. 

228 




Fig.2.130 Diagram f o r  Calculating Axial Components 
of Induced Velocit ies.  

Correspondingly, t he  axial component of induced veloci ty  can be obtained 
by a formula analogous t o  eq.(5.7): 

( 5  -11) 

Usually, the induced ve loc i t ies  a re  represented as t h e  sum of three  con+ 
ponents : 

v"'vbo f v s p  +%ad* ( 5  012) 

where 
vbo = induced veloci ty  f r o m  bound vort ices;  
va P = induced veloci ty  f r o m  spiral  vort ices;  

vr ad = induced ve loc i ty  from r a d i a l  vort ices .  

Le t  us construct the  general  formulas f o r  calculat ing t h e  axial components
of induced ve loc i t ies ,  without limiting ourselves t o  t h e  case y = 0 (y being t h e  
coordinate of t he  poin t  a t  which t h e  induced veloci ty  i s  calculated).  
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6. Axial Component of Induced Velocity- from Bound Vortices m 
Bound vor t ices  have a c i r cu la t ion  equal t o  rN and are located along the  

ro to r  blades. The subscr ipt  N denotes here t h e  numeral of t h e  ro to r  blade. We 
wi l l  consider t h a t  N = 0, 1 2, ..., z b  - 1, where z b  i s  the  number of blades 
i n  the r o t o r  (see Fig.2.130). 

The values of dS, and dS, enter ing eq.(5.11) f o r  t h e  bound vort ices  are 
equal t o  

where JIN i s  the  azimuth of t h e  blade with t h e  numeral N. 

Subst i tut ing eqs.(5.13) i n t o  eq.( 5.11) and taking t h e  i n t e g r a l  of eq.(5.l l)  
over the length of a l l  ro to r  blades, we obtain 

N=O 0" 

where 

The values of t,, 1, and t entering i n t o  K, are determined by t h e  formulas 

(5.15) 

where r i s  the  radius of t he  circumference passing through the  point  a t  which 
t h e  induced veloci ty  i s  calculated,  w h i l e  

Here, JIo i s  the  azimuth of t h e  blade with t h e  numeral N = 0. 

Subst i tut ing t h e  values of 1, and t, i n t o  t h e  formula f o r  KN, we obtain 

r s i n ( + - + N )KN=- 1 
____. .. ~ 

4x 1 3  

7. 	Axial Coniponent of Induced-Velocity 'from -Spiral 
(h n g i t u d i n a l ) i c G ?  

In determining induced ve loc i t i e s  from s p i r a l  vortices,  we must sum the  
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veloc i t ies  induced by vor t ices  t r a i l i n g  from di f fe ren t  r a d i i  of t he  blade. A s  
i n  the  determination of ve loc i t i e s  f r m  bound vort ices ,  we must define here the  
t o t a l  ve loc i t i e s  induced by vort ices  shed from a l l  ro to r  blades. 

To use eq.(5.ll) f o r  this purpose, it i s  convenient t o  divide the  vortex 
sheet i n t o  s t r i p s  joining t h e  vor t ices  shed from a por t ion  of t h e  blade of 
length dp. Then the  c i rcu la t ion  of t h e  vort ices  enclosed i n  this s t r i p ,  i n  ac

a r Ncordance with eq.(5.2), i s  equal t o  -dp.
aP 

To determine the values of dS, and dS,, we d i f f e r e n t i a t e  e q ~ ~ ( 5 . 5 ) .Then 
(see F'ig.2.130), 

Using e q. ( 5.11) ,we obtain /218 

I,= -HN f r  cos +-- e cos 8,
h,," 

I ,  =r sin + -e sin 8,  
(5 .19)  

The value of HN, representing t h e  distance along a normal t o  the plane of 
rotat ion,  from the  ro to r  t o  t h e  point  of the  vortex sheet ( see  fig.2.l3O), can 
be expressed i n  terms of t h e  azimuth of the  vortex sheet 9 by means of t he  
f o r m a  

where N = 0, 1, 2, ..., zb- 1. 



8.  	Axial Cormonent of Induced Velocity from 
Radial (Transverse) Vortices 

The c i r cu la t ion  of r a d i a l  vo r t i ce s  shed from the  blade i n  u n i t  t i m e  i s  
arequal t o  -2 d t .  I n  the  vortex wake, these vo r t i ce s  are located over t h ea t  

r a d i a l  generatrix.  Therefore, 

Using t h e  same approach as above, we obtain 

where 

The values of 1, , 1, , and 1 entering i n t o  M N  a r e  detemnined by eqs.(5.19). 

Integrat ion with respect t o  t i n  eq.(5.22) can be replaced by in t eg ra t ion  
with respect t o  9, bearing i n  mind t h a t  9 = $N + w t .  Then, 

N=O 0 8 s - m  
(5.23) 

The functions K N ,  L N ,  and M N  entering i n t o  eqs.(S.&), (5.18), and (5.23) /zip
will henceforth be cal led the  induction coe f f i c i en t s  of t he  vortex element dS 
and a po in t  with the coordinates r, $, and y. 

- t he  Vortex Rotor Theory9 .  In t eg rod i f f e ren t i a l  Equation of . .  

To determine the  aerodynamic load on t h e  blade p ro f i l e ,  t he  induced down-
wash must be determined from a l l  t r a i l i n g  vort ices  and bound vort ices  of a l l  
blades, with the exception of t he  blade i n  question, s ince this vortex p a r t i c i 
pa t e s  i n  the formation of l i f t  expressed by Joukowski*s formula: 

T = p U T .  (5.24.) 

I n  other  words, the downwash from the  bound vort ices  on a blade with t h e  
numeral N = 0 must be determined by calculat ing t h e  induced veloci ty  vboby a 
formula d i f f e r i n g  from eq.(5.&) i n  t h a t  t he  term with N = 0 i s  absent:, 
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N=z,  -1 R 

W e  then equate t h e  l if ts  determined by eqs.(5.8) and (5.24.). T h i s  y i e lds  

r = l  c,bU.
2 

If we limit ourselves t o  f l i g h t  regimes i n  which it can be assumed t h a t  
cy  = c$a and U = U, and i f  we represent t h e  angle of a t t ack  cy as 

a=@o$Aa,, ( 5  *27) 

(where Q, i s  t h e  inflow angle t o  t h e  blade p r o f i l e  which would be present i n  the 
absence of induced dowrrwash ha.,), and Aa, i s  expressed i n  conformity with 
eq.(5.9), then eq.(5.26) can be wr i t t en  i n  the  form 

1 1
f=-2 'C~bU,CDo+ - c ; ~ v , .  ( 5  =28)2 

Subst i tut ing here t h e  value of vy determined by eqs.(5.12), (5.&), (5.18), 
and (5.23) and taking i n t o  account t h e  refinement (5.25), we a r r i v e  a t  t h e  in
t eg rod i f f e ren t i a l  equation analogous t o  t h e  basic  i n t e g r o d i f f e r e n t i a l  equation 
of f i n i t e  wing theory (Ref .28): 

arN arN 
It i s  necessary t o  note t h a t  t h e  functions U,, 4,, r N ,  -9 KN,aP 

L N ,  and M N  entering here represent functions of t h e  radius  and azimuth of t h e  
blade. The function Go a l s o  depends on the flapping motion of the  blade which, 
i n  turn,  i s  a function of aerodynamic loads and hence of t h e  values of rN. 
Therefore, t h e  i n t e g r o d i f f e r e n t i a l  equation (5.29) must be solved together /220
with t h e  equation of t he  f lapping motion of t h e  blade. 

It i s  not possible  t o  suggest any general  method of solving this equation. 
I n  each individual  case, t h e  method of solut ion most suitable t o  t h e  p a r t i c u l a r  
case i s  used i n  r e l a t i o n  t o  t h e  method of determining t h e  induced veloci t ies .  
A s  an example, we mention t h e  method presented i n  Section 8 of Chapter I i n  
Vol.11. 

For a solution, t h e  method of successive approximations is  occasionally 
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used, which involves assuming at first t h a t  t h e  induced veloci ty  vy i s  constant 
over t h e  r o t o r  disk and r, is  calculated i n  t h e  first approximation. I n  t h a t  
case, t h e  terms i n  brackets i n  e ~ ~ ( 5 . 2 9 )are calculated and t h e  new value of r,
i s  found; t h e  procedure i s  continued i n  this manner u n t i l  t h e  solut ion converges. 

However, it m u s t  be borne i n  mind t h a t  convergence of this method i s  en
sured only i n  ind iv idua l  p a r t i c u l a r  cases and therefore  must be separately 
checked each time. 

Many authors, considering one o r  another method of successive approximations 
and believing it poss ib l e  t o  r e s t r i c t  t h e  process t o  t h e  f irst  approximation, 
on ly  give a method of calculat ing induced v e l o c i t i e s  based on t h e  values of 
c i r cu la t ion  r, assuming them t o  be prescribed [see, f o r  example, Baskin and Shi-
T s u n  (Ref.16, 22)1. Therefore, it o f t en  happens t h a t  only t h e  operation of de
termining t h e  induced ve loc i t i e s  with respect t o  prescribed values of r i s  in
troduced i n t o  t h e  vortex theory concept. 

10. 	Constancy of Circulat ion of Trai l ing Vortices Along 
Straight  E n e s  P a r a l l e l  t o  t he  Axis of t h e  Inclined 
Vortex Cylinder and Possible Simplifications 

It was already noted i n  Subsection 2 t h a t  t h e  c i r cu la t ion  of s p i r a l  vor
t i c e s  i s  variable over t h e i r  length because they m e r  e with t h e  r a d i a l  vort ices .  
Therefore, when ca l cu la t ing  t h e  i n t e g r a l  i n  eq.(5.18 we must f i nd  t h e  dependence 
.n
dl N = f(9). In l i k e  manner, when calculat ing t h e  i n t e g r a l  i n  eq.(5.23) it must
aP _-

be borne i n  mind t h a t  5 varies over t h e - l e n g t h  of t h e  vortex sheet alonga s  
with the  variable 6. T h i s  circumstance complicates calculat ion of t h e  i n t e g r a l s  
i n  eqs.(5.18) and (5.23). Therefore, i n  calculat ing these it i s  convenient t o  

make use of t h e  f a c t  t h a t  ap 
and -are constant along s t r a igh t  l i n e sarN 	 ar, 

a s  
p a r a l l e l  t o  t h e  generatr ix  of t h e  vortex cylinder. 

Actually, i n  t h e  case of steady f lm p a s t  a rotor ,  vort ices  of i d e n t i c a l  
s t rength w i l l  be shed from a c e r t a i n  radius of each blade at azimuth $. These 
vo r t i ce s  will be ca r r i ed  away from the r o t o r  along a s t r a i g h t  l i n e  p a r a l l e l  t o  
t h e  a x i s  of t h e  vortex column. Therefore, a t  any dis tance from the  rotor,  at a 
po in t  of t h e  vortex sheet  with azimuth 8 = Q and radius p = r, the  s t rength of 
t h e  spiral  and r a d i a l  vo r t i ce s  i s  iden t i ca l .  

For fu r the r  computation, it i s  important t o  note t h a t  any s t r a igh t  l i n e  
passing within t h e  vortex column and p a r a l l e l  t o  i t s  axis i n t e r s e c t s  t he  vortex 
sheet a t  t h e  points  

where 
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n = 0 ,  1, 2, ..., m; 

9 = azimuth of t h e  r o t o r  reckoned only i n  t h e  range from 0 t o  2rr; 
= azimuth of t h e  blade f o r  which the  difference (9, - 8) has t h e  smallest 

pos i t i ve  value. 

It follows from t h e  s t ruc tu re  of eqs.(5.18) and (5.23) tha t ,  t o  determine /221
t h e  induced ve loc i ty  at some point  of space, it i s  first necessary t o  integrate ,  
over t h e  e n t i r e  vortex sheet, a funct ion representing t h e  product of t h e  s t rength 
of an element of this vortex sheet and t h e  induction coeff ic ients  L, and MN, and 
then t o  sum t h e  results obtained from t h e  vortex sheet of each r o t o r  blade 
separately.  

However, i n  this case we need not i n t e g r a t e  along t h e  vort ices  comprising 
t h e  vortex sheet.  A t  first, we can sum t h e  products of t he  s t rength of an ele
ment of t h e  vortex sheet and t h e  induction coe f f i c i en t s  LN and MN along s t r a i g h t
l ines  p a r a l l e l  t o  t h e  ax is  of t h e  vortex column. Here, by v i r tue  of t h e  
s t r eng th  of t h e  vort ices  along t h e  s t r a i g h t  l i n e s  being constant, this operation 
reduces t o  summation of only t h e  induction coeff ic ients .  Therefore, t h e  ele
mentary components of t h e  induced ve loc i ty  f r o m t h e s e  vort ices  can be repre
sented as 

where T9 i s  t h e  c i r cu la t ion  of t h e  bound vortex a t  t h e  i n s t a n t  when the  blade i s  
a t  azimuth $ = 9. 

After in t eg ra t ing  these  expressions over t h e  e n t i r e  r o t o r  disk, we obtain 
formulas f o r  determining t h e  axial components of t he  induced ve loc i t i e s  i n  t h e  
form 

On t h e  basis of these formuhs, we can construct a computationalmethod 
applicable i n  pract ice .  T h i s  method was first used by M.N.Tishchenko. 

It should be pointed out that, i n  the  p r a c t i c a l  appl icat ion of this method, 
t h e  volume of computational operations i s  very large.  

Thus, i f  f o r  calculat ing t h e  i n t e g r a l s  i n  eq.(5.32) t h e  circumference of 
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t h e  ro to r  i s  divided with respect t o  azimuth i n t o  e+ sect ions and t h e  blade i n t o  
z, sect ions with respect t o  radius, then f o r  calculat ing t h e  f i e l d  of t he  axial 
induced veloci ty  components i n  t h e  r o t o r  plane alone, t h e  integrands i n  
eqs.(5.32) must be calculated (e+&,)” times. 

If we assume 9 = 72 (A$ = 5’) and er = 30, then t h e  quantity ( z ~ z , ) ~wil l  
be equal t o  about 4.5 X lo6. Therefore, this method can be ef fec t ive ly  used 
only on computers with a speed subs tan t ia l ly  grea te r  than  20,000 operations pe r  
second. 

11. Character is t ics  of- Using t h e  .EftinR-Line- Scheme__  . 
and Scheme of a Vortex L i f t i n g  Surface 

It was pointed out above t h a t  t he  scheme of a vortex l i f t i n g  l i n e  y ie lds  
sa t i s fac tory  results if the  induced ve loc i t ies  are calculated a t  a su f f i c i en t  
distance from the  blade. However, f o r  determining t h e  aerodynamic loads by 
eq.( 5.G) it is  necessary t o  ca lcu la te  the  induced ve loc i t i e s  on the  blade, 
i.e., where the  bound vortex i s  located according t o , t h e  calculat ion schene. 

/222 

If’ the  l i f t i ng - l ine  scheme i s  used, then the  induced ve loc i t ies  i n  t h e  
calculat ions begin t o  increase on approach t o  t h e  l i f t i n g  vortex and vanish a t  
the  vortex i tself .  T h i s  takes  place i n  two cases: 

1. If flow pas t  t h e  blade i s  unsteady and i f  r a d i a l  ( transverse) vor
t i c e s  are formed i n  t h e  vortex wake. 

2. 	 If t h e  spiral  ( longi tudinal)  vort ices  shed from the  blade make an 
angle d i f f e r ing  fromrr/2 with t h e  blade axis, which always takes  
place i n  the  case of oblique f low through t h e  r o t o r  s ince the  blades 
have s l i p  flow. 

Consequently, t h e  induced ve loc i t i e s  i n  t h e  l i f t i n g  vortex w i l l  not vanish 
only i n  the  case of axial flow pas t  t h e  rotor .  

These d i f f i c u l t i e s  can be overcome by neglecting t h e  e f f ec t  of r a d i a l  vor
t i c e s  and ro to r  s l i p .  Such an approach i s  widespread i n  p rac t i ce  and can be 
used whenever permissible with respect t o  t h e  nature of t h e  problem t o  be solved. 
However, this renders t he  so lu t ion  ra ther  approfimate, which does not always 
suit the  researcher. 

The method of calculat ing with t h e  scheme of a vortex l i f t i n g  surface i s  
free from this shortcoming. Therefore, when calculat ing t h e  induced ve loc i t i e s  
i n  the  blade region we can use methods based on replacement of t h e  blade by a 
vortex surface, as i s  done i n  t h e  theory of unsteady flow pas t  an a i r f o i l  
(Ref  3 0 ) .  However, this renders t he  problem of determining t h e  induced veloci
t i e s  even more corrplex. Therefore, this approach i s  not yet i n  widespread 
p r a c t i c a l  use f o r  r o t o r  calculation, although work i n  this d i r ec t ion  i s  i n  
progress (Ref e 1 9  

For p r a c t i c a l  purposes, we can use the  method i n  which the  free vor t ices  
shed by t h e  blade are divided i n t o  vort ices  d i r e c t l y  adjacent t o  the  blade and 
vort ices  remote from t h e  blade. After this, the  induced ve loc i t ies  due t o  
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vor t i ces  remote from t h e  blade can be determined by t h e  vortex l i f t i n g  l i n e  
scheme w h i l e ,  f o r  calculat ing t h e  ve loc i t i e s  due t o  vort ices  adjacent t o  t h e  
blade, a method based on t h e  vortex l i f t i n g  surface scheme can be developed. 

12. 	Division of Vortices i n t o  M e s  Close t o  and Remote 
from t h e  Blade: Use of IISteady-Flow HYpothesislI 

To f a c i l i t a t e  an analysis of t h e  influence of various elements of t h e  
vortex sheet on t h e  magnitude of t h e  aerodynamic load on t h e  blade, it i s  con
venient t o  divide free vor t i ce s  i n t o  two classes  ( R e f  .17). The first c l a s s  in
cludes vort ices  immediately adjoining t h e  t r a i l i n g  edge of t h e  blade i n  question 
and those shed from the  blade during one revolution a t  some small azimuth angle
A$ (A$ = 20 - 30").  Such vor t i ce s  a r e  cal led adjacent ( t o  a given blade) and 
t h e  induced ve loc i t i e s  caused by these vort ices  are cal led i n t r i n s i c .  The 
second c l a s s  includes a l l  other  f r e e  vort ices .  These vort ices  are ca l l ed  re
mote, and t h e  ve loc i t i e s  induced by them a r e  cal led e x t r i n s i c  induced ve loc i t i e s .  

Such a d iv i s ion  i s  based on t h e  f a c t  t h a t  t h e  vort ices  shed from the blade 
have a noticeable influence on t h e  aerodynamic load of t he  blade only w h i l e  they 
a r e  s u f f i c i e n t l y  close t o  it. Upon removing t h e  vort ices  by a dis tance of 
20 - 30' with respect t o  t h e  r o t o r  azimuth, t h e i r  influence decreases but re
sumes i t s  former extent when t h e  blade executes one complete revolution and again 
approaches these vort ices .  Thus, t h e  blade along i t s  pa th  encounters not only 
i t s  own vor t i ce s  but a l s o  t h e  vo r t i ce s  shed from a l l  other  blades of t h e  ro to r .  
A l l  these vort ices  usually f a l l  i n t o  t h e  general group of remote vort ices .  /223 

I n  some cases, it i s  convenient i n  calculat ions t o  determine separately t h e  
veloci ty  f i e l d  induced by t h e  remote vort ices  and t o  invest igate  t h e  flow pas t  a 
blade moving i n  this nonuniform f i e l d .  With this approach, t h e  flow p a s t  t h e  
blade w i l l  be similar t o  a flow p a s t  t h e  wing of an airplane f ly ing  under condi
t i o n s  of turbulent air. I n  t h e  same manner as f o r  an airplane wing, when calcu
l a t i n g  t h e  var iable  aerodynamic loads on a given blade, i t  i s  possible  t o  con
s i d e r  t he  e f f e c t  of t r a i l i n g  vo r t i ce s  d i r e c t l y  adjacent t o  t h e  blade by t h e  so-
cal led "steady-flow l-qrpothesisll. In this hypothesis, i t  i s  assumed t h a t ,  i n  un
steady flow p a s t  a p r o f i l e ,  t h e  loads act ing on t h e  p r o f i l e  behave as though t h e  
flow p a t t e r n  produced a t  a given i n s t a n t  of time remained unchanged f o r  an arbi
t r a r i l y  long t i m e .  I n  t h e  "steady-flow hypothesis", t h e  e f f e c t  of t r a i l i n g  vor
t i c e s  adjacent t o  t h e  blade i s  disregarded. 

Thus, t h e  flow p a t t e r n  of t h e  blade can be represented i n  the following 
form: When t h e  r o t o r  ro t a t e s ,  t h e  blade encounters t he  nonuniform f i e l d  of ex
t r i n s i c  induced ve loc i t i e s  caused by t h e  e f f e c t  of t h e  t o t a l  vortex system of 
t h e  r o t o r  with t h e  exception of t h e  vort ices  immediately adjoining t h e  blade. 
U n d e r  t h e  e f f e c t  of this ve loc i ty  f ield,  t h e  angles of a t t ack  of t h e  blade sec
t ions  vary constantly, and var iable  aerodynamic loads caused by t h e  n o n u n i f o d t y  
of this f i e l d  begin t o  a c t  on t h e  blade. The magnitude of t h e  variable aerody
namic loads i s  affected a l s o  by t h e  free vort ices  adjacent t o  t h e  blade and shed 
f r o m i t  upon any change i n  t h e  c i r c u l a t i o n  flow. The e f f e c t  of adjacent vor
t i c e s  i s  of t h e  same nature as t h a t  i n  unsteady flow p a s t  a f in i t e  a i rp l ane  Wing. 
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13. Instantaneous a@ Mean Induced Velocit ies and Generation-
of Variable Aerod-ynamic losds  on the  Blade 

Calculation of induced ve loc i t ies  by t h e  t h e o r e t i c a l  scheme with a f in i t e  
number of blades makes it possible  t o  determine t h e  t r u e  (instantaneous) induced 
veloci ty  at any poin t  of space near t h e  helicopter.  The t r u e  induced ve loc i t ies  
prove t o  be variable,  f luc tua t ing  i n  time with t h e  frequency of t h e  vor t ices  
passing by a given point .  One can dis t inguish the - inva r i an t  (mean) and time-
variant  components of induced ve loc i t ies .  

If we examine a point  i n  space f ixed with respect t o  t h e  hel icopter  close 
t o  i ts  rotor ,  then t h e  time-variant induced ve loc i t i e s  a t  this poin t  w i l l  be 
caused both by bound and free vort ices .  However, i n  comparing t h e i r  values, it 
becomes obvious t h a t  t h e  var iable  induced ve loc i t i e s  due t o  bound vort ices  and 
t o  f r e e  vort ices  adjacent t o  the  blade are l a rges t  i n  value. These induced ve
l o c i t i e s  f luc tua te  with t h e  frequency of t he  r o t o r  blades passing by the  point  
i n  question. Generation of these ve loc i t ies  i s  r e l a t ed  primarily with the  forma
t i o n  of aerodynamic forces  on the  blade and i s  observed when t h e  load on the  
blade remains constant i n  time, for example, i n  hovering f l i g h t .  The veloci ty  
f i e l d  induced by these vort ices  i n  this case r o t a t e s  together with t h e  blade. 

Something similar happens i n  the case of oblique flow pas t  t h e  ro to r  i n  
forward f l i g h t .  Here, we can d is t inguish  a c e r t a i n  component of the veloci ty  
f i e l d  which, ro t a t ing  together  with the  blade, does not exc i te  var iable  aerody
namic loads on it. To calculate  these  loads, it i s  necessary t o  define the  mode 
of var ia t ion  of t h e  induced ve loc i t ies  a t  a poin t  ro t a t ing  together with the  /224.
blade r a the r  than a t  a f ixed point  of t h e  r o t o r  disk area. 

With this approach, t he  main generator of var iable  aerodynamic forces  on 
the  blade i s  the  nonuniformity of t he  ex t r in s i c  induced veloci ty  f i e l d  caused 
by vort ices  remote f r o m t h e  blade. Therefore, i n  t h e  first approximation we 
can neglect t he  veloci ty  f i e l d  caused by vort ices  d i r e c t l y  adjacent t o  the  blade 
and inves t iga te  only t h e  f i e l d  of ex t r in s i c  induced ve loc i t ies .  

U+.. Character is t ics  of t h e  E&rLns.ic. .Indu.c.ed-V_elocity Field 

An inves t iga t ion  of t h e  ex t r in s i c  induced veloci ty  f ie ld  caused only by 
vort ices  remote from the  blade permits the statement t h a t  t h e i r  var iable  portion, 
a t  a point  i n  space f ixed with respect t o  t h e  helicopter,  w i l l  be smaller the  
greater  t he  densi ty  of these vort ices .  

An increase i n  vortex densi ty  takes  place, i n  pa r t i cu la r ,  on any reduction 
i n  forward f ly ing  speed of t he  helicopter.  The densi ty  a l s o  increases with an 
increase i n  ro to r  angle of  attack, when the  mean veloci ty  of flow through t h e  
ro to r  decreases and t h e  vortex sheet i s  not carr ied away rapidly enough from the  
plane swept by t he  blades. Such a s i tua t ion  spec i f i ca l ly  occurs i n  braking 
regimes of t he  hel icopter  before passing t o  the  hovering state. A s  an example, 
Fig.2.131 gives a p l an  v i e w  of the  vortex system shed only from the  blade t i p s  
i n  a f ly ing  regime with IJ. = 0.05. The pa t t e rn  shown i s  incomplete, s ince  only 
t h e  three spiral vor t ices  shed from the  blade t i p s  are given w h i l e  t he  vort ices  
shed from a l l  other  blade r a d i i  are omitted. The r a d i a l  vort ices  are a l so  l e f t  



out. However, even this pa t t e rn  gives 
an idea  of t h e  extremely close spacing 
of vort ices  i n  low-speed regimes. 

The var iable  por t ion  of t he  ex
t r i n s i c  induced ve loc i t i e s  decreases 
a l s o  with an increase i n  t h e  number of 
r o t o r  blades. A t  t h e  Limit f o r  a rotor 
with an  infinite number of blades, the  
var iable  components of t h e  induced ve
l o c i t y  become equal t o  zero. 

To ca lcu la te  t h e  ex t r in s i c  induced 
ve loc i ty  field, it i s  poss ib le  t o  use a 
scheme of a r o t o r  with an  in f in i te  num
ber  of inf ini te ly  narrow blades. T h i s  
scheme y ie lds  more accurate results, /225

F'ig.2.131 View of a Vortex System the grea te r  t h e  densi ty  of t he  free 
Shed by the  Blade Tip i n  the  p = vortex system of the  ro to r  i n  the 

= 0.05 Regime. f l i g h t  regime i n  question. 

Upon changing from a given ro to r  
t o  a design with an in f in i t e  number of blades, t he  l o c a l  e f f e c t  due t o  vort ices  
h e d i a t e l y  adjacent t o  the  blade i s  reduced s o  grea t ly  tha t ,  i n  first approxi
mation, i t  can be assumed t h a t  this scheme does not allow f o r  t he  e f f ec t  of ad
jacent vort ices ,  so t h a t  t h e  f i e l d  determined from this scheme w i l l  be c loser  t o  
the  ex t r in s i c  induced veloci ty  f i e l d ,  t he  grea te r  t he  densi ty  of t h e  free vor
t i c e s .  Thus, a d i r ec t  appl ica t ion  of this scheme t o  t h e  determination of vari
able aerodynamic loads on a given blade i s  equivalent t o  t h e  use of t h e  "steady
flow hypothesis11. 

The scheme with an i n f i n i t e  number of blades can a l s o  be used whenever it 
suf f ices  t o  determine only the  time-average p a r t  of t he  induced velocity.  Use 
of this scheme leads t o  subs t an t i a l  s implif icat ions of the  problem and eliminates 
many d i f f i c u l t i e s  a r i s ing  with t h e  scheme of a f in i t e  number of blades. Spe
c i f i c a l l y ,  one of t h e  advantages of this scheme i s  the  f a c t  t h a t  t h e  induced ve
l o c i t i e s  nowhere vanish. 

I n  determining t h e  downwash at the  wing and s t a b i l i z e r  of a helicopter,  
when we are usually in te res ted  only i n  t h e  constant por t ion  of t h e  loads, t he  
scheme with an i n f i n i t e  number of blades can be used i n  a l l  f ly ing  regimes and 
y i e lds  completely sa t i s f ac to ry  results. The same probably holds for determina
t i o n  of t h e  mutual in te r fe rence  of rotors ,  i f  the  designer i s  in te res ted  only i n  
t h e i r  i n t e g r a l  charac te r i s t ics .  

The vo r t ex theory  of a r o t o r  with an inf ini te  nmber of blades has been 
quite thoroughly developed. The so lu t ion  of this problem was discussed specif i 
c a l l y  i n  the  works of G.I.Maykopar, A.I.Slutskiy, L.S.Vil*dgrube, A.N.Proskur
yakov, V.E.E!askin, Wang Shi-Tsun, and other  authors. Each of them brought this 
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theory t o  ever greater penfedion. 

While working out t he  vortex theory af a r & o r . ~ t . han L d r r i t e  number of 
blades, many methods w e r e  suggested a o h  emplayed o e W n  adatit5onal assump
t ions  : 

I, The vortex sheet tmEl ing  from a rutor i s  pla-ne, Tkiis assmpt5on formed 
the  basis of the  works by L..S4Viltagrube anfl LQ,Mel~ts,a d  svtbstant5alLy 
simplifiies the calculations. Therefore, such an approaah, a o h  LSIAElTijlgrube 
brougM t o  a form converrient for praOt5cal use, became widespread

2 It was proposed i n  a number of papers tha t  the  illduced velocit&es can be 
determined rather  aeourately, with considerat5on af only the  conSta& portson 
of the cimuhtt ion af b o d  vorttioes o r  d t h t h e  adatitlion of one or two ftirst 
harmomos of this cimulattion. 

Recently,, V..E.Baskin (Ref-.;L6) arid Wang SkLTsun ('FkC.222) pub'liskred papers 
i n  whioh they discarded these additlioml assumpkkons and broughb the method af 
such caloulat5on t o  a state compl&Ly c o m d e ~f o r  paot5cal use.. Therefore, 
an account of o d y  these two methods w & u  be @veri belaw. 

Vortex Theam of Wang SK-Tsm-

The vortex theaqy af a rator  proposed Qy W a  Shki-Tsun has been rather 
thoroughly presented i n  the  axrbhoI*1s wo~k(Bef..J.. Tbmzfore, 0d.y t k m e  basic 
results wi1L be repeated here, 

where 
r =  cimulatlion i n  t.he b h d e  se&kon.at the examined raaius and azj.mu&h 

Z b  = 

It i s  



due t o  t h e  r o t o r  element under study. 

A s  a consequence of t h e  c i r cu la t ion  of t h e  bound vortex, varying with any 
change i n  t h e  azimuth pos i t i on  of t h e  blade, r a d i a l  ( t ransverse)  vor t ices  with 
a c i r cu la t ion  of 

+Ga,j) =- (5 .34)  

are a l s o  shed by t h e  element i n  cpestion. 

The form of t h e  surface over which t h e  free vor t ices  are arranged i s  repre
sented as a d o m a s h  s p i r a l  surface, just  as i n  t h e  vo r t ex theory  of a r o t o r  
with a f ini te  number of blades. However, now the  vortex c y l i n d e r ' i s  f i l l e d  with 
continuous f r e e  vor t ices  r a t h e r  than  with d i sc re t e  l aye r s  of widely spaced vor
t i c e s ;  a s  had been the  case i n  the  theory with a f ini te  number of blades. 

. . .-~_ _17. Determination of Induced Veloc i t ies  

To f ind  the  induced v e l o c i t i e s  due t o  t r a i l i n g  and bound vor t ices  we used 
the  Biot-Savart formula [eq.(5.6)1. A s  noted above, t o  determine the  t o t a l  in
duced velocities., it i s  necessary t o  sum a l l  elementary induced ve loc i t i e s  ob
tained from indiv idua l  elements of a l l  vor t ices  comprising t h e  vortex system. 
For this, integrat5on i n  the  form of eq.(5.7) must be car r ied  out. Wang Shi-
Tsun demonstmked t h a t  there is  no need here t o  in t eg ra t e  along t h e  downwash 
s p i r a l  lines along wkioh l i e  t h e  t r a i l i n g  vor t ices  shed by the  blade. It i s  
simpler t o  in t eg ra t e  along t h e  s t r a i g h t  l i n e s  p a r a l l e l  t o  t h e  axis of the  in
cl ined vortex cyl inder  (AB i n  Fig.2.12q), s ince the  vor t ices  have i d e n t i c a l  
s t rength  along these s t r a i g h t  l i n e s .  Such a method was used e a r l i e r  by 1.0. 
Mellts f o r  t he  case of a plane vortex system. 

Thus, i n  ca lcu la t ing  induced ve loc i t i e s  f o r  t h e  scheme of a ro to r  with an 
infinite number of blades, it i s  possible  t o  carry out i n t eg ra t ion  along s t r a i g h t
lines p a r a l l e l  t o  t h e  ax is  of t h e  vortex cylinder r a the r  than sunanation of indi
vidual d i sc re t e  quant i t ies ,  as i s  t h e  case i n  the  scheme with a f ini te  number of 
blades (see Subsect .lo). 

Using th5s f a c t ,  Wang Shi-Tsun was able t o  ca lcu la te  t h e  above i n t e g r a l s  
and t o  obta in  sur"fhciently simple formulas f o r  determining a l l  induced veloci ty  
components 

U. Calouht ion  Formulas f o r  Induced Velocity Determination 

The induced v e l o c i t i e s  (Ref..22) are represented as t h e  sum of three  types: 

Where 	 - m 
v = total  induced veloci ty;-v,, = induced ve loc i ty  due t o  bound vort ices;  



-Tsp = induced ve loc i ty  due t o  s p i r a l  ( longi tudina l )  free vor t ices ;  
v, ad = induced ve loc i ty  due t o  r a d i a l  ( t ransverse)  f r e e  vort ices .  

A l l  induced veloci ty  components, enter ing eq.(5.35), pe r t a in  t o  t h e  per i 
phera l  speed of t h e  blade t i p  wR. 

O f  g rea t e s t  i n t e r e s t  f o r  p r a c t i c a l  appl ica t ion  are the  &a1 components 
( p a r a l l e l  t o  t h e  ro to r  axis)  of t h e  induced veloci ty .  In s e t t i n g  up t h e  problem 
of calculat ing t h e  r o t o r  blade loads, axial induced ve loc i ty  components need be 
determined only i n  i t s  plane. 

We w i l l  give t h e  ca lcu la t ion  formulas f o r  determining t h e  a x i a l  components 
i n  t h e  rotor plane only. The formulas f o r  o ther  components, determinable out
s ide  this plane, can be found elsewhere (Ref.22). 

The axial induced veloci ty  components due t o  bound vor t ices  a re  determined 
by t h e  formula 

where is  the c i r cu la t ion  i n  t h e  blade sec t ion  re fer red  t o  w p :  

-
vsp =A ~ 

1 - x  
8nz 1 / P  + AZbY 

0 0  
- 1
TIr&=* ~ 

gnz fP2 A:,,+ X 

12% 

x JJ [cos 91, +sin w,J d ~ .  
0 0  

I 

Here, 

where 
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Evaluation 
-- 

For t h e  var iables  enter ing eqs.(5.36) and (5.38) we will use t h e  following 
notat ions :-

p = r e l a t i v e  radius  of t he  blade sec t ion  shedding t h e  vortex;-
r = r e l a t i v e  radius  of t h e  ro to r  at which the  induced veloci ty  i s  de

termined; 
8 = azimuth of t h e  r o t o r  shedding t h e  vortex;
Jr  = azimuth a t  which t h e  induced ve loc i ty  i s  determined. 

Equations (5.35), (5.36), (5,38), 
ve loc i t i e s  if t h e  c i r c u l a t i o n  r(8, p )  

' 1  I w 
" P 

Fig .a.l32 Dis t r ibu t ion  of Circula
t i o n  over Blade Length, Used i n  t h e  

Calculation. 

and (5.39) permit determining the  induced 
is  known a t  a l l  azimuths 9 and r a d i i  of 

t h e  blade. 

It should be noted t h a t ,  i n  t h e  
vortex theory of a r o t o r  with an infinite 
number of blades, one usually determines 
the  t o t a l  induced ve loc i t ies ,  including 
the  components due t o  bound vort ices  
pa r t i c ipa t ing  i n  t h e  production of blade 
l i f t .  

-19. 	Applicationand -__-_of t he  
PossgbLgtisg of t h e  Wang-Shi-Tsun 
Vortex Theow-

In t h e  p r a c t i c a l  appl icat ion of t he  
Wang Shi-Tsun vortex theory, j u s t  as i n  
a number of other  schemes, t he  distribu

t i o n  of c i r cu la t ion  I' over t h e  blade length i s  usually represented as a stepped 

l i n e ,  a s  shown i n  Fig.2.132. The quantity -ar dp is taken a s  approximately
equal t o  aP 

where A r p  i s  t h e  d i f fe rence  of c i r cu la t ion  at t w o  adjacent port ions of t he  blade. 

Such an approach i s  equivalent t o  replacing t h e  vortex sheet by a number of 
d i sc re t e  vor t ices .  A s  a consequence, t h e  induced veloci ty  approaches i n f i n i t y  
a t  poin ts  where these d i s c r e t e  vor t ices  a re  shed by the  blade. To avoid this, 
t h e  induced ve loc i t i e s  should be calculated with respect  t o  the  midsection a t  
constant c i rcu la t ion .  

I n  determining t h e  c i r cu la t ion  der iva t ive  with respect  t o  blade azimuth, 
the  circumference of t h e  r o t o r  i s  a l so  divided i n t o  a f i n i t e  number of sect ions 

and t h e  der iva t ive  -	ar d8 i s  taken a s  approxhate ly  equal t o  as 



F 


Thus f o r  a numerical determination of t h e  i n t e g r a l s  enter ing eqs.(5.36) 
and (5.38j, we should first determine the  values of rp,Ar, ,and Art ,whose num
ber N w i l l  be equal t o  

where 
z, = number of sec t ions  over t h e  radius i n t o  which t h e  blade i s  divided; 
A$ = p i t c h  with respect  t o  blade azimuth over whose length t h e  c i r cu la ,  

t i o n  is  considered constant. 

Yl' taken over t h e  radius  and azimuth of 

Vortex Theory of- V..E.-Baskin 

The theory of V.E.Baskin was c i rcu la ted  i n  a l imited ed i t i on  i n  1955 and 
later presented by t h e  author i n  an urrpublished report  ( R e f  .16); as a conse
quence, t he  theory of V.E.Baskin i s  not very familiar t o  s p e c i a l i s t s  i n t e re s t ed  
i n  this problem. For this reason, the  theory w i l l  be presented here i n  consider
able d e t a i l  but with c e r t a i n  simplificakions which t h e  author d id  not make. 
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2Q. sch-gne. of- Rotor F l w  

The vortex syst;m, shown i n  RigY2.L28 and consis t ing of bound and f r e e  
spiral and radial vort ices ,  can be represented in a somewhat d i f f e ren t  form. 
W e  can consider t ha t ,  dunhg operat5on of t h e  rotor ,  t he  blade continuously 
sheds infiin3tel.y SIIELIJ~closed almenkaqy vortex rings, with a c i r cu la t ion  con
stant over t h e  contour of t h e  r h g  e-'l t o  tihe c5roulat ion of t h e  bound vortex 
r in  t h e  B l a d e  sea t ion  a t  t h e  5nstank a t  wkiioh t h e  vortex r ing  separates  from 
ft @ig-.&T33),. 

S5me t h e  c i r a u l a t h n  of t h e  bound vortex vac5es over t h e  radius  and azi
muth of tihe Blade, tihe vortex r ings  h d J l 5 n g  from 5%WijU have a d i f f e ren t  
c5rmiki3i.on at diffferent poinks of t h e  vortex sheet.  Consequently,. t h e  f r e e  

/230 
vorbex sheet can be considered as cons~stj5ngof coralS.nuou&Ly d is t r ibu ted ,  in
55njltely smaU vortex rings w5th d5ffTerent c5rculat ion r. 

It 5 s  known from h x d r o d y d a s  b e e  (IBRE.3, p.-266.).'1 that t h e  induced ve
locf tSes  due t o  tihe vortex r ing  contour with a 
c5rouhE5on r willl be t h e  same as those due t o  
t h e  kyer of dipoles  covering t h e  surface 
s-bmtched over this contour, with an i n t e n s i t y  
p e r  u3.t area of 

n--r w+4) 
and onhnked along a normal t o  this surface.  
Here, tihe s5gns are selected on t h e  basis t h a t  
t h e  c 5 r a u k t i o n  flow producing blade L i f t  and 
t h e  dipo:les whose vector gives a pos i t i ve  projec
t5on onto tihe y-axis, a r e  considered pos i t i ve
(IK gr2.<I%),. 

Consequently;, %he free vortex sheet t r a i l i n g  
Figw2.L34. ??or Determining f rom the  Glades can be replaced by a surface 
Induced Velociti5es from a covered by a dipo'le layer.. 

DipoLe C 0 : l m .  
On changing t o  a r o t o r  with an i n f i n i t e  

number of blades, %,hisequal i ty  i s  somewhat modi
flied. A f t  of a r o t o r  with an infinite number of Blades, tihe vortex sheet f i l ls  
t h e  eni5re volume bounded by t h e  downwash cy l ind r i ca l  sunface tangent t o  t h e  
rotor c5rcumferenae. This vortex system, as already mentioned, i s  ca l led  a v o ~  
Cex c"tn. This column can be represented as fidiled wi%h dipoles  r a the r  than 
wi%h vor t ices .  To determine t h e  i n t e n s i t y  of dipole  dis t i r lbut ion i n  the  column, 
a layer of heigh$ dH, f i U e d  with vontices during t h e  thne d t ,  i s  cut  from the  
c d m .  During tihis time, vortex rings wikh a conkour bounding t h e  area 

dF 5Udth!Q (5.45) 

t"f;rm alll. radii. 

T h i s  aontour can be replaaed by dipales wWh an 5nCensity D = -r. On 
changing Co an  inf ini te  number of Ijlades, t hese  d i p d e s  are d i s t r ibu ted  over t h e  



e n t i r e  r o t o r  circumference of radius r with an i n t e n s i t y  of 

If t h e  c i r cu la t ion  r is  expressed i n  terms of t h e  aerodynamic load p e r  uni t  
length from eq.(5.&), then  

We can determine the  quantity d t  enter ing this expression as 

d t = - ,d H  

VY 

where V, is  the  average veloci ty  of flow through t h e  rotor :  

V,= CORA”. 

Let  us then introduce t h e  concept of r e l a t i v e  aerodynamic load, so  t h a t  /231 
T =-1 caebo.7w2R2P. 

2 0  (5.49) 
Then, 

Thus, the problem reduces t o  determining the induced veloci ty  f i e l d  caused 
by the  downwash column of dipoles whose i n t e n s i t y  i n  a l aye r  of thickness dH i s  
determined by eq.( 5.50). 

21. 	 Determination of Induced Veloci t ies  from 
t h e  Dipole Column 

Figure 2.134 shows t h a t  t h e  plane of each of t h e  elementary vortex r ings  
t r a i l i n g  f r o m t h e  blade i s  incl ined at some angle Z t o  t h e  plane of ro t a t ion  of 
t h e  rotor :  

Correspondingly, at this same angle t o  the  plane of ro t a t ion  are incl ined 
a l s o  t h e  axes of t h e  dipoles  which, i n  V.E.Baskints scheme, replace t h e  ele
mentary vortex r ings .  

Henceforth we will disregard this .angle and wi l l  assume t h a t  t he  axes of 
a l l  dipoles  a re  d i rec ted  perpendicular t o  the  r o t o r  plane. Baskin (Ref .16) did 
not use this s impl i f ica t ion  i n  deriving t h e  basic  re la t ionships ,  but it i s  
shown t h a t  - i n  calculat ing t h e  axial induced ve loc i ty  component - this is  per
missible.  
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To determine t h e  induced ve loc i t ies ,  le t  us examine a flow caused by di
poles  f i l l i n g  an element of t h e  vortex cylinder of a height equal t o  dH (see 
Fig.2.136). 

S d n g  t h e  induced ve loc i t i e s  caused by all elements of t he  vortex column, 
we can obtain t h e  t o t a l  induced veloci ty .  

22. Fluid Flow Induced p a Disk Covered with Dipoles 

Fluid flow induced by a disk  covered with dipoles  can be determined as the  
so lu t ion  of t h e  Laplace equation with c e r t a i n  boundary conditions, which will 

be discussed below. 

The Iaplace equation i n  cy l ind r i ca l  coordinates 
(Fig.2.135) can be wr i t t en  i n  t h e  form

k:* w.+ EYL ; d2v 1 dv I 1 

Lhau du2 de2 p dQ e2 d82 
-0, (5.52) 

where cp i s  the veloci ty  po ten t i a l .  
Fig.2.135 For De

termining t h e  Ve

l o c i t y  Po ten t i a l  by Fourier s e r i e s .  Then, 


The ve loc i ty  p o t e n t i a l  can be expanded i n  a 

t h e  &place Equation. 

p =2 (CP, cos mS +T,,, sin ms). (5.53) 
m=O 

Subst i tut ing eq.( 5.53) i n t o  eq.( 5.52), we obtain t h e  equation f o r  determining 
t h e  coef f ic ien ts  of t he  s ines  and cosines enter ing eq.(5.53): 

(5.54) 

Solution of eq.(5.54) W i l l  be sought i n  t h e  form /232 
vm=er (e). (5.55) 

Subst i tut ing eq.(5.55) i n t o  eq.(5.54), we obtain 

T h i s  equation can be reduced t o  a canonical form, i f  we set 
-

kQ=Q. 
Then, 
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The general  so lu t ion  af this equat5on can be m i t k e n i n  t h e  form 

x! ~ i i , = - A ~ , O + - ~ ~ ~ , ( i ! ) .  (5.58) 

The funct ion I=(F)tends t o  i n f i n i t y  its b -, Q. Therefore, i f  we r e s t r i c t  
ourselves t o  a f i n i t e  value of t h e  poten-tial, %hen 

If we use %he oondit?ion t h a t ,  as u -+ a l s o  cpm -, 0, tihen the  so lu t ion  of 
eq.( 5.54) can be writiten ils 

ym=Ae-" J ,  (.Re), (.2.60) 

where k 2 Q. 

The function (pm w i D l  be the  so lu t ion  t o  eq.(,5-.5&) a t  any value of k = kl,. 
Consequent& t h e  so:lution of eq.( 2.%) W i n  a l s o  be t h e  sum 

and tihe 5nkegral 



yl Then t h e  value of t h e  po-
R o t o r  t e n t i a l  a t  t he  boundary of t h e  
/ "1 disk  on t h e  s ide where u > 0, can 

be defined as 

y=-- D. 
2 

The boundary conditions f o r  /;?33 
flow induced by a disk covered by 
dipoles  of a densi ty  D are deter
mined from eq.(5.65) i f  p s R. If 
p > R, t h e  p o t e n t i a l  i n  t he  d isk  
plane i s  everywhere'equal t o  zero 
(cp = o),. 

The i r l tens i ty  of t h e  dipoles 
covering the  disk can be replie
sented i n  form df a -Pies: 

Fig.2.136 Diagram of Rotor Flow Used i n  
the  Calculation f o r  Determination of 

Induced Veloci t ies .  

Then, using t h e  boundary condibion ('5..65,) f o r  de-tertnining t k e  afii-brary 
funct ion A(k) i n  eq.(5.62), we can &%e t h e  so3ution orf t h e  cont&nuity e q a 
t i o n  (5.52) i n  t h e  form 

Y

m=O, '0 

The der iva t ion  of this expression i s  given elsewhere (Ref-.31),. 

a.Transformation of Es.(5.67) t L t h e  Rotor Axes: Use of 
t h e  The-orem of Addition ofCyli-+ricaP Functions 

Equation (5.67) i s  wr i t t en  i n  cy l ind r i ca l  coordinates with t h e  u-axis going 
through t h e  center  of t h e  d isk  of thickness dH, cut  out from the  dipole calm 
(see Fig.2.136). To transform this expression i n t o  coordinates re la ted  with the  
ro tor ,  we can use t h e  theorem of addi t ion  of cy l ind r i ca l  functions ( R e f  .34.). ,&&
It follows from this theorem that 
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(he)=-( IF 3J,,(RF) J , , + ~sin m ~ ,  ( R I )  sin nq. 
n=--

The veloci ty  p o t e n t i a l  from t h e  dipole  layer i s  expanded i n  a Fourier 
series: -

y= 2 ( ~ n ~ ~ ~ n + + ~ n s i n n + ) .  (5.69) 
n=--

Then, using eqs.(5.68) and (5.69) and equating t h e  coef f ic ien ts  of cos I$ 
and s i n  n$ with i d e n t i c a l  n i n  eq.(5.67), we obtain 

m=O 0 

25. 	 Determination of t h e  Total  Velocity Po ten t i a l  from 
t h e  Ent i re  Dipole Column 

To determine t h e  conponents of the  t o t a l  veloci ty  p o t e n t i a l  represented as 

n=-m 

eqs.(5.70) must be integrated over t he  e n t i r e  dipole column (see ~ig.2.136). 

For this, we must first-wr i te  out the  values of 5m(p) and E,(p). 

We note t h a t  within the  vortex column t h e  i n t e n s i t y  of the  dipoles, j u s t  as 
t h e  s t rength of t he  vort ices ,  i s  constant along s t r a igh t  l i n e s  p a r a l l e l  t o  the 
column axis.  Therefore, t h e  dipole i n t e n s i t y  D(p ,8 )  i n  any layer cut  out from 
the  vortex column w i l l  be equal t o  the  i n t e n s i t y  of t h e  dipoles t r a i l i n g  from 
the  ro to r  a t  a poin t  where r = p and $ = 9. 

If t h e  r e l a t ive  aerodynamic load P [see eq.(5.50)1 i s  represented i n  the  /235
form 



f 

then we can wr i te  

Se t t ing  

and subs t i t u t ing  eqs.(5.73) i n t o  (5.70), we can in t eg ra t e  the  obtained expres
sions with respect t o  H. It i s  easy t o  demonstrate t ha t ,  f o r  performing this 
operation, we must determine the  value of t h e  i n t e g r a l  

00 

f ( H )=s0 e-kHf,+m(k 2H ) d H .  ( 5 075) 

Referring t o  the  handbook by Ruzhik CRef.34, p.721, eq.(6.611.1)1, we obtain 

where 

r 


Here p = m + n, and eq.(5.76) i s  va l id  only i f  p > 0. Therefore, a t  m + 

+ n < 0, eq.(5.76) takes  the  form 

(5.79) 

where p = -(m + n). 

Let us introduce t h e  new variable  

z = k R .  (5080) 

Then, using eqs.(5.76) and (5.80), we can wr i te  out the  expressions f o r  /236
t h e  coqonents  of t h e  veloci ty  p o t e n t i a l  from t h e  e n t i r e  dipole column: 

I 




Here, a l l  l i nea r  dimensions p e r t a i n  t o  t h e  radius of the  ro to r  R, including 

26. Determination o f h d u s e d  VelocitLes 

A s  already mentioned, we w i n  determine only the  axial induced velocity 
components. For txs, we must take the der ivat ive of the  veloci ty  p o t e n t i a l  

with respect t o  y. We see from ecp(5.81) t h a t  only the term e-'? depends on y.. 
Therefore, t he  operation of d i f f e ren t i a t ion  leads t o  expressions d i f fe r ing  from 
eq.(5.81) only i n  s ign and i n  component z .  

Before wri t ing out t he  f inal  formulas f o r  determining the  induced veloci
ties, we will present them as a Fourier ser ies :  

n=O 

Here., a l l  induced velocity components a re  referred t o  the t i p  speed of t he  
blade wR. I n  determining the  induced veloci ty  camponents wr i t ten  i n  form of 
eq.( 5-82), t he  following operations must be performed: 

An exception i s  the  determination of To, which i s  calculated as 

-&=--.I a60 

w~ ay 

A s  a r e s u l t  of the  act ions provided f o r  i n  eqs.(5.83) and (5.&!+), we obtain 
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m 

0. 

m=O 

It i s  assumed i n  these  expressions t h a t  n > m. Therefore, i n  conformity 
with eq.(5.79), when n < m, i n  place of T*" we must ca lcu la te  (-lpm--n~m-n. 

When pel-forming operations with eqs-.(5..83) we must bear i n  mind t h a t  
-

J-,(zr)=( -l)"J,(zr). 

Different methods can be suggested f o r  calcuLtKng t h e  i r l tegrals  enterring 
eqs.(5.85) and (5..&6), One such method wiU be given i n  SecrtKon 8 6f Ohapter I 
of VoL.11, where a method uf calculat5ng e W i c  viTx-atKons or a blade with con
siderat5on of a varbab2-e induced veloci ty  f i e l d  win be disoussed-. 

Smttion 6,  E h " e n t a 1  M d m t Y o n  of Aerodynamic 
-Ohwa&erri&%w af a R o t o r  

The most, reliable methads uf determining t h e  aerodynamic c h a r a c t e r h t i c s  of 
a rotor are f w h t  tests af t h e  hel icopter  with the  ro to r  under study o r  with 
another Similar rotor whjch can be regarded as a model of t h e  invest igated rotor ,  
as w e l l  as Wind-tunnel tests on ful l -scale  ro to r s  o r  large-scale models. 
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I n  this Section, we Will present ce r t a in  results of f l i g h t  tests and wind-
tunnel tests and give a brief descr ip t ion  of t h e  t e s t i n g  procedure. The tests /238 
were  car r ied  out at research i n s t i t u t e s  by M.K.Speranskiy, A.I.Aldmov, and 
others .  

1. Flight  TestsAr Determinim t h e  Aerodynamic 
Character is t ics  of a He&capter 

The aerodynamic cha rac t e r i s t i c s  of a hel icopter  i n  a system of Wind axes 
(F'igs.2.105 - 2.109), i.e., i n  the  form i n  which theg are used i n  aerodynamic 
design, can be obtained from f l i g h t  tests. 

Selecting the  f ly ing  speed, ro to r  rpm, f ly ing  weight, and f l i g h t  a l t i t ude ,  
f l i g h t  tests will furn ish  constant values of M i l ,  Mo, and t h e  th rus t  coef f ic ien t  
of t h e  hel icopter  t,, (below, p and T denote the  pressure and temperature of t h e  
a i r )  : 

VM,L =-= V -=const, V 
a 20.1)/T { F  ' 

W R  nM,=-=const, 
{ F 'a 

G%=--I 
G G =const, __,-

-
2 

Q (oR)2aF -1 Q a2 M,aF M i  P 
2 

s ince  -1 ~ a ?=1(0.379 $)(2Q.1 V*T)'=const,p. 
2 2 

Ful f i l l i ng ,  under these  conditions, various f l i g h t  regimes with d i f f e ren t  
engine powers - gliding a t  a d i f fe ren t  r a t e  of descent, forward f l i g h t ,  and 
climbing with a d i f f e ren t  rate of ascent, we can obtain a su f f i c i en t  number of 
po in ts  of t he  aerodynamic cha rac t e r i s t i c s  of the hel icopter  i n  t h e  form of t h e  
dependence txh= f(mt) f o r  constant values of V, t,, , and M,. I n  an autorotat ion 
regime of t h e  rotor,  we obtain a point  with m, = C (fig.2.137). The point  txh= 

= 0 corresponds t o  a forward f l i g h t  regime since, a t  this point,  t he  propulsive 
force  of t h e  ro to r  i s  balanced by the  pa ras i t e  drag of t h e  helicopter.  Gliding 
of t he  hel icopter  corresponds t o  intermediate regimes. The regimes t,, < 0, 

i.e., a gain i n  a l t i t u d e  a t  a point  where the  engine power i s  maximal (m, = 
-- m t d i r  ), are obtained from t h e  r e g h e  of maximum rate of ascent f o r  a given 

f ly ing  speed. 

A s  a result of tests, we will determine t h e  aerodynamic charac te r i s t ics  of 
a hel icopter  which differ from the  ro to r  charac te r i s t ics  i n  t h a t  t he  aerodynamics 
of the  no-lift-producing p a r t s  of t h e  hel icopter  i s  taken i n t o  account, 

Thus, f l i g h t  tests f o r  determining the aerodynamic charac te r i s t ics  of a 
hel icopter  involve 'Iflying by t h e  seat of t he  pants1! i n  which gliding, gain i n  
a l t i t ude ,  and forward f l i g h t  are performed at constant values of V / D ,  n/O, A.P 
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U, =const 
t3/#=constn 


' I \ ,Gliding 

Level 

flight 


Gain i n  altitude 

fig.2.137 Coefficients of 
Forces and Torque of Rotor i n  

Various Fl ight  Regimes. 

In addi t ion t o  these  quantit ies,  the follow
ing  a r e  measured: v e r t i c a l  veloci ty  V,; in
c l ina t ion  of t h e  plane of ro ta t ion  of t he  
ro to r  t o  t h e  horizon (p i t ch  angle of t h e  
hel icopter)  9; components of cycl ic  change 
of p i t c h  q1,6 (or angles of def lec t ion  of 
the  automatic p i t c h  cont ro l  H,  'Tl and t h e  
flapping coef f ic ien ts ) ;  s e t t i n g  angle of t h e  
blade 8, ; and torque of t h e  ro to r  M, The 
torque i s  measured by s t r a i n  gages mounted 
t o  the  ro to r  sha f t  or t o  t h e  rod of the  re
duction-gear frame. 

The aerodynamic charac te r i s t ics  of a /239
hel icopter  are determined from the  expres
sions derived i n  Section 1of Chapter 111: 

m 4 
t - I

-@((wR)zRuF ' 
(6.3) 

2 

The fl ight-path angle t o  the  horizontal  i s  

The ro to r  angle of a t tack  and 
the  equivalent angle of a t tack  a r e  
found from the  following formulas 
(Fig.2.138): 

a=B-e (6.5) 
I 

ar=a-ycp,=a +D,x-DZq+ k61, (6 e6) 

where 
Fig.2.138 For Determining t h e  Angle of RH - DZT = def lec t ion  of t he  
Attack (Y and Equivalent Angle of Attack e @valent plane 

(Y, i n  Fl ight .  of ro t a t ion  of 
t he  ro to r  from 
the design plane 

of r o t a t i o n  a t  incl ined automatic p i t c h  control;  
kbl = addi t iona l  def lec t ion  of t h e  equivalent plane of r o t a t i o n  of t he  ro to r  
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i n  the  presence of a flapping campensator. 

A t  a methodologically correct conduction of tests, the  root-mea-square 
e r ror  i n  determining tYhi s  0.5% while, i n  det,ermining mt, it is  3.5%. 

The results of f l i g h t  tests with the  helicopter Mi-1 a re  plotted i n  
fig.2.139. The helicopter had a three-blade ro tor  with t rapezoidal twisted 
blades, D = l4.3 m, CJ = 0.0504, blades with plywood planking except f o r  the 
blade root (F < 0.59) where the  shank port ion of t he  p ro f i l e  was covered w it h  
fabr ic  . 

-0.04. . . . . . . . . 

Ftig.2.139 Coefficient of Propulsive Forces as a Function of 
Coefficient of Torque (Flight Tests of M i - 1  Helicopter) . 

"he aerodynamic character is t ics  of t h e  ro tor  are obtained by subtracting 
the  coefficients of forces created by the  nonlift ing elements from the coeffi
c ients  of forces of t he  helicopter. By analogy w i t h  eq.(1.3) from Chapter 111, 
the  coefficients of forces of the  ro tor  are  equal t o  



-- 

where Zyf = cyf
F 

and = -.cc, s 
F 

The coef f ic ien ts  Fyf and Ex of the  M i - 1  hel icopter  were determined by t e s t 
ing a ful l -scale  fuselage i n  a wind tunnel. The l i f t  coeff ic ient  of t he  fuse
lage  Zyii s  very small and we can disregard it i n  eq.(6 ."). 

It is  necessary t o  bear i n  mind that the  aerodynamic charac te r i s t ics  of & 
a r o t o r  obtained from f l i g h t  tests take  i n t o  account t h e  mutual interference of 
t h e  l i f t i n g  and nonl i f t ing elements of the helicopter,  a f a c t  t h a t  increases the  
value of these data .  

2. @nd-T+el-Tests f o r  Determining t& A e r o d m a m i  C 

Charac_teristics of a Rotor 

To determine the aerodynamic charac te r i s t ics  of ful l -scale  helicopter 
ro to r s  i n  a Wind tunnel, t he  TsAGI has spec ia l  f a c i l i t i e s  f o r  t e s t ing  two-, 
three-, and four-blade ro tors  with a diameter up t o  15.5 m. 

Fig.2.UCO Fac i l i t y  f o r  Testing Full-scale Rotors 
i n  a Wind Tunnel. 

The first f a c i l i t y  f o r  t e s t i n g  ful l -scale  ro tors  with an engine power of 
575 hp was created under t h e  supervision of M.L.Milt on t h e  basis of t h e  M i - 1  

~ helicopter.  Figure 2.11.10 gives a v iew of t he  u n i t  mounted t o  t h e  upper s t ruc ture  
of t he  tunnel balance. The unit has a spec ia l  damping suspension support, main
t a in ing  t h e  permissible level of vibrat ions set up on t h e  balance during start
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FSig.2.&1 Aerodynamic Character is t ics  
of Rotor ( V  = 0; M, = 0.5; cj = 0.0525; 

eriment ) 
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~ j g . a 3  Aerodynamic Characteristics of Rotor Fig . 2 . U  Aerodynamic Characteristics of Rotor 
( M f l  = 0.1; v = 0.2; Mo = 0.5; (5 = 0.0525; (Mf I = 0.125; = 0.25; 3 = 0.5; rs = 0.0525; 

Experiment). Experment). 



up, overspeeding, and normal operat ion of t h e  ro to r .  

The aerodynamic forces  and moments of t h e  r o t o r  i n  t h e  axes of t h e  Wind 
tunnel are determined as t h e  difference between t h e  readings of t h e  balance with 
t h e  spec ia l  uni t  operating, as we l l  as with t h e  uni t  minus r o t o r  and hub ( o r  with 
a nonrotating hub). The obtained moments and forces  include t h e  mutual i n t e r 
ference of t h e  r o t o r  With t h e  fuselage of t h e  unit and t h e  e f f e c t  of t he  r o t o r  
hub. I n  some cases, correct ions are introduced which take i n t o  account t h e  ef
f e c t  of t h e  r o t o r  on t h e  forces  created by t h e  fuselage of t h e  unit. I n  such 
cases, and also when measuring with a strain-gage balance placed near t h e  hub, 
t h e  cha rac t e r i s t i c s  of t h e  r o t o r  include 0- t h e  e f f e c t  of t h e  fuselage on the  
ro to r  and t h e  e f f e c t  of t h e  r o t o r  hub. 

Figures 2.&l - 2.&5 show the  test-derived aerodynamic cha rac t e r i s t i c s  of 
t h e  r o t o r  of t h e  Mi-1 helicopter,  with metal blades of rectangular  planform. 
The geometric cha rac t e r i s t i c s  of t h e  blade are p lo t t ed  i n  F ig .2 .w:  blade pro
f i l e  NACA 230, number of blades zb = 3,  diameter D = 14.5 m, s o l i d i t y  r a t i o  ,&&
CJ = 0.0525, mass cha rac t e r i s t i c s  of blade y = 4.5, flapping compensator k = 0.56. 

4 


z 


i 

-2 


-4 


Fig.2.&5 Aerodynamic Charac te r i s t ics  F i g . 2 . w  Geometric Character is t ics  
of Rotor (Mfl  = 0.15; v = 0.3; M, = of Blade. 

= 0.5; CJ = 0.0525; Experiment). 

The experiment was l a i d  out so t h a t  t h e  aerodynamic cha rac t e r i s t i c s  in
cluded t h e  e f f ec t  of t h e  r o t o r  hub and t h e  mutual in te r fe rence  between fuselage 
and unit;  this means tha t ,  i n  t h e  aerodynamic design of a helicopter,  allowance 
m u s t  be made f o r  t h e  p a r a s i t e  drag of t h e  he l icopter  without ro to r  hub. 
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I n  this book, we use experimental da t a  pel l tdning only t o  t he  a e r o d y d c  
design of t h e  hel icopter .  Therefore, t h e  graphs of t h e  aerodynamic character
i s t i c s  are given f o r  components of. forces  i n  a s y s t e m  of wind axes t, and t,. 
The coef f ic ien ts  of forces  t and h can be obtained by t h e  conversion formulas 
C e q ~ ~ ( 3 . 1 5 )and (3.17)l. 

The ro to r  angles of a t tack,  p lo t t ed  i n  Figs.2.%2 - 2.%5, correspond t o  
-zero def lec t ion  of t h e  automatic p i t c h  cont ro l  mechanism. To reduce t h e  volume 

of this book, t h e  graphs of t, = f ( a ,  eo,  v) o r  t, = f(m,, e o ,  V), used f o r  de
termining ro to r  p i tch ,  are not given. 

MEXIBDs OF CONVEFZTING THE AEXODYNAMIC CHAFLACTERISTICS 
OF A FOTOR 

The conversion formulas presented below make it possible  t o  use experimental 
da ta  per ta ining t o  some spec i f i c  r o t o r  f o r  determining the  aerodynamic charac
t e r i s t i c s  of other ro to r s  s i m i l a r . t o  t h e  t e s t ed  ro to r  with respect t o  dimension
l e s s  geometric cha rac t e r i s t i c s .  For example, t h e  experimental graphs of t h e  
aerodynamic cha rac t e r i s t i c s  shown i n  Figs.2.l-42 - 2.&5 can be used, with the  
help of t h e  conversion formulas, f o r  determining t h e  cha rac t e r i s t i c s  of ro to r s  
with other  s o l i d i t y  r a t i o s  i f  the ro to r s  have rectangular blades, a twis t  of 
5 - 9', and a p r o f i l e  c lose t o  t h e  NACA 3 0  p r o f i l e .  The cha rac t e r i s t i c s  can be 
extrapolated t o  other  ro tors ,  but with a lower degree of accuracy. 

The use of t h e  conversion formulas permits an appreciable reduction i n  the  
nmber of graphs of aerodynamic cha rac t e r i s t i c s  of ro to r s  required f o r  hel icopter  
designs. 

3.  	Conversionof Aerodynamic Character is t ics  t o  a 
Different Rotor So l id i ty  Rat io  

kt us compare two r o t o r s  whose blades have i d e n t i c a l  d i s t r ibu t ions  of 

tw i s t  angles and r e l a t i v e  chord =6 = ba,7 over t h e  radius;  the  ro tors  a re  as

sumed t o  have e i t h e r  a d i f f e ren t  number of blades o r  a d i f f e ren t  chord, bOe7,
i.e., a d i f f e ren t  s o l i d i t y  r a t i o .  The magnitude of t he  mass cha rac t e r i s t i c  of 
t h e  blade y has only a minor influence on the  r o t o r  cha rac t e r i s t i c s  so t h a t  t h e  
difference i n y  can be disregarded; however, f o r  rigorousness we will  assume 
t h a t  y of both ro to r s  is  iden t i ca l .  

A t  uniform induced ve loc i ty  d i s t r ibu t ion  over t h e  d isk  of these rotors ,  t he  
flapping motion of t h e  blades and a l l  dimensionless coef f ic ien ts  i n  the  body 
a x i s  system.- t, h, m,, and others  - a r e  i d e n t i c a l  i f  t h e  ro to r s  have equal 
values of t h e  f l i g h t  regime cha rac t e r i s t i c  p, col lec t ive  p i t c h  c p ,  and r e l a t i v e  
flow noma1 t o  t h e  plane of ro t a t ion  of t h e  r o t o r  A :  

- 
).= V s i n a - u  

=ptana -v =pa -v. (6.9)
UR 
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? 

It i s  easy t o  prove this from t h e  formulas of t h e  Glauert-Lock theory 
(Sect .2) which ind ica t e  t h a t  t he  expressions f o r  a l l  dimensionless coef f ic ien ts  
contain four  quant i t ies :  p, A ,  rp, and y o  These quant i t ies  f u l l y  determine the  
r o t o r  kinematics; i f  they a r e  equal, t h e  ve loc i ty  polygons i n  each r o t o r  sec t ion  
w i l l  be al ike,  and t h e  true angles of a t tack,  cy and cXp w i l l  be equal. 

Fig.2.u7 Air Velocity Components Normal (V s i n  a - v> 
and P a r a l l e l  ( V  cos cy) t o  t h e  Rotor Plane at Different 

Values of o and a .  
V cos cy1 = V cos cy2; V s i n  cy1 - 9 = V s i n  cy2 - v2. 

A t  known p, A ,  and t, t h e  angle of a t tack  of t h e  ro to r  i s  determined by t he  
expression 

(6.lo) 


Consequently, at equal dimensionless coe f f i c i en t s  but d i f f e ren t  s o l i d i t y  
r a t io s ,  t h e  ro to r  angles of a t tack  d i f f e r ;  t h e  ro to r  with t h e  l a rge r  so l id i ty ,  
i.e.,  with a l a r g e r  dimensionless induced velocity,  a t  equal t and a t  t h e  same 
value of A ,  w i l l  have a l a r g e r  more pos i t i ve  angle of a t tack .  Figure 2 . u 7  
i l l u s t r a t e s  t h e  equal i ty  of t h e  air veloc i ty  components noma1 ( V  s i n  cy - v = 
= AwR) and p a r a l l e l  (V cos cy = pwR) t o  t h e  ro to r  plane a t  d i f f e r e n t  mean induced 
ve loc i t i e s  v and d i f f e ren t  ro to r  angles of a t t ack  a. 

Using t h e  subscr ipts  111l1 and 11211 t o  denote t h e  quant i t ies  per ta ining t o  
ro tors  with s o l i d i t y  r a t i o s  of ol and 02,we can wr i te  t h e  expression f o r  the  
difference of t h e  angles of a t tack  of both ro to r s  

or, approximately f o r  p 5 0.15 at h2 Q p2,  

fAa=a, -a2=(a, -02) 
4B2p.2 * 

The difference i n  the  angles of a t tack  is  expressed as t h e  product of t h e  
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difference i n  the  s o l i d i t i e s  and the  r a t i o  t . Consequently, a t  equal t 
02P2 

and p t h e  difference i n  the  angles of a t tack i s  proportional t o  the  difference 
i n  CT. 

Thus, at equal p and 'p a l l  charac te r i s t ics  of t he  investigated ro tors  i n  

Zfl =const 
V =const 

-
mt 


FSg.2.&8 Reconstruction 
of t he  Dependence t, = 
= f ( m , )  on Change of t h e  

Rotor Sol id i ty  Ratio. 

body axes are i d e n t i c a l  i f  the  ro tors  have angles
of at tack d i f fe r ing  by a quantity ha,  which i s  
determined from eq.(6.11). To change over t o  
charac te r i s t ics  i n  a system of wind axes, we use 
the  fomulas  f o r  converting from one system t o  
another. Taking i n t o  account t ha t  t h e  difference 
i n  the  angles of a t tack  of the  ro tors  ACY i s  
small, we obtain 

L e t  us wri te  out t he  f inal  formulas for, 
converting the  aerodynamic charac te r i s t ics  of 
ro to r s  with d i f f e ren t  s o l i d i t y  r a t io s :  

"tt,=mt2; I (6.12) 

Equations (6.12) ind ica te  tha t ,  on converting the  charac te r i s t ics ,  the  
value of t he  coeff ic ients  g ,  t,, and mi i s  retained whereas t, and CY change by a 
quantity which i s  constant f o r  given t, and 7. T h i s  means t h a t  the  reconstruc
t i o n  of t he  aerodyrgxic cha rac t e r i s t i c s  of a ro tor ,  represented as t h e  depend
ence t, = f(m,) at V = const and t, = const, reduces t o  a displacement of each 

curve along t h e  ordinate by a quantity A t ,  = a0 
4.B" v2 (fig.2.&8).t$ 


Reconstruction of t he  charac te r i s t ics  need not be carr ied out i n  pract ice ,  
s ince we can execute the  aerodynamic design of a hel icopter  on the  basis of the  
aerodynamic charac te r i s t ics  of a similar ro to r  with a d i f fe ren t  s o l i d i t y  r a t io ,  
with due regard f o r  A t , .  For example, i n  designing a hel icopter  with a s o l i d i t y  
r a t i o  o2 based on t h e  aerodynamic charac te r i s t ics  of a ro to r  with a s o l i d i t y  
r a t i o  C T ~ ,  t he  required torque coef f ic ien t  (mthmf)2 and the  required power Nh.f2 
a r e  determined i n  the following sequence: 
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a) We first determine 

b) For using t h e  cha rac t e r i s t i c s  of a r o t o r  with o,, we f i n d  

'2,
t x l = ( t x h . f ) ) 2 + ( a 1  -'2) 4w; 
v,=v2; 

t =t 

y1 y 2 .  

c )  From the  cha rac t e r i s t i c s  of t h e  r o t o r  with ol,we determine mtl ,  cyl, cp1 . 
d) We f ind  ( m t h e f  )2, ( Y h . f z ,  and t h e  required power of t h e  hel icopter :  

The formulas derived above were  obtained f o r  ro to r s  with uniform induced 
ve loc i ty  d i s t r i b u t i o n  over t h e  disk.  For r o t o r s  with an i n f i n i t e  number of 
blades and nonuniform induced veloci ty  d is t r ibu t ion ,  no arguments o r  conversion 
formulas would change i f  at each poin t  of t h e  d isk  t h e  induced ve loc i t i e s  of t h e  
ro to r s  with d i f f e ren t  s o l i d i t y  r a t i o s  d i f f e red  by an i d e n t i c a l  quantity equal t o  
VAa. In  r e a l i t y ,  t h e  change i n  s o l i d i t y  r a t i o  influences a l s o  t h e  var iab le  com

. 	ponent of t h e  induced veloci ty ,  Toe., t h e  induced ve loc i ty  diagrams do not differ 
by t h e  same quantity. However, s ince  we a re  converting t h e  average per-revolu
t i o n  cha rac t e r i s t i c s  ty,t,, and m,, which a r e  mainly determined by t h e  average 
por t ion  of t h e  induced veloci ty ,  t h e  conversion formulas (6.12) can be used with 
s u f f i c i e n t  r e l i a b i l i t y .  

The proposed method of converting aerodynamic cha rac t e r i s t i c s  of ro to r s  i s  
similar t o  an  analogous method f o r  a i rp lane  propel le rs .  It i s  a l so  based on de
termining regimes i n  which the  kinematic cha rac t e r i s t i c s  of t h e  propel le rs  with 
d i f f e r e n t  s o l i d i t y  r a t i o s  a r e  iden t i ca l .  The difference i s  t h a t ,  f o r  propel le rs  
with d i f f e ren t  o, d i f f e ren t  f l y ing  speeds (d i f f e ren t  h, ) a r e  chosen, whereas 
f o r  r o t o r s  f o r  which the  kinematics i s  determined not o&y by t h e  noma1 veloci
t y  but also by t h e  ve loc i ty  component i n  the  plane of ro ta t ion ,  t h e  f ly ing  speed 
is  retained but d i f f e ren t  angles of a t t ack  are chosen. 



4. -Conve-rsion of A e r o d m c  Character is t ics  on Variation 
i n  M3&tmm Prof i l e  Drag Coefficient of t h e  Blade 
Sections expo 

If the  blades d i f f e r  i n  magnitude of t h e  minimum p r o f i l e  drag coeff ic ient  
[different qual i ty  of manufacture of t h e  p r o f i l e  (see Sect.4.3), d i f fe ren t  /2k8
p r o f i l e s  d i f f e r ing  mainly i n  the  following formulas can be used f o r  con
vert ing t h e  aerodynamic cha rac t e r i s t i c s  of t he  ro tors .  

The increments i n  the  coef f ic ien ts  of torque and longi tudinal  force, accord
ing  t o  the  Glauert-Lock theory, W i l l  be equal 
t oMfz =const 

v =const ACXP 
Mo=const Am;=---(1 +P2h (6 *I31

4 
t y  =const 

Ah =-
ACXP 

P, (6 *ue> 
2 

where AcXp= (expo 12. - (cxp0)l 

The remaining coeff ic ients  i n  t h e  body 
a x i s  system remain unchanged. The coeff ic ient  
t, increases by an amount equal t o  about Ah. 
Thus, t he  conversion formulas W i l l  be 

-v,=Y,; 
t 

y2 
= t  

Y l  
; 

Fig.2.q9 Reconstruction of t = t  +-1 -
t he  Dependence t, = f(m,) on x 2  x1 A C x p v ;  

Variations i n  the M i n i m u m  1 '  
P ro f i l e  Drag Coefficient of *tz=mtl +TAcxp(l+v2); 

t he  Blade Sections. a,=al; 

YZ"p1 .  

The var ia t ion  i n  the  r o t o r  cha rac t e r i s t i c s  upon conversion i s  i l l u s t r a t e d  
i n  Fig.2.=9. 

Conversion can a l s o  be performed, provided there  i s  constancy of the  quanti
t y  t,: 

-v,=V,; 
t = t

y 2  Y l '  

tx2 = t  .XI*  

Under this condition, t he  increment i n  torque Will be equal t o  [see 
eq43.71) 1 

1
4 mt= Amp,=-
4 

ACx p ( 1  +3V2) 
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and, accordingly, 

(6 -16) 

By analogy with eq.(3.72), i n  place of eq.(6.16) we obtain 

Using eqs.(6.16) or (6.17), we change from poin t  1i n  Fig.2.14.9 t o  poin t  3. 

The nonrigorousness of t h e  conversion formula l i e s  i n  t h e  f a c t  t ha t ,  w h i l e  
it does take i n t o  account t h e  e f f ec t  of an increment i n  cxp ,  it disregards t h e  
f a c t  t h a t ,  at poin ts  1and 3, t h e  angles of a t t ack  of t h e  r o t o r s  a re  not mutual
l y  equal (CY, = ;a j  < crz ). Consequently, i n  these regimes the re  i s  a d i f f e r 
en t  d i s t r i b u t i o n  of t h e  t r u e  angles of a t tack  of t h e  sect ions and therefore  d i f 
f e ren t  induced and p r o f i l e  powers a t  i d e n t i c a l  p r o f i l e  polars. However, t h e  &conversion methods a r e  approxhate  s o  t h a t  t h e  indicated inaccuracy is  of no 
p r a c t i c a l  value. 

If t h e  polars  of t h e  p r o f i l e s  d i f f e r  not only i n  t h e  quantity cxpo but a l s o  
i n  t h e i r  slope, t he  proposed method w i l l  not be va l id .  Therefore, it i s  unsuit
able  for converting aerodynamic cha rac t e r i s t i c s  t o  other  Re and M, numbers. In 

, these cases, t he  quantity Am, should be determined with consideration of t h e  real 
values of ar and cxp a t  each point  of t he  r o t o r  disk.  

5. 	 Conversion of A e r o d e c  Character is t ics  on Variation 
in t h e  Per ipheral  Speed of t n r 

Figures 2.80 - 2.88 i n  Section 3 give graphs f o r  t h e  increment i n  torque 
coef f ic ien t  a t  Mach numbers grea te r  than 0.4.. The graphs show t h a t  at moderate 
values of t he  thrus t  coe f f i c i en t s  the  compressibil i ty of air has a noticeable 
e f f ec t  on the  quantity m, at & grea ter  than 0.55 - 0.6. Therefore, upon a 
change i n  M, beyond these  limits (and at near-separation values of ty a t  lower 
M,) correct ions must be introduced i n t o  t h e  aerodynamic cha rac t e r i s t i c s  of t h e  
ro tor .  These correct ions a r e  determined from the  graphs i n  Figs.2.80 - 2.88 as 
t h e  difference of t h e  values of Am,, a t  the  Mach numbers i n  question. 

For example, i f  t h e  experiment was car r ied  out at M, equal t o  Mq, and t h e  
eqe r imen ta l  data  a re  used a t  M, equal t o  Moz , then t h e  value of mtexp = m,(Ti, 
ty, t,, M o l )  found from t h e  experimental graphs, must be supplemented by 

where Am,, a r e  determined at corresponding M, numbers and at t h e  same values of 
v, t y ,  t x  

Thus, 



A t  7 > 0.3 when M, changes, we must introduce a correct ion t o  t h e  angle of 
a t t ack  of t h e  r o t o r  and, accordingly, t o  t h e  blade p i tch .  These corrections are 
introduced analogously: 

The blade p i t c h  i s  determined i n  r e l a t i o n  t o  7, ty,and CY from the  graphs 
of t, = f(a, eo, V) on t h e  a s smpt ion  t h a t  this dependence does not change with 
respect t o  M,. 

A s  shown i n  Section 2, a change i n  the  slope of t h e  automatic p i t c h  cont ro l  
and the  flapping compensator will not cause a change i n  t h e  coef f ic ien ts  ty,t,, 
and m, p rodded  t h a t  t h e  equivalent ro to r  angle of a t tack  cy, = cy - cpl remams as 
before. Consequently, conversion of t he  r o t o r  cha rac t e r i s t i c s  reduces t o  find
ing  t h e  new r o t o r  angle of a t t ack  by means of t he  expression 

where i s  determined by the  formula /250 

The coef f ic ien ts  ale and he are found from known values of a1 and bl by 

means of eqs.(2.273), (2.274), (2.&9), and (2.250). The ro to r  p i t c h  i s  co
verted by the  formula 

~ O ~ = ~ ~ + ~ z a o = ~ o 1 - - a , ( ~ , - - ~ ) .  (6.23) 

On var ia t ion  i n  the quantity -	Y it can be considered t h a t  t h e  coeffi
a m  ' 

c ien t s  a, and bb enter ing eqs.(6.22) and (6.23) vary i n  d i r ec t  proportion t o  
t h e  r a t i o  of t he  new and old values of 2,i.e.,

a m  
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I n  comparing experimental data  with each other or with calculated data, one 
m u s t  a l so  account f o r  t h e  effect  of t he  ro tor  hub, as i s  done i n  the  examples 
given below. 

7.  E"les of U s i n g  t he  Conversion Formulas 

Comparison of calculated aerodynamic charac te r i s t ics  with emerimental. 
The calculated aerodynamic character is t ics  of a ro to r  with rectangular blades 
CJ = 0.0525 were  obtained by the method presented i n  Section 4. The only differ
ence between calculation and experiment, which should be taken in to  account when 
making a comparison, i s  the e f f ec t  of the  ro to r  hub on t h e  experimental charac
t e r i s t i c s .  Taking ZXhub= 0.0015, a reduction of the  calculation t o  the  experi
mental conditions requires the  addition of the  following increment t o  the  calcu
la ted  propulsive force of t he  rotor:  

or, i n  dimensionless form, 

Thus, the  experimental curves can be compared with t h e  quantity 

- +-0.0015-V 2 = t  +O.O286W.-
' "c l ,  0,0525 xcaZc 

I n  F'ig.2.150, experimental curves and converted calculated curves ( t i )  are 
plot ted fo r  7 = 0.3. The diagram indicates  tha t ,  i n  powered f l i g h t  regimes 
(t, = -0.01 - -0.02), t he  difference i n  m, i s  negligible whereas, i n  autorota,  
t i o n  regime, the  values of tXcd i f f e r  by 5 - 15%. The convergence of the  experi
mental and calculated curves i s  be t te r  a t  lower v. 

Comparison of e m e r h e n t a l  aerodyn&rqic chaxacterist icp . Using the  experi
mental aerodynamic character is t ics  of a ro tor  with t rapezoidalblades of /251
NACA 230 prof i le ,  plywood planking, CJ = 0.0$65, and M, = 0.4, the conversion 
formulas w i l l  yield the  character is t ics  of a ro tor  with rectangular metal blades 
with NACA 230 prof i le ,  0 = 0.0525, and M, = 0.5, which can then be compared with 
the  experimentally obtained character is t ics  shown i n  Figs .2.&l - 2.w5. 

The difference i n  the  so l id i ty  r a t i o  i s  taken in to  account by eq.(6.12): 
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Fig.2.150 Comparison of Experimental
and Calculated Aerodynamic Character
i s t i c s  of Rotor (Mfl  = 0.15; V = 0.3; 

M, = 0.5; CJ = 0.0525). 
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Fig.2.151 Camparison of Experimental
and Converted Aerodynamic Characteris
t i c s  of Rotor (Mfl = 0.15; V = 0.3;

M, = 0.5; CJ = 0.0525). 

The difference i n  t h e  prof i le  puwer of the rotors,  with consideration of 
the  difference i n  blade planform, i s  found from the following expressions: 

(6-25) 

Admitting f o r  the  trapezoidal blade P = 0.92, cXp,, = 0.009 and i n  con
formity with the  recommendations i n  Section 4.3, AcXp = 0.0025, we f ind 

Ampp= -[?0.92+0.009(0.92-4 1)I (1 +5e2)= -0.0()04(1+5ih). 

So as t o  make the  conversion of the  character is t ics  only with respect t o  /252 
one of t he  coefficients,  namely with respect t o  t, at  m, = const, we convert 
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Am,, t o  A t ,  . 
p r  

The difference i n  the  M, numbers is  taken i n t o  account by eqs.(6.19), w h i l e  
Amoo is  determined from t h e  graphs i n  Egs.2.80 - 2.88. 

A t  a difference i n  s o l i d i t y  r a t io s ,  t h e  hub drag results i n  a d i f f e ren t  in
crement of t h e  coe f f i c i en t  t,: 

To convert t h e  cha rac t e r i s t i c s ,  we must subt rac t  ( A t x h u b ) l  from the  coeffi
c i e n t  of t h e  propulsive force  of t h e  experiment under conversion (ol)and add 
( A t X h U b  )z  : 

Since, i n  analyzing t h e  expe rben t  with t rapezoida l  blades, t h e  drag of t h e  
nonrotating hub was excluded, we can take 'Exhub = 0.00075 t o  account f o r  hub /253 
ro ta t ion .  Therefore, t h e  conversion f o r  t he  e f f e c t  of t h e  hub is  performed by 
means of the  expression 

Thus, the  f i n a l  expression f o r  converting t h e  coef f ic ien t  t, has t h e  form 

-0.0004'+5P+O.O2V2+%. VV 

For comparison purposes, Fig.2.151 gives t h e  experimentally obtained and 
converted (t:) cha rac t e r i s t i c s .  For t he  most p a r t ,  t h e  agreement of t h e  curves 
i s  sa t i s fac tory .  

Section 7. 	 Perf ornance and Propulsive Efficiency Coefficient 
of a Rotor 

The hel icopter  ro to r  produces l i f t  and simultaneously a c t s  a s  t h e  prime 
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mover of t h e  helicopter.  Therefore, it i s  natural t o  characterize i t s  l i f t i n g  
and propulsive p rope r t i e s  i n  t h e  same manner as a Wing i s  characterized by t h e  
performance K, and a t r a c t o r  p rope l l e r  by t h e  efficiency These concepts 
permit d e f i n i t i o n  of t h e  degree of s u i t a b i l i t y  of a r o t o r  as a means f o r  produc
ing  l i f t  and propulsive force,  as well as a rapid performance, i n  general  form, 
of appro-te calculat ions of t h e  required power of a single-rotor helicopter, 
a hel icopter  with a wing and t r a c t o r  propel lers ,  or a mult i rotor  helicopter, and 
proper s e l ec t ion  of t h e  regime of m m u m  performance (ma.ximum range). Knowing 
t h e  performance and efficiency, one can estimate d i r e c t l y  t h e  expediency of in
stalling a wing and t r a c t o r  p rope l l e r s  on a helicopter,  determine what p a r t  of 
t he  t o t a l  drag of a hel icopter  i s  made up by p a r a s i t e  drag and how much t h e  re
quired power can be reduced when the  p a r a s i t e  drag is  reduced, and f i n d  the  
r a t i o n a l  d i s t r i b u t i o n  of power between t r a c t o r  p rope l l e r s  and r o t o r  

A determination of r o t o r  performance i n  an autorotat ion regime i s  carr ied 
out i n  the same manner as f o r  a Wing. The concept of r o t o r  performance has been 
widely used i n  aerodynamic designs of autogiros. The r o t o r  performance, together 
with a coe f f i c i en t  which we Will c a l l  t h e  propulsive eff ic iency coeff ic ient ,  can 
be used a l s o  f o r  calculat ing a helicopter,  as we Will demonstrate below. 

Unlike i n  an airplane,  where t h e  Wing and p rope l l e r  are d i f f e ren t  units and 
K, and TtaPcan be examined independently of each other, i n  a helicopter t he  
r o t o r  performance K and t h e  eff ic iency 7 are i n t e r r e l a t e d  and t h e  eff ic iency of 
a r o t o r  i n  any regime i s  determined by t h e  value of t h e  product KT. 

Let  us first discuss  the  concepts of performance and efficiency, described 
i n  individual  works on hel icopter  aerodynamics (K.Khokhenemzer and other 
authors).  

1. Performance- - - _  a@ Efficiency of Rotor Prmosed 
-by K .Khokhenemzer 

Rotor performance can be determined on the assumption t h a t  t h e  ac tua l  pro

75Npuls ive force of t h e  r o t o r  (-X) i s  t h e  difference between t h e  r a t i o  -V and 

some arbitrary drag of t h e  r o t o r  X.,,(-X = 75N X a r b ) ,  from which we determineVt h e  arbitrary drag of t h e  ro to r :  

Correspondingly, t h e  r o t o r  performance is  

K=-- Y __-Y 

x a ~ 6  75N I ' 

V 

75NThe r a t i o  -V would be equal t o  t h e  propulsive force i f  t h e  e n t i r e  power 

were  converted Without l o s ses  i n t o  propulsive force.  Since t h e  ac tua l  propulsive 
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75Nfo rce  i s  equal t o  -7- X a r b ,  ,it is  obvious that a l l  lo s ses  belong t o  X a r b .  

Thus, t h e  r o t o r  is represented as a c e r t a i n  mechanism crea t ing  forces  Y and X,,b; 
t h e  power supplied t o  it creates ,  without losses ,  a propulsive force  equal t o  

75Nso that t h e  t o t a l  ( ac tua l )  propulsive force i s  equal t o  -- X a r b .  
V V 

The a r b i t r a r y  drag of t h e  r o t o r  i s  comparable with the  drag of a wing p lus  
t h e  power losses  of t h e  t r a c t o r  propel ler ,  i.e., 

w h i l e  t he  t o t a l  propulsive force  of t h e  system %ing + t r a c t o r  propeller" is  

As a second version it is  proposed t o  consider t h a t  t h e  l i f t  of a r o t o r  i s  
produced without loss (without drag) and t h a t  a l l  losses  a re  accounted f o r  by 
t h e  generation of a propulsive force.  The ro to r  i s  represented as some mechanism 
producing l i f t  Y, w h i l e  t h e  power s q p l i e d  t o  it i s  converted i n t o  propulsive 
force  

75 Nq-X=- v '  

Hence, 

It i s  obvious t h a t  t h e  e f f ic iency  17 cannot be compared with r J t e p  but with /255 
v 

* Wt h e  difference T t e p  -
,75Nt. p 

-,since the  t h r u s t  of t h e  p rope l l e r  minus the  

wing drag i s  equal t o  

The descr ip t ion  of both versions of representing t h e  cha rac t e r i s t i c s  of a 
r o t o r  shows t h a t  they are both a r t i f i c i a l  and comparable only with combined 
cha rac t e r i s t i c s  of t h e  wing and t r a c t o r  propel ler .  T h i s  i s  the  adverse s ide  of 
t h e  proposed concepts. Their favorable s ide  i s  t h a t  t h e  cha rac t e r i s t i c s  are de
scr ibed only by one quantity: e i t h e r  by performance o r  by eff ic iency.  

The concepts of r o t o r  performance (or eff ic iency)  examined above a r e  con
venient f o r  calculat ion,  s ince  they r e l a t e  f ly ing  speed V and hel icopter  weight 
G ( o r  propulsive force)  with t h e  required power. Actually, having set i n  
eq(7.1) G = Y and Qpar = -X, we obtain 
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(7.3) 

However, t h e  sense of applying these concepts i s  predicated upon the  con
venience of use i n  ca lcu la t ion  and i n  determining optimal parameters. O u r  con
cepts  presented below a l s o  sinrplify t h e  calculat ions and, furthermore, w h i l e  re-

Fig.2.152 For Determining 
t h e  Concepts of Performance 
and Efficiency of a Rotor. 

t a in ing  t h e  sense and value of analogous COG 
cepts f o r  airplanes,  f a c i l i t a t e  an invest igat ion 
of composite rotary-wing a i r c r a f t .  

2. 	 Determination of Perf ormanse- and Prapulsive 
EXficiency of a Rotor-

Let  t h e  ro to r  operate i n  t h e  regime llatl 
(Fig.2.152) with a propulsive force X,, requir
ing a power N , .  To increase t h e  propulsive 
force t o  x b  w h i l e  re ta in ing  t h e  l i f t  Y, t he  
ro to r  m u s t  be t i l t e d  forward and t h e  power must 
be ra i sed  t o  N,. The ef f ic iency  of the  ro to r  as 
a propulsion u n i t  on changing from the  regime 
llalt t o  t h e  regime 11b11 i s  defined a s  the  r a t i o  of 
t he  power increment of t h e  r o t o r  a s  a prime 
mover -hxv t o  t h e  increment of power supplied t o  
t h e  rotor :  

If, t o  increase t h e  propulsive force of t h e  ro to r  we were t o  i n s t a l l  a 
t r a c t o r  propel le r  and supply it with a power equal i n  magnitude t o  the  d i f f e r 
ence Nb - N, = AN, then it would c rea te  a t h r u s t  of 

A comparison of this expression with eq.(7.4) shows that the  inwement i n  
propulsive force of t h e  r o t o r  -AX i s  characterized by i t s  propulsive eff ic iency
r\ j u s t  as t h e  th rus t  of a t r a c t o r  propel le r  i s  characterized by i t s  ef f i - /256
ciency v t e p .  

I n  a c r a f t  with a r o t o r  i n s t a l l e d  t o  produce l i f t ,  t h e  power can be supplied 
e i t h e r  t o  t h e  r o t o r  (hel icopter :  NtmP = 0, Nrot  = Nb, see Fig.2.152), o r  t o  the  
t r a c t o r  propel le r  (autogiro: NrOt = 0, Ntap  = Nb), or d i s t r ibu ted  between the  
first (Nro  = N,)  and second (NtaP  = Nb - N,) . A comparison of q with TIt.? 
shows which of these  versions i s  be t t e r ,  i.e., whether it i s  expedient t o  install  
a t r a c t o r  propel le r  f o r  increasing t h e  propulsive force  of t h e  c r a f t  or whether 
it is  more advantageous t o  transmit t h e  e n t i r e  power t o  t h e  rotor :  if TI > Tit. , 
then l X b l  ' IxaI -k pt.p More precisely,  we must compare 'fl with r\t.p S t .  P 

S 
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( the  r a t i o  st-, takes i n t o  account t h e  difference i n  losses  of power trans
5 

mitted t o  the  ro to r  and t o  the  t r a c t o r  propel le r) 
Thus, i n  order t o  obtain f o r  a rotor ,  which i s  a lift-producing component 

as w e l l  as a propulsion unit, a coeffi
c ien t  analogous t o  t h e  eff ic iency of a 
t r a c t o r  propel ler ,  it i s  necessary t o  
inves t iga te  the  increment i n  propulsive 
force (or drag) of t he  ro to r  when power&=Ar t  +.pN N=O i s  supplied t o  it. Therefore, we de
f ined t h e  propulsive eff ic iency of a 

'Direction of flight r o t o r  as t h e  r a t i o  of t he  increments of 
___t K S  -Y ?== usefu l  and expended work, although such 

X C  75N a r a t i o  i s  not ac tua l ly  the  eff ic iency 
but only perfomns i t s  ro l e  f o r  c r a f t  

Fig.2.153 Model Representing a with a ro tor .  
Rotor as Two Elements - Lif t ing  

and Propelling. To determine the  propulsive e f f i 
ciency with respect t o  eq.(7.4) we m u s t  
s e l ec t  some regime as the  i n i t i a l  (we 

se l ec t  here the  point I l a l l ) .  The drag of t he  ro to r  i n  this regime X, determines 
i t s  performance. 

It i s  expedient t o  take, as in i t ia l  regime, an autorotat ion regime (point 
1 1 ~ 1 1  i n  Fig.2.152). I n  this regime, no power i s  supplied t o  the  ro to r  which, i n  
producing l i f t ,  a l so  c rea tes  drag l i k e  a wing. 

Thus, t he  work done by a ro to r  can be in te rpre ted  as follows: The l i f t  i s  
generated by t he  ro tor  i n  an autorotat ion regime without t h e  expenditure of 
engine power, j u s t  as f o r  a wing; i n  regimes with a supply of power the  ro to r  
creates  a propulsive force which p a r t i a l l y  compensates ( a t  N < N h )  or overcorn
pensates (at N > Nh) t h e  ro tor  drag i n  an autorotat ion regime. The propulsive 
efficiency characterizes the  power losses  of a ro to r  when changing t o  an engine 
(propulsion u n i t )  regime. The r o t o r  i s  replaced by the  model shown i n  Fig.2.153, 
f o r  which, i n  conformity with the  foregoing, t he  expressions f o r  71 and K have 
the  form 

In eqs.(7.6), (7.7) and below the  subscr ipt  IlcII means that the  indicated 
quantity r e fe r s  t o  an autorotat ion regime. 

I n  l e v e l  f l i g h t ,  t h e  propulsive force of t he  ro to r  is  equal t o  the  sum of 
the  ro to r  drag tx0and the  p a r a s i t e  drag of t he  hel icopter  tXo- t,h - f  = t x o  +m 
+ a, V2 Consequently, t he  propulsive eff ic iency and performance of a heli

copter i n  horizontal  f l i g h t  a r e  ecpal t o  
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o r  

W e  note t h a t  t he  quantity ( G c  - t, ) represents t he  coef f ic ien t  of t h e  
h . f  

a rb i t r a ry  propulsive force of t h e  r o t o r  i n  horizontal  f l i g h t  and i s  equal t o  the  
coef f ic ien t  of t h e  drag counteracted by the  t r a c t o r  propel ler  of an autogiro o r  
hel icopter  f o r  which, i n  horizontal  f l i g h t ,  the  ro to r  operates i n  an  autorota
t i o n  regime. 

= cons t ,  M, -const 
6=const 
t, =const 

v=canst M,,=const 

Fig.2.154 Determination of Rotor Fig.2.155 For Estimating the  Ehpedi-
Efficiency at Linear Dependence ency of Ins t a l l i ng  a Tractor Pro

of t, on m,. p e l l e r  on a Helicopter. 

I n  eqs.(7.7), (7.9), and (".lo), t h e  quant i t ies  K and Kh are t h e  same as 
those used i n  autogiro calculat ions.  

U s e  of t h e  concepts of performance and propulsive eff ic iency f o r  c a l c u h  
t i o n  i s  highly convenient i n  the  case of l i n e a r  dependence of t, on m,. Here, 

t h e  quantity 7 does not depend on m, or t,, since the  r a t i o  1i s  equal t o  theV 
angle of slope of the  s t r a igh t  l i n e s  t, = f(m,) (Fig.2.154.). 

In p l ace  of t h e  aggregate of t h e  graphs (see Figs.2.105 - 2.109) constructed 
f o r  severa l  V, t he  aerodynamic c&arac ter i s t ics  can be represented as two graphs: 
K and I) as a function of t, and V (see Fig.2.158), by means of which t, i s  
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-
determined from eqs.(7.7) and (7.6) at h o h  values of ty,V, m,, or e l se  m, i s  
determined at known ty, 7,t,. 

In  the  case of a nonlinear dependence of t, on m,, when 17 depends on m,, 
the  use of K and 11 i n  calculations of fe rs  no subs tan t ia l  advantages. Here, it 
i s  of i n t e r e s t  t o  determine the  propulsive eff ic iency with respect t o  the m 
angle of inc l ina t ion  of the  tangent t o  the  curve t, = f ( m t )  at the  p o i n t ' i n  
question 

A comparison of Ill with 7 t . p  5 permits determining whether the  propul

s ive force of a c ra f t  can be increased by i n s t a l l i ng  a t r a c t o r  propeller.  kt 

Fig.2.156 For Determining the  
Performance and Efficiency, a t  
Nonlinear Dependence of t, on m,. 

the  nonlinear dependence of t, on m, 

71 = T t . p  	 := D  a t  the  point  l la l1  
b 

(Fig.2.155). It i s  obvious that ,  i f  

m, < mt, ,  we have 71 '7 t . p  -5 
and use 

of a t r a c t o r  propel ler  i s  not advantage
ous. If the  ro tor  operates i n  a regime 
w i t h  m ,greater  than m,. , the ins ta l la 
t i o n  of a t r a c t o r  propel ler  may increase 
the  propulsive force, the  m a x i "  gain 
being obtained when a power corresponding 
t o  m t a  i s  transmitted t o  the ro tor  and 
t o  the t r ac to r  propel ler  (mt - m,,). 

In  the  case of a nonlinear dependence 
of t, on m,, it i s  preferable, f o r  ap
proximate calculations w i t h  the concept 
of performance and efficiency, t o  replace 

by a l inea r  dependence. Such an appro*
t ion  i s  made i n  the segment of the  s t ra ight  l i n e s  from a! = -20' and sometimes 
from a! = - 1 5 O  at  = 0.15 (point F i n  ~ig.2.156) t o  the  minimum value of m, 
(point H i n  Fig.2.156) a t  which the  greatest  deviation of m, from exact values 
does not exceed 3%of m t G  at t, =-0.1 v2 (approximately a horizontal f l i g h t  
regime of helicopters) . 

The value of 11 and K, determined from the appro-ting segment HF', i s  
calculated by the  formulas 
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The efficienc determined by t h e  angle of inc l ina t ion  of t he  linearized de
pendence t, = f ( m t y  must be regarded as t h e  propulsive efficiency, on the  aver
age, f o r  t he  curve. 

3. 	Pe-rmance. anhEf f iciencg of a Rot or. Obtained 
from Ekperaenta l  Data 

The graphs f o r  the  aerodynamic charac te r i s t ics  of a ro tor  i n  the form of 
the  dependence t, = f(m,) obtained from experiments i n  a full-scale wind tunnel 
are given i n  Section.6 i n  F’igs.2.l42 - 2.l45. They pe r t a in  t o  a three-blade 
metal ro tor  With rectangular twisted blades, cr = 0.0525, and include the  drag of 
t he  ro tor  hub. From these graphs and using eqs.(7.6), (7.7), we determine the  
dependence of K and 7 on t, shown i n  F’igs.2.157 and 2.158. 

0.10 0.15 0.20 t, 0.70 0.w t ,  

Fig.2.157 Rotor Performance according F’ig.2.158 Rotor Efficiency according 
t o  Experimental Data (M, = 0.5; t o  w e r i m e n t a l  Data (M, = 0.5; 

0 = 0.0525). CY = 0.0525). 

To define the  character of the  slope of t he  curves of K, l e t  us examine 
the  approsmate expressions f o r  K. According t o  the  energy method of calcula
t i o n  (Sect .3), we have 

-
mtc=O=tyvc-tt ,cP+m,c; ( 7 . W  

(7.16) 
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The increase i n  performance with a n  increase i n  V can be a t t r i b u t e d  t o  a 
decrease i n  induced and p r o f i l e  drags with a n  increase i n  V. A t  average values 
of t,, t h e  performance depends l i t t l e  on t, since t h e  induced p a r t  of t h e  re
c ip roca l  performance increases  with increasing t, whereas t h e  p r o f i l e  p a r t  de
creases (up t o  inc ip i en t  f l o w  separation). A t  small t,, t h e  performance de

creases owing t o  an increase i n  -.l 
K P F 


The m&um magnitude of r o t o r  performance depends on 7, %, 0, qual i ty  of 
blade manufacture, and geometric blade cha rac t e r i s t i c s .  Optimum performance was 
not obtained i n  t h e  experiments, owing to t h e  low value of vmax. The l a r g e s t  
of t h e  obtained values i s  K,,, = 9.7 a t  V = 0.3, t, = 0.17. 

Rotor performance i s  lower i n  magnitude than wing performance. T h i s  i s  ex
plained by t h e  f a c t  t h a t  a r o t o r  has g rea t e r  p r o f i l e  l o s ses  than an airplane 
wing since, at equal f l y i n g  speed, t h e  flow across the  blades has a much g rea t e r  
ve loc i ty  U. I n  t h e  case of undeflected mechanisms, t he  p r o f i l e  drag of a wing 
i s  by a f a c t o r  of 2 - 2.7 less than  t h a t  of a ro to r .  Upon de f l ec t ion  of t h e  
mechanisms, the p r o f i l e  drag of a wing increases  appreciably and approaches t h e  
p r o f i l e  drag of a ro to r .  

A r o t o r  and wing are closely adjacent i n  value of induced drag ( a t  1, = D 
and a t  uniform induced veloci ty  dis t r ibut ion,  t h e  induced drag i s  t h e  same). 

A decrease i n  performance a t  small i s  inev i t ab le  both f o r  a r o t o r  and /260
f o r  a wing, owing t o  an increase i n  induced drag. However, t h e  wing cannot have 
as low a performance as a rotor ,  s ince the  wing cannot have as high a cy as a 
r o t o r  at V < 0.15 [see eq.(.!+..37), Chapt.1111. 

The propulsive eff ic iency of a r o t o r  varies within t h e  limits of 0.99 t o  
0.9. The curves of 7 i n t e r s e c t  one another, and i n  some cases there  i s  an ap
preciable  sca t t e r ing  of t h e  t es t  points .  The f a c t  i s  t h a t  it i s  d i f f i c u l t  t o  
determine accurately t h e  quantity 7 ,  since t h e  scattering of t h e  test po in t s  on 
graphs of t, = f(mt) c r ea t e s  some indeterminacy i n  the  angle of slope of the 
s t r a i g h t  l i nes ,  which has a noticeable (within 3 - 5%) e f f ec t  on t h e  quantity ‘Q. 

The inaccuracy i n  determining 7 ,  and a l s o  K, shows t h a t  when representing 
t h e  cha rac t e r i s t i c s  of a r o t o r  i n  the  form of l i f t i n g  and propelling elements it 
i s  impossible t o  estimate them separately with high accuracy. However, this 
does not mean t h a t  calculat ions performed with t h e  use of K and ‘il have a l o w  ac
curacy, s ince when determining m i  by t h e  formula 

(7.17) 

t h e  e r r o r s  i n  determining 7 and K are compensated. 

Eigure 2.158 shows tha t ,  even i f  t h e  low accuracy of determining t h e  r o t o r  
eff ic iency is  taken i n t o  consideration, this efficiency i s  g rea t e r  than t h a t  of 
a t r a c t o r  prapel ler .  Since ll i s  defined as t h e  r a t i o  of t h e  increments of use
ful t o  expended work, it need not be less than 1.0. We W i l l  explain this. Let 



us subs t i t u t e  i n t o  eq.(7.6) t h e  expression f o r  ro to r  power taken from the  
energy method of ca lcu la t ion  

Then eq.(7.6) takes  the  form 

It i s  c l e a r  from eq.(7.19) tha t ,  i f  t h e  induced and p r o f i l e  powers of t h e  
ro to r  which depend mainly on l i f t  w e r e  not t o  change on a var ia t ion  i n  the  pro
puls ive force,  then t h e  propulsive e f f ic iency  would be equal t o  1.0. Actually, 
the  differences of N i n d  and Npr are small, since we are examining t h e  change of 
propulsive force a t  constant l i f t  and f ly ing  speed, ?.e., a t  approximately 
i d e n t i c a l  average values of induced veloci ty  and t r u e  angles of a t tack  of t he  
blade sections.  We can show tha t ,  f o r  an i d e n t i c a l  propulsive force,  these d i f 
ferences are respect ively smaller than  the  induced and p r o f i l e  powers of a 
t r a c t o r  propel ler ,  as a result of which 1 > 'lit.* . 

Thus, i n  examining t h e  l i f t i n g  and propulsive proper t ies  of a rotor ,  we de
t e d n e d  tha t  t h e  bulk of power losses  (N,,, and Npr i n  an autorotat ion regime)is  
accounted f o r  by energy losses  re la ted  with the  production of l i f t ,  which deter
mines the  l o w  performance of a ro tor .  

The propulsive eff ic iency of a r o t o r  d i f f e r s  from 1.0, owing t o  t h e  s m a l l  
d i f ference i n  induced and p r o f i l e  losses  i n  regimes with power supply t o  the  
ro to r  and i n  autorotat ion regimes; it i s  grea te r  than t h e  eff ic iency of a 
t r a c t o r  propel ler .  

It should be borne i n  mind t h a t  t h e  values of K and ll, whose dependence /261 
on t, i s  shown i n  F‘igs.2.157 and 2.158, are val id  f o r  regimes within limits i n  
which the  experiments are carr ied out.  T h i s  means t h a t  mt ,  calculated by 
eq.(7.17), can be cor rec t ly  determined, i f  it i s  not grea te r  than the  m a x i ”  
values of m, u t o  which the experimental curves w e r e  p lo t t ed  (mtaaX = 
= 0.01 - 0.0137. 

4. 	Performance and Efficiency of a R o t o r .  Obtained 
from Calculated Graphs 

The performance and ef f ic iency  of a ro to r  with rectangular twisted blades 
(var ian t  I1 i n  Table 2.10), cr = 0.091, were determined from graphs of the  aerc
dynamic cha rac t e r i s t i c s  obtained by calculat ion.  I n  t h e  case of nonlinear de
pendence t, = f ( m , ) ,  t h e  quant i t ies  K and ll were found from eqs.(7.12) and 
(7.13). The graphs of K and 7 are shown i n  Figs.2.159 and 2.160. 

Rotor performance begins t o  decrease at M, > 0.6, especial ly  a t  la rge  7; a t  
Mo = 0.7 and V = 0.3, K diminishes by 1.5, and-at V = 0.4 by 3.5. A t  M, = 0.7, 
the  performance at B = 0.3 is  grea te r  than  a t  V = 0.4, and t h e  maxi”perform
ance i s  equal t o  about 7.5. 

279 



The ef f ic iency  of a ro tor ,  f o r  M, = .0.6 - 0.7 a t  average and small values 
of ty,has a higher value (more than 0.95). A t  near-separation values of ty, 
the  e f f ic iency  begins t o  drop markedly, but does not decrease when t, = tYor 
less than 0.75 - 0.85. 
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F'ig.2.159 Rotor Performance (Calculation, cr = 0.091). 

The values of K and ll obtained as a result of l i nea r i za t ion  of t he  curves 
of t, = f ( m t )  hold t r u e  within ce r t a in  limits. The upper l i m i t  of app l i cab i l i t y  

of t h e  graphs of K and are t h e  values of t he  r a t i o  m t m a x  = ( y) 9 

given i n  Table 2.13. tJ m a x  

Fcig.2.160 Rotor Efficiency (Calculation, cr = O.09l). 
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75NIf t h e  r a t i o  -obtained from ca lcu la t ion  i s  less t h a t  that given i n  
Y v  

Table 2.13, the  ca lcu la t ion  wi l l  not differ by more than 3%from the  calculat ion 
made from graphs of aerodynamic charac te r i s t ics .  Furthermore we note t h a t  t h e  

values of -	7w given i n  Table 2.13 correspond t o  f l i g h t  regimes with cy = -20' /262
Y v  

(sametimes -15' at 7 = 0.15) . 
The lower U t  of app l i cab i l i t y  of t h e  graphs i n  Figs.2.159 and 2.160 i s  

the  autorotat ion regime or a powered gl ide.  More accurately, t h e  calculat ions 
for an autorotat ion regime are performed from the  graphs of K, shown i n  
Fig.2.111, s ince t h e  values of K found fran t h e  l inear ized  curves may differ . 

somewhat from K,. 

TABLE 2.13 

A comparison of t he  performance and ef f ic iency  of ro to r s  having blades with 
d i f f e ren t  geometric cha rac t e r i s t i c s  shows tha t ,  a t  M, = 0.4 - 0.5, the  blade 
p r o f i l e  influences t h e  value of K t o  within severa l  percents whereas 17 depends
l i t t l e  on the  blade p ro f i l e .  T h i s  means t h a t  ro to r s  with d i f f e ren t  p r o f i l e s  re
quire a power d i f f e r ing  by AN, where AN i s  independent of t he  type of operating 
regime of the  rotor ,  namely a t  e i the r  la rge  o r  small propulsive force ( i n  gl iding 
or climbing). 

r For t rapezoida l  blades ( E r i a n t  I of t h e  blades i n  Table 2.10), K i s  grea te r  
by 0.5 (at  v = 0.2) - 1.5 ( a t  V = 0.4), and T l  is  lower by 0.01 (at  = 0.2) 
- 0.03 (at = 0.4) than f o r  rectangular blades. T h i s  means t h a t  the grea tes t  
decrease i n  required power f o r  a ro to r  with t rapezoidal  blades occurs a t  small 
propulsive forces.  A t  l a rge  propulsive forces,  t he  r o t o r  with rectangular /263
blades having a l a rge r  7 may prove t o  be better. 

I 

Comparative graphs of K and r\ a t  M, = 0.7 are shown i n  Figs.2.161 - 2.164. 
The diagrams show tha t ,  f o r  a ro to r  without a high-speed p r o f i l e  at-the blade 
t i p  (var ian ts  111, IV), K i s  smaller by 0.7 (a t  = 0.2) - 1.7 (at  V = 0.4) than 
f o r  a r o t o r  with a high-speed p ro f i l e .  For t rapezoidal  blades, K i s  higher by 

I 
0.5 - 1.0 and 7 lower by 0.02 - 0.08, respectively,  than f o r  a ro to r  with rec
tangular blades. 

For a ro to r  with blades of increased geometric twist (var iant  VI) and with 
blades expanding toward the  t i p  (var iant  VII) at = 0.4, t h e  performance i s  
0.5 - 0.7 lower and t h e  eff ic iency 0.05 - 0.15 higher. The very high value of 'll 
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f o r  a r o t o r  with increased twist i s  a consequence of t h e  subs t an t i a l  decrease 
i n  p r o f i l e  losses  upon an increase i n  propulsive force  of t h e  r o t o r  ( see  
Figs.2.75 and 2.76). 
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Fig.2.161 Performance of Rotors with 
Blades of Different Shape (v = 0.2;

Mo = 0.7). 

~ig.2.163 Performance of Rotors with 
Blades of Different Shape (v = 0.4.; 

Mo = 0.7). 
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~ig.2.162 Efficiency of Rotors with 
Blades of Different Shape (v  = 0.2; 

Mo = 0.7). 
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Fig.2.164 Efficiency of Rotors with 
Blades of Different Shape (v = 0.4.; 

Mo = 0.7). 

5. 	 Conversion of Pexfo-pgEce and Efficiency on 
Variations in-Rotor Parameters-

In  conformity with t h e  formulas derived i n  Section 6, t h e  performance of a 
ro to r  on var ia t ions i n  the  s o l i d i t y  r a t i o  and p r o f i l e  power coeff ic ient  i s  con
verted by the expression 
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A change i n  p r o f i l e  power coeff ic ient  should take i n t o  account a change
i n  expo of t h e  p r o f i l e  ( o r  AcXp, owing t o  the  difference i n  the  qual i ty  of blade

/264. 
manufacture) and a change i n  mpr  from the wave drag: 

The propulsive e f f ic iency  i s  independent of t he  difference i n  cs and AcXp. 
The quantity 6mco depends on t, so t h a t  a l so  +ll depends on t,.. However, f o r  t h e  
sake of s implici ty  we need not convert 7, and we subs t i t u t e  6mco i n t o  eq.(7.21) 
a t  an average value of t,. 

6. General Coments on Rotor Efficiency and Performance 

Figures 2.165 - 2.167 show the  generalized graphs of K and ll, which can be 
used f o r  estimate calculat ions.  Figure 2.165 gives the graph of K f o r  cs = 
= 0.091, which i s  v&d f o r  average and-large t,. A t  small ( t ,  = O . l ) ,  K i s  
smaller by 0.2 ( a t  V = 0.15) - 1.5 ( a t  V = 0.4). Figure 2.166 contains the 
graph of ll used f o r  a l l  t, a t  M, < 0.55. For M, > 0.55, the  e f f ic iency  must be 
corrected by a quantity AT, which i s  p lo t ted  i n  Fig.2.167 as a funct ion of t,, 
M,, v* 

M,c0.5 

M0-0.6 TI 
1.b L 

M,-0.7 I
I 

U.91 

I---- Trapezoidal b l a d e  

0.I 0.2 0.3 

~ig.2.165 Generalized Graph of Rotor Fig.2.166 Generalized Graph of Rotor 
Performance (cs = 0.091). Efficiency (M, < 0.5). 

Thus, as shown i n  Figs.2.165 - 2.167, t h e  ro to r  performance i s  lower than 
t h e  wing performance, and the  propulsive eff ic iency of t h e  ro to r  i s  higher than 
t h a t  of a t r a c t o r  propel ler .  T h i s  i s  explained by the  f a c t  t h a t  t h e  bulk of t he  
power losses  pe r t a in  t o  losses  r e l a t ed  with the  production of l i f t ,  whereas t h e  
propulsive e f f ic iency  d i f f e r s  from unity owing t o  the  small difference i n  in
duced and p r o f i l e  losses  i n  regimes with power supply t o  t h e  ro to r  and i n  auto-
ro t a t ion  regimes. 

Thus, it i s  obvious that the  i n s t a l l a t i o n  of a wing with a performance 
higher than t h a t  of a ro to r  w i l l  increase the  performance of the  l i f t i n g  system 
of a helicopter.  The i n s t a l l a t i o n  of a t r a c t o r  propel le r  of an e f f ic iency  lower 
than t h e  propulsive eff ic iency of a ro to r  w i l l  lead t o  some increase i n  required 
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~ig.2.167 Correction f o r  Rotor 
Efficiency as-a Function of ty, 

Mo, v* 

r ea l i za t ion  of a la rge  power excess 
> 0.45 - 0.5 f o r  a hel icopter .  

power.. Therefore, a t r a c t o r  propel le r  on 
a hel icopter  can be usefu l  when the relief 
of t h e  r o t o r  load by t h e  wing o r  t h e  
reserve of ava i lab le  power render the  

/265 

75Nr a t i o  -grea ter  than t h a t  shown i n
Yv 

Table 2.13, since then t h e  negative angle 
of a t t ack  of t h e  r o t o r  becomes grea te r  
than 20' (which i s  undesirable f o r  design 
considerations, s ince the  range of p i t c h  
angles of t h e  he l icopter  and i t s  p a r a s i t e  
drag will increase) .  Furthermore, a t  

l a rge r  -,	75N t h e  values of ll may become
Yv 

smaller than  Tt.p . A t r a c t o r  propel ler  or 
another propel le r  may be required f o r  

-
(approximately 

G 
> 0.35) when V,,, > 

&uantitatively,  t he  change i n  required power of a helicopter,  on in s t a l l a 
t i o n  of a wing o r  t r a c t o r  propel ler ,  i s  small. Such an estimate w i l l  be made i n  
Section 4, Chapter 111. 

Section 8. Calculation of Rotor Character is t ics  i n  Hovering 
and Ver t ica l  Ascent (Moments-Theory o f - r o p e l l e r s )  

The theory of a r o t o r  i n  hovering and v e r t i c a l  ascent has been thoroughly 
presented i n  the  l i terature  on hel icopter  and propel le r  aerodymmics. I n  this 
Section, we w i l l  give some da ta  per ta in ing  t o  a ca lcu la t ion  of ro tors  with per i 
phera l  speeds as they are i n  use a t  present.  

The calculat ions w e r e  performed with regard t o  momentum theory of a rotor .  
T h i s  theory was  selected because of t he  f a c t  t h a t  introduct ion of l inear ized 
aerodynamic cha rac t e r i s t i c s  of t he  p r o f i l e  i n t o  t h e  ca lcu la t ion  can be replaced 
by introduct ion of t h e  ac tua l  dependence of cy and cXp on a and My obtained from 
wind-tunnel tests of t h e  p ro f i l e .  

1. B r i e f  Rev iew of t h e  Momentup Theom of P r m e l l e r s  

Figure 2.168 shows the  veloci ty  polygon i n  a blade sec t ion  a t  a r e l a t i v e  
radius  F; i n  t h e  regime of v e r t i c a l  climb. The resu l tan t  veloci ty  of flow i n  the  
blade sec t ion  U represents  t h e  sum of the  vectors: f l y ing  speed V,, per ipheral  
ve loc i ty  w r ,  and induced veloci ty  U. Since t h e  vector of t h e  resu l tan t  aerody

-t 

namic force of t h e  sec t ion  dR i s  d i rec ted  opposite t o  t h e  momentum vector, t h e  
4 

induced veloci ty  vector  2 i s  p a r a l l e l  t o  dR. 
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dY The mass flow through a /266
dR &--$ ----4dT c i r cu la r  sec t ion  a t  a radius r of 

width d r  i s  equal t o  

I dm=~2nrdrIV,1, (8.1)

! I-

I

L 

C where V, i s  t h e  v e r t i c a l  veloci ty  
coqonent  U. 

Applging t h e  momentum theorem 
~'ig.2.168 Velocity of Polygon i n  a t o  t h e  r ing  and using t h e  theorem 
Blade Section i n  Ver t ica l  Climb-Regime. of doubling t h e  induced veloci ty

far aft of t h e  rotor ,  we obtain the  
equation 

2dmu =zbdR, (8.2) 

where z,dR i s  the  resu l tan t  of t h e  elementary aerodynamic forces  created by a l l  
blades a t  radius  r. 

Subst i tut ing eq.($.l) i n t o  eq.(8.2) and expressing dR i n  terms of t h e  force 
coeff ic ient  cR,e =., we obtain t h e  equation 

Equation (8.3) can be represented i n  the  form 

T h i s  equation determines the  r e l a t i o n  between the  veloci ty  of t he  a i r  and 
the  coef f ic ien t  of aerodynamic force i n  the  blade sec t ion  ( the  so-called 
tlcoupling equationll) . 

Equation (8.4) holds f o r  a stream flow through the  ro to r  d i sk  but i s  in
applicable i n  the  region of t h e  11vortex ring*#. 

Ekpressing t h e  ve loc i t i e s  enter ing eq.(8.4) i n  terms of trigonometric func
t ions  of the  angles of t h e  veloci ty  polygon, we can write eq.(8.4) i n  t h e  tri
gonometric form: 

sin p.s in (Bo -p) -_ (8.5)-
cos (Bo -p +ppr)  a; c'zsac. 

where f3 i s  t h e  inflow angle. 

The quant i t ies  ppr and Bo are equal t o  



-
Po = VY . (8.7)r 

On t h e  left-hand and right-hand s ides  of t h e  equations, Bo is  a known 
quantity at a given F; p, cy,, and ppr are unknown. However, i f  we ass ign CY,, 
then the  cha rac t e r i s t i c s  of t h e  p r o f i l e  will y ie ld  ppr and cRse0-, w h i l e  
eq.(8.8) wi l l  furn ish  f~: 

p=a, -y = a ,  --(e, -Ra, +BY). (8.8) 

The problem cons is t s  i n  detemining cy, a t  which eq.(8.5) i s  sa t i s f i ed .  T h i s  
value of CY, i s  found by successive approximations. Simultaneously with deter
mining CY, ,we f ind  p, v p , ,  and C R , ~ ~ , .  

The loads pe r  unit length i n  t h e  t h r u s t  plane and i n  t h e  plane of rota- /267
t i o n  as w e l l  as the  torque pe r  unit length are determined from the  following 
formulas : 

(8  .lo) 

(8.11) 

The coef f ic ien ts  of t h rus t  and power of t h e  r o t o r  are determined by nmeri
ea1  in tegra t ion  of eqs.(8.9) and (8.ll). 

For an approximate consideration of t he  t i p  losses ,  the  loads pe r  unit 
length i n  t h e  t h r u s t  plane are not integrated up t o  t h e  blade t i p  ('F = 1)but up 
t o  F = B whereby, according t o  another paper (Ref .2), we have 

(8.12) 


Equation (8.12) can be used when zb 2 3; at z b  = 2, t h e  t i p  losses  should 
be taken i n t o  account by more accurate methods. 

The coning angle and p r o f i l e  power coef f ic ien t  are found from the  expressions 

B 

a o = L  1-d t -r dr; - (8.13)a,  d r  
70 

(8.l.4) 

2. Results of CalculatinP t h e  Character is t ics  of a-Rotor 

The aerody-mdc cha rac t e r i s t i c s  of a r o t o r  with rectangular twisted blades 
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having a Mgh-speed p r o f i l e  at t h e  t i p  (variant I1 i n  Table 2.10) f o r  s o l i d i t y  
r a t i o s  of t h e  r o t o r  0 = 0.0525; 0.069; 0.091; 0.11 ( the  number of blades is, re-

' SpeCtiVely, zb = 3; 4.; 5; 6), k = 0.4, = 1.28", and f o r  two values of M, 

are shown i n  Figs.2.169 and 2.170. Such graphs are used i n  check calculat ions 
of hel icopters  i n  order t o  determine the  ro tor  t h r u s t  i n  a hovering regime, when 
power, f l i g h t  a l t i t ude ,  and t h e  ro to r  parameters F, o, wR are known. The se
quence of t h e  ca lcu la t ion  i s  as follows: Having calculated m, and M, 

M,=$, (8.16) 

t h e  graphs can be used f o r  f inding the  th rus t  	c o e f f i c i e n t - t  and f o r  determining 
the  r o t o r  t h r u s t  

The e f f ec t  of t he  geometric /268
blade cha rac t e r i s t i c s  i s  i l l u s 
t r a t ed  by t h e  graph i n  Fig.2.171, 
which ind ica tes  t h a t  t he  trape
zoidal  blade (var ian t  I) and t h e  
rectangular blade with an increased 
tw i s t  (var ian t  VI) at t = 
= 0.12 - 0.15 require 3 - 4% less 
power than a rectangular blade with 
moderate tw i s t  (var iant  11). Thus, 
an increase i n  geometric blade 
twis t  improves the ro to r  charac
t e r i s t i c s  i n  hovering and i n  
forward f l i g h t  (with the  exception 
of t he  regime of autorotat ion)  . 

Figure 2.172 shows the  r a d i a l  
d i s t r ibu t ion  of t he  axial 77 and 
tangent ia l  G components of induced 
veloci ty .  The slope of 'Fi and G 
with respect t o  F has a d i f fe ren t  
character f o r  blades of t he  ex
amined shapes. For a rectangular 

Fig 2.169 Aerodynamic Character is t ics  blade with a geometric twist of 7' 
of a Rotor i n  Hovering Regime (M, = (var iant  11),7 increases  from the  

= 0.6). root  t o  t h e  t i p  of t h e  blade; f o r  
a t rapezoida l  twisted blade and 

* For other  values of k and y, t h e  ro to r  p i t c h  should be converted by eq.(6.23). 
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F'ig.2.170 Aerodynamic Characterist ics of Rotor i n  
Hovering Regime (M, = 0.7). 

F'ig.2.171 Aerodynamic Characterist ics of Rotor w i t h  
Blades of Different Shape i n  Hovering Regime 

(0 = 0.091; M, = 0.7). 
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bi 

f o r  a rectangular blade with increased twist, t h e  d i s t r ibu t ion  of T i n  the  t i p  
por t ion  of t h e  blade is  close t o  uniform, so that these  blades have smaller i m 
duced losses .  A s  indicated i n  Fig.2.172, t he  sl ipstream veloci ty  W of the  heli
copter ro to r  is  by one order of magnitude less than the  axial induced veloci ty  v. 

For rectangular blades, t h e  angles of a t t ack  of the  sections CY,(Fig.2.173)
decrease toward t h e  blade t i p ,  and the  d m u m  angles of a t tack  of t he  sect ions 
are a t  F = 0.3 - 0.5. The t rapezoidal  twisted blade has a more uniform d i s t r i 
but ion of a, over t h e  outside half  of t h e  blade; this angle of a t tack dis t r ibu
t ion,  compared to t h e  rectangular blade, leads t o  earlier attainment of c r i t i c a l  
angles of a t t ack  and t o  a marked increase i n  cXp a t  t h e  e f fec t ive  blade portion. 

a r  /270 
5 


0 0,Z 0.4 0.6 0.8 \.OF 

Fig.2.172 Radial Distr ibut ion of Fig.2.173 Radial Angle of Attack 
Axial T and Tangential 7 Components Distr ibut ion of Sections ( t  = 0.15).

of Induced Velocity (t = 0.15). 

Figure 2.174. shows the dependence of p r o f i l e  power on the  th rus t  coeffi
c ien t  t and M, f o r  a blade of t he  var iant  11. A s  we see from the  graph, t he  ef
f e c t  of air  compressibil i ty becomes appreciable a t  t > 0.15. The graph i n  
Fig.2.175 shows the  e f f ec t  of t he  geometric blade charac te r i s t ics  on the  p r o f i l e  
power. A t  M, = 0.7, t he  blade p r o f i l e  (var ian t  111; blade without a high-speed 
p r o f i l e  a t  t h e  t i p )  has t h e  main e f f e c t  w h i l e  t h e  blade shape has a smaller ef
fec t .  An increase i n  geometric blade twist (var ian t  V I )  reduces the  p r o f i l e  
losses  of the  blade at la rge  t. 

To determine the  e f f ec t  of air compressibility, Fig.2.176 shows the  graph 
of Am,,(M,) = m,(M,) - m,(M, = 0.4.) f o r  a blade of t h e  var iant  11; f o r  other  
blade shapes, this i s  shown i n  Fig.2.177. The campressibil i ty graphs permit 
converting t h e  r o t o r  cha rac t e r i s t i c s  t o  other  M, numbers and are  a l so  used i n  
an approximate ca lcu la t ion  of t h e  ro to r  cha rac t e r i s t i c s  when mpr i s  determined 
by eq.(8.28). W e  see from Fig.2.177 tha t ,  f o r  t h e  examined prof i les ,  t he  blade 
without t h e  high-speed prof i le ,  a t  M, > 0.6, shows a subs tan t ia l ly  grea te r  in
crement i n  mpr  than t h e  blade with t h e  high-speed p r o f i l e  at  t he  t i p .  

The values of t h e  t h r u s t  coef f ic ien ts  tor"ally permissible i n  v i e w  of 
t he  flow separat ion a t  t h e  r o t o r  blade (see Sect.4.7) w e r e  determined i n  hover
ing from t h e  p l o t  of t h r u s t  coeff ic ient  versus ro to r  p i t c h  eo.  T h i s  dependence 
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Fig.2.17k P ro f i l e  Power Coefficient as Fig.2.175 P ro f i l e  Power Coefficient as 
a Function of Thrust Coefficient t a Function of Thrust Coefficient t f o r  

and M,. Rotors with Blades of Different Shape
(M, = 0.7). 

84  45 d6 47 M, 

Fig.2.176 Increment i n  P ro f i l e  Power Coefficient of t h e  
Rotor Owing t o  Air Compressibility. 
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Fi~z.2.177 Increment i n  P r o f i l e  Power Coefficient owine:-
t o  Air Compressibility, f o r  Rotors with Blades 

of Different Shape. 
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Fig.2.178 t,,, as a Function of M,, f o r  Rotors 
with Blades of Different Shape. 
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i s  linear up t o  some value of t, after which t h e  l i n e a r i t y  is disturbed; t h e  in
crease i n  t with increasing 0, decreases, after which t reaches a maximum t,,,, 
which is  taken as t,, when constructing the  l i m i t  of separat ion (Egs.2.119 
to 2.121). 


Figure 2.178 gives t h e  graph of t,,, as a funct ion of M, . The diagram 
shows tha t ,  i n  hovering, t,,, decreases appreciably with increasing M, . For a 
t rapezoida l  blade, t,,, is  smaller than f o r  a rectangular  type. An increase i n  
geometric blade twist w i l l  increase t,,, . The blade without a high-speed pro
f i l e  a t  t h e  t i p  has a l a r g e r  t,,, ; however, as soon as M, increases  the  d i f f e r 
ence i n  t,,, w i l l  lessen. 

According t o  t h e  momentum theory and w i t h  an approximate consideration of 
t i p  losses ,  t he  s o l i d i t y  r a t i o  does not a f fec t  t h e  angle of a t tack  d i s t r ibu t ion  
over t he  radius  or t h e  magnitude of t h e  coef f ic ien ts  m p r ,  Am,, ,tax; consequent
ly ,  t he  graphs i n  Figs.2.173 - 2.178, constructed f o r  o = 0.091, are va l id  f o r  
a l l  o. 

3. 	 Amroxhate  Method of .Determieng t h e  Dependence /273
of mt on t 

For v e r t i c a l  f l i g h t  regimes of a helicopter,  we can obtain an expression 
f o r  mt analogous t o  eq.(3.67) derived i n  Section 3 f o r  f l i g h t  with a horizontal  
ve loc i ty  of 

In  this expression, V, < 0 at a gain  i n  a l t i t u d e .  

Introducing t h e  designations f o r  t he  terms representing t h e  coef f ic ien ts  
of induced and p r o f i l e  losses  of t'he ro tor ,  

(8.20) 

we can represent t h e  expression f o r  m, i n  t he  form of 
-

mt=m,nd +mpr -tv,. (8.21) 

Let  us der ive t h e  approximate expressions f o r  t h e  components of m, i n  
hovering. 

To determine mind,  l e t  us first assume t h a t  t h e  induced veloci ty  v i s  dis
t r ibu ted  uniformly over t he  blade radius  and t h a t  w = 0. 

Multiplying t h e  lef t  and r i g h t  s ides  of eq.(8.4) by cos (ppr - p )  and using 
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eq.(8.9), we obtain 

-
8V2r dr= dCT. (8.22) 

The average induced ve loc i ty  over t he  d isk  Yav is  found a f t e r  in tegra t ing
eq(8.22)  with respect  t o  t h e  blade radius  from F = 0 t o  F = B: 

According t o  eqs.(8.22) and (8.23), at constant induced veloci ty  t h e  ele
mentary t h r u s t  coef f ic ien t  i s  d i s t r ibu ted  l i n e a r l y  over t h e  blade radius and i s  
equal t o  

dCT=2AFd;, (8.24.)
E2 

Conse quent l y, 

To take account of t h e  nonuniformity of axial induced veloci ty  d i s t r ibu t ion-
v and of t he  term d@ (power losses  due t o  twist ing of t he  flow passing through 
t h e  ro to r ) ,  we will introduce i n t o  eq.(8.25) t h e  coef f ic ien t  Q: 

(8.26) 

The coef f ic ien t  P depends on the  planform of t he  blade and on i ts  geometric 
twis t ,  on the  s o l i d i t y  r a t i o ,  and a l so  on the  t h r u s t  coef f ic ien t .  Calculations 
have shown t h a t  we can take t h e  following average values of P: f o r  a rectangular 
blade with a tw i s t  of 5 - 9', a value of P = 1.05; f o r  a blade with a t w i s t  
of 12  - Pj', Q = 1.03. For a t rapezoidal  blade with taper  r( = 3 and twist of 

/274. 
5 - 9', CP = 1.03. The t ip- loss  coef f ic ien t  B f o r  ro to r s  with (5 = 0.0525 - 0.11 
can be taken a s  equal t o  0.98. 

Thus, f o r  a rectangular  blade with a geometric twist of 5 - 9', m i n d  i s  de
termined by the  formula 

The p r o f i l e  loss  coef f ic ien t  of a r o t o r  mpr i s  most r e l i a b l y  determined by 
t h e  graphs of mpr = f ( t ,  &) (see Figs.2.174 and 2.175) which were calculated 
f o r  a ro to r  with similar geometric cha rac t e r i s t i c s .  If there  are no such 
graphs, then mpr i s  found from 

(8-28) 
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The first term determines the p r o f i l e  losses  a t  small &, w h i l e  the  second 
term takes account of the increment i n  the  p r o f i l e  loss  coeff ic ient  owing t o  

.wave drag. An estimate of Am,, can be made on the  basis of t he  graphs i n  

t 

F'ig.2.179 Graph of the  Incre
ment i n  Torque Coefficient of 

t he  Rotor i n  Ascent. 

Fig.2.180 Graph of Incre
ment i n  Rotor Pitch i n  

Ascent. 

Figs.2.176 and 2.177. 

The average p ro f i l e  drag coeff ic ient  of 
the  blade cxp,, i s  determined by the  p ro f i l e  
polar  a t  t he  sect ion 7 = 0.7, f o r  an average 
l i f t  coeff ic ient  cyo: 

Cuo=3t. (8.29) 

The coeff ic ient  P which depends on the 
blade shapeg i t s  so l id i ty ,  and on the coef
f i c i e n t  t can be taken as approximately 
equal t o  unity f o r  a rectangular blade and 
f o r  a trapezoidal blade with taper  1 = 3 ,  
p = 0.91 (see Table 2.5). 

D u r i n g  a v e r t i c a l  ascent or descent, 
the  magnitude of the induced velocity of the 
ro to r  and thus a l so  mind y i l l  vary. There
fore,  t o  determine mi a t  V, # 0, it is  not 
possible t o  add the  term t V Y  t o  mt i n  hover
ing  f l i g h t  without considering the  var ia t ion 
i n  mind . The graph of t he  increase i n  
torque coeff ic ient  of a ro tor  during ascent 

Am,,, as a function of vy and t has been cor& 
structed f o r  use i n  approximate calculations. 
T h i s  graph, shown i n  Fig.2.179, i s  obtained from 
results of calculations made by the  momentum 
theory. The graph of the  p i t c h  increment heo 
during climb i s  given i n  Fig.2.180. 

The approximate expressions f o r  deter- /a75
mining Am,,, and LOo can be obtained from the 
following considerations. During an ascent at 
l o w  vy the  average induced velocity, according 
t o  the momentum theory (Ref.2),  i s  equal t o  
-( recal l ing tha t ,  with our adopted rule of signs,
V, < o i n  ascent) 

Consequently, i n  a climb m t  and eo change by an amount of 



o r  
-


A%0 -41V,. 

The Amaso calculated by t h e  approxbat ion  formula i s  somewhat smaller than 
i n  Fig.2.179. 

Thus, t he  f i n a 1 , e q r e s s i o n  f o r  an approxbate  determination of t he  r o t o r  
torque coef f ic ien t  as a funct ion of t h e  th rus t  coef f ic ien t  and r e l a t i v e  v e r t i c a l  
speed has the  form 

Character is t ics  on Variation 
the- Rot-or Sol id i ty  R a t i o  

To determine the  aerodynamic cha rac t e r i s t i c s  of a ro to r  i n  hovering f l i g h t ,  
the  method of conversion of charac te r i s t ics  can be used. T h i s  method should be 
employed i f  r e l i ab le  cha rac t e r i s t i c s  of another rotor ,  c lose i n  r e l a t i v e  geo
metric cha rac t e r i s t i c s , a re  available. 

The method of conversion of charac te r i s t ics  i n  f l i g h t  regimes with forward 
speed, presented i n  Section 6, i s  based on a determination of t h e  angle of at
tack of t h e  ro to r  at which t h e  veloci ty  polygons, angles of a t t ack  of t he  sec
t ions ,  and elementary force are retained for a ro to r  with another cs i n  a l l  blade 
sections,  i.e., when there  is s imi l a r i t y  of regimes. I n  hovering, there  are no 
similar regimes f o r  ro to r s  with d i f f e ren t  0 ;  therefore,  t he  method of conversion 
of charac te r i s t ics  i s  based on the  assumption tha t ,  a t  an i d e n t i c a l  t h rus t  coef
f i c i e n t  t, the  induced power coef f ic ien t  i n  conformity with eq.(8.25) i s  propor

fi
t i o n a l t o  -
B3 

and the  p r o f i l e  power coef f ic ien t  i s  ident ica l .  

Thus, i f  the  torque coef f ic ien t  of t he  ro to r  of a s o l i d i t y  r a t i o  csl - ql 
i s  known, then f o r  a blade of a s o l i d i t y  r a t i o  5 2  t h e  coef f ic ien t  mt2 f o r  t he  
same value of t h e  th rus t  coef f ic ien t  i s  determined by t h e  formula 

The values of mpr and B are found from e q ~ ~ ( 8 . 2 8 )and (8=12). 

A t  an  iden t i ca l  value of t f o r  ro to r s  with different 0, t h e  angle of /276 
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a t tack  of the  blade sect ions should be p r a c t i c a l l y  the  same; consequently, t he  
ro to r  p i t c h  var ies  by a quantity A�lo proport ional  t o  t h e  difference of t he  
average induced ve loc i t ies .  

We obtain the  formu.la f o r  determining A�l0 : 

Thus, t he  p i t c h  of a ro to r  with a s o l i d i t y  r a t i o  0, i s  equal t o  

5. 	 Determination of k t i m l  Aerodgnamic Parameters of a 
Rotor w i t h  Conside&ion of- the  Dependence of 
Character is t ics  on M,

-

To se l ec t  t h e  optimal parameters of a rotor ,  it i s  convenient t o  use 
eq.(8.34) which cor re la tes  t h e  ro to r  th rus t ,  i t s  diameter, and required power 

T =(33.25 ~ X T ~ D N ) ~ ' ~ .  (8.34) 

Equation (8.34) includes the  r e l a t ive  e f f ic iency  of the  ro to r  v0, charac
t e r i z ing  the  relation,between the  power of an i d e a l  r o t o r  and the  ac tua l  power 
consumed by the  rotor": 

It is  obvious tha t ,  at given N, D, and A (i.e., f l i g h t  a l t i t ude ) ,  t he  
grea tes t  t h rus t  of t he  ro to r  i s  achieved a t  a maximum value of To; therefore,  
t h e  designer w i l l  s t r i v e  t o  approach a maxi" v0. Usually, t he  graphs of yo 
are constructed as a function of t and o f o r  a value of M, correspondi t o  the  
average proposed values of t he  per ipheral  speed of t he  ro to r  (Fig.2.1817. From 
this graph we ' se lec t  a reference point  (i.e., values of t, a )  with a sufficient
l y  la rge  To. We can a r b i t r a r i l y  se l ec t  t he  reference poin t  regardless of t h e  
ro to r  diameter, since an inexact agreement of t he  value of M, obtained a t  the  
chosen t, o, D . w i t h t h a t  f o r  which the  graph of 7, was constructed, i s  considered 
permissible. 

46 The power of an i d e a l  ro to r  is equal t o  the  minimum possible  power losses  of 
a ro to r  which are d i r e c t l y  re la ted  with the  generation of force, w h i l e  the  ac tua l  
power i s  equal t o  the  sum of a l l  power losses .  
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For a more accurate calculat ion (with consideration of t h e  e f f ec t  of M, on
I,), t he  use of graphs 7 ,  = f ( t ,  o) constructed f o r  d i f f e ren t  M, i s  inconvenient, 
s ince we cannot a r b i t r a r i l y  se l ec t  a reference point on these graphs. Actually, 
eq.(8.l5) can be represented in the  form 

Consequently, a t .given N, D, H t h e  product m,oMz should have .a de f in i t e  value, 
and on each curve of 7 ,  corresponding t o  de f in i t e  values of 0, Mo, only one 
poin t  (one m, and, respectively,  one t )  satisfies eq.(8.36). Two broken curves 
a r e  p lo t ted  i n  Fig.2.181 f o r  two values of t h e  product m p M g :  t he  smaller value 
of m,oMz per ta ins  t o  t h e  l a rge r  ro to r  diameter. These curves show tha t ,  a t  /277
given ro to r  diameter and M,, only the  maxi"7 ,  on the  broken cwve can be se
lected and t h a t  it i s  impossible t o  r ea l i ze  la rger  values of ll,. Upon an i* 
crease i n  ro tor  diameter (lower broken curve) t he  maximum .possible values of 7 ,  
a r e  s t i l l  smaller and it is  not apparent from the  graph whether the  ro tor  t h rus t  
determined by the product T0D increases.  Therefore, the  graphs of yo, con
s t ruc ted  as a function of t, o, and M, (or reconstructed as a function of m,oMg, 
o, M,), a r e  not su i t ab le  f o r  se lec t ing  the  optimal parameters of a rotor ,  
especial ly  i f  the  ro to r  diameter var ies .4 

I
I
I
I
I
I
I
II

0.10 0.15 0.25 t 

Fig.2.181 Relative Efficiency of Rotor as a Function of 
t and 0 (M, = 0.65). 

W e  will f ind  a more convenient form of the  graphs f o r  select ing the  optimal 
parameters of a ro to r  with consideration of t h e  dependence of t he  characteris
t i c s  on &. For this we make use of eqs.(8.36) and (8.37); the  latter i s  ob
tained from eqs.(8.153 and (8.17): 
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We can show t h a t  t h e  r a t i o  -on the  right-hand s ide  of eq.(8.37) i s  
mtMo 

proport ional  t o  ( T o D F .  Actually, from eq.(8.36) we determine the  ro to r  dia
meter D: 

and t h e  product ToD: 

It i s  obvious from this expression, j u s t  as from eq.(8.37), t h a t  at /278
given N and H t h e  maxi” t h rus t  of t he  ro to r  T,,, i s  achieved at r o t o r  para

meters at which t has a maximum. Therefore, t o  f ind  t h e  optimal ro to r  
mtMo 

tparameters we must construct graphs of t h e  dependence of t he  r a t i o  
mtMo 

25 T
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I 
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Fig.2.182 Ratio -t as a Function of mto@ at o = 0.091. 
mtM0 
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on m t o g .  These dependencies are shown a t  (T = const i n  Fig.2.182 and a t  M, = 

= const i n  Fig.2.183. The m e u m  values of -l i e  on the  envelopes of 
these  curves. mtM0 

We see from Figs.2.182 and 2.183 tha t ,  at given D (i.e., q o M ,  = const)and 
0, t he re  exists an optimal value of Md and a t  given D and wR there  exists oop t .
Lf only D i s  given, then it follows from these graphs f o r  a number of values of 
o and M, t h a t  the  ro to r  t h r u s t  increases  with increasing (T and decreasing wR 
( i n  t h e  range of l a rge r  o than  t h a t  shown i n  Fig.2.183, it may happen tha t ,  i f  
only D i s  given,' a l so  oopt and Moo exist). A n  increase i n '  ro tor  diameter cor
responds t o  a decrease i n  mpM; an8 this, as we see from the graphs, w i l l  lead 
t o  an  increase i n  ro to r  th rus t ,  especial ly  on a decrease i n o  and M,. 

Fig.2.183 Ratio -t as a Function of 
mtMo 

a t  M, = 0.65. 

A l l  curves a re  c losely spaced near t he  optimum of o and M,, so  t ha t  any 
deviation from optimum values s l i g h t l y  changes t h e  ro to r  th rus t .  For example, 

Fig.2.182 shows tha t ,  a t  mtoMz = 0.0003 and o = 0.091, we have (A) = 
mtMo max 

= 19.1 f o r  MOOpt = 0.55 and topt= 0.21, whereas with a '10%increase i n  ro tor  
rpm, i.e., f o r  M, = 0.6 and t =S 0.176 we have -t = 18.8; consequently, t h e m  

mtM0 
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r o t o r  t h r u s t  decreases by 1.6%. We f ind  from Fig.2.183 t h a t ,  at t h e  same value 

' of mtaMz and M, = 0.65, we have = 18.65 f o r  a,,, = 0.08, tpt= 
I 

= 0.165, whereas at CJ = 0.091 and t = 0.&5, we have = 23.5, %.e., t h e  
m tM0 

t h r u s t  diminishes by 0.8% 

To take account of t h e  var ia t ion  i n  the  t a i l  ro to r  losses  q o n  a change i n  
t h e  parameters of the main rotor ,  the graphs of s ingle-rotor  hel icopters  should 
be constructed i n  the  form of the  dependence 

where t h e  coef f ic ien t  reads 

The coef f ic ien t  kbl ,which takes i n t o  account blanketing of t h e  t a i l  ro to r  
by t h e  t a i l  boom, i s  taken t o  be equal t o  1.03 - 1.06. 



CHAPTER 111 m 
AJiTDDYNAMIC DESIGN OF A HELICOPTER 

Section 1. Basic Equations f o r  Aerodynamic Design 
of a Helicopter 

1. Aerodynamic Design PrinciDle of a Helicopter 

The p r inc ip l e  of aerodynamic design of a hel icopter  i s  calculat ing stable 
r e c t i l i n e a r  f l i g h t  regimes i n  a v e r t i c a l  plane i n  order t o  determine engine 
power, f u e l  constmrption, angles of attack, s e t t i n g  angles, and other  character
i s t i c s  of a r o t o r  during f l i g h t  at d i f f e ren t  speeds and a l l  possible  a l t i t udes .  
These da t a  permit determining v e r t i c a l  speeds, range, and.duration under dif
f e ren t  f l y i n g  conditions, and a l s o  represent necessary material f o r  studying t h e  
equilibrium conditions of moments (balancing and s tabi l i ty  of t h e  hel icopter)  
and f o r  stress analyses. 

O f  primary i n t e r e s t  i s  the  determination of t he  performance da ta  of a heli
copter, i.e., t h e  l imi t ing  f l i g h t  regimes: maximum and minimum horizontal  f l y ing  
speeds a t  a l l  a l t i t udes ,  cei l ing,  "um rate of climb and range, m i n i m u m  power 
of horizontal  f l i g h t ,  and v e r t i c a l  rate of descent on engine failure. 

2. Equation of Motion of a Helicopter 

The f l i g h t  cha rac t e r i s t i c s  of a helicopter are determined by solving equa
t i o n s  of stable r e c t i l i n e a r  motion of t he  c r a f t  i n  a v e r t i c a l  plane. 

The equation expressing t h e  sum of forces, equated t o  zero and directed 
along t h e  f l i g h t  pa th  as w e l l  as along a normal t o  it, as shown i n  Fig.3.1, has 
t h e  form 

where 
X and Y = components of t h e  r e s u l t a n t  aerodynamic forces  of t h e  r o t o r  

directed along t h e  f l i g h t  pa th  and along a normal t o  it; at  
X < 0, the  r o t o r  creates  a propulsive force w h i l e  a t  X > 0 it 
produces drag; 

QLp = p a r a s i t e  drag of t h e  nonl i f t ing p a r t s  of t h e  hel icopter ;
h.p= angle of f l i g h t  p a t h  of t he  helicopter t o  t h e  horizontal. 

It follows from Fig.3.l and eqs.(l.l) and (1.2) t h a t ,  i n  horizontal  f l i g h t
&gregimes (8, = 0), t h e  l i f t  of t h e  r o t o r  balances i t s  drag. I n  f l i g h t  

regimes along a n  incl ined path, t h e  propulsive force of t h e  r o t o r  compensates 
t h e  d rag 'p lus  t h e  resis tance t o  motion formed by t h e  weight component directed 
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along t h e  path, G s i n  .p  . 
To determine t h e  engine power 

i n  different f l i g h t  regimes and t o  
f i n d  regimes i n  which t h e  mad." 
power of t h e  engines should be ut i 
l i zed ,  t h e  equations of motion must 
be sqplemented by an equation ex
pressing t h e  condition of equal i ty  
of t h e  power absorbed by t h e  r o t o r  
N f o t  and t h e  engine power trans
rmtted t o  the  r o t o r  sha f t  

N,ot=NE. (1.3)
Fig.3.1 Forces Acting on a Helicopter 

i n  Steady Rect i l inear  Fl ight .  To reduce eqs.( l . l )  - (1.3) t o  
a dimensionless form, l e t  us refer 
t h e  fo rces  t o  t h e  product &(WRYOF, 

and t h e  power t o  $P(WR)~OF: 

G 
~ COS erLp=t,;

1- e  ( w R ) 2 u F
2 

75N' 

1 -2 p ( 0 4 3  aF 

Equation (1.4) can be then represented as 

or 


In eq.(1.8) and i n  what follows, the subscr ipt  llh.f.11 denotes quant i t ies  
ref e r r ing  t o  horizontal  f l i g h t .  

The given quant i t ies  i n  the  aerodynamic calculat ion are as follows: /zs2
flying weight of t h e  hel icopter  G; 
geometric r o t o r  cha rac t e r i s t i c s  ( tw i s t ,  planform), s o l i d i t y  r a t i o  D and 
radius R; 
per ipheral  r o t o r  speed mR; 
air  densi ty  p and veloci ty  of sound I t a l l  at design f l i g h t  a l t i t u d e ;  

drag coe f f i c i en t  of nonl i f t ing p a r t s  of t h e  hel icopter  ZX = - 0  

c c,s 
F ' 

engine cha rac t e r i s t i c s :  power N = N(H) and hourly f u e l  consumption G,, = 



= G(N, H);

engine power u t i l i z a t i o n  f a c t o r  5 .  


I n  l e v e l  f l i g h t  (0, 1.  = 0), the  number of given quantities i s  su f f i c i en t  
f o r  determining t h e  r o t o r  Lft coef f ic ien t  by eq.(1.5). The problem of calcu
l a t i n g  level-f l ight  regimes of a hel icopter  consis ts  i n  determining, by means of 
eq.(1.7) and for d i f f e ren t  ve loc i t i e s  v, t he  required coef f ic ien t  of propulsive 
force txhef ,finding t h e  values of mk. ,  from the  aerodynamic ro to r  character

i s t i c s  at known M,, tYh.and txh., and determining N,,. , from eq.(1.6). 

In &mum nonlevel f l i g h t  regimes, m, i s  known ( N  = N,,, i n  climbing and 
N = 0 i n  autorotation).  t he  problem amounts t o  determining the  values of t, and 
t, sa t i s fy ing  eqs.(l.5) and (1.7) from the  ro to r  aerodynamic charac te r i s t ics  a t  
d i f f e ren t  f ly ing  speeds a t  known M, and m,; the  fl ight-path angle 0, i s  ob
tained simultaneously. 

A s  indicated i n  Subsection 2, t he  aerodynamic r o t o r  charac te r i s t ics ,  namely 
the  i n t e r r e l a t i o n  of t h e  four  dimensionless ro tor  coeff ic ients  7, ty,tax,m, 

f o r  a range of M, corresponding t o  t h e  rpm and f l i g h t  a l t i t udes  of t he  heli
copter, should be known i n  t h e  aerodynamic design. 

I n  ce r t a in  methods of aerodynamic design, t h e  ro to r  charac te r i s t ics  are de
termined by an approximate theory i n  order t o  obtain simple formulas permitt ing 
a d i r e c t  calculat ion of the  hel icopter  performance data .  Because of the approxi
mate nature of these  calculat ion methods, they are r a re ly  used a t  present.  

To increase the  accuracy of aerodynamic calculations,  i t  is  expedient t o  
separate the  problems of determining t h e  aerodynamic ro to r  charac te r i s t ics  from 
those of determining the  hel icopter  performance data.  With this approach, the  
aerodynamic ro to r  cha rac t e r i s t i c s  can be found beforehand and p lo t ted  on spec ia l  
graphs. T h i s  eliminates the  need f o r  introducing s implif icat ions i n t o  the  calcu
l a t i o n  of aerodynamic ro to r  charac te r i s t ics .  I n  t h e  Milt-Yaroshenko method, 
presented i n  Section 2, t h e  following form of graphs i s  adopted: The angle of 
i nc l ina t ion  of t he  resu l tan t  aerodynamic force of t h e  ro to r  t o  t h e  normal of t he  
f l i g h t  pa th  6,  t he  torque coef f ic ien t  m,, and the  angle of a t tack  (Y are p lo t ted  
as a function of t he  p i t c h  cp f o r  a series of values of t h e  t h r u s t  coef f ic ien t  t 
and t h e  charac te r i s t ic  of t h e  f l i g h t  regime (see Fig.2.15). 

A fur ther  development of t h e  Milt-Yaroshenko method resul ted i n  a more con
venient form of the  graphs: dependence of t h e  coef f ic ien t  of propulsive ro to r  
force t, on m, f o r  various values of t he  l i f t  coef f ic ien t  t, a t  v = const and 
M, = const. The graphs a l s o  give curves of' constant values f o r  t he  r o t o r  angles 
of a t tack  by means of which the  la t ter  can be defined ( the  angle of a t tack  a 
must be known f o r  ref ining t h e  p a r a s i t e  drag of t h e  hel icopter  and f o r  calculat
ing a wing-type hel icopter  or other  composites). 

The graphs f o r  t h e  aerodynamic ro to r  cha rac t e r i s t i c s  can be p lo t t ed  from 
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experiment or  constructed from any rotor  theory; t he  methods of determining t h e  
aerodynamic character is t ics  are presented i n  Sections 2, 4, 5, and 6 of Chapt.11. 

The method of aerodynamic design i n  which graphs of the  aerodynamic ro tor  
character is t ics  are used, i s  presented i n  a very general form i n  Section 3. 

It was  shown i n  Section 7 of Chapter I1 t h a t  t he  aerodynamic ro tor  charac
t e r i s t i c s  can be determined by using t h e  concepts of performance and propulsive 
efficiency f ac to r  of t he  rotor .  The method of aerodynamic design based on the  
use of these concepts is  described i n  Section 4. 

I n  many methods of aerodynamic design, t h e  expression 

t 2  a-mr=-1 tyvy--1 t,(v-v,) +mpr =A-t,V+ mpr,
8 2  8 2  4B4v 

derived i n  Section 3 of Chapter 11, i s  used. 

These represent ra ther  simple but q p r o h t e  calculation methods. One 
such method i s  described i n  Section 5. 

4. Calculation of Composite and Multirotor Craft 

For the  aerodynamic design of composite and multirotor c r a f t  by the methods 
described i n  Sections 2 and 3, we w i l l  construct graphs of t he  t o t a l  coefficients 
of the  l i f t i n g  and advancing systems of a composite c raf t :  tXe(or  b e )  as  a 
function of m tc f o r  t 

y e  
= const. The t o t a l  coeff ic ients  are found experimental

l y  or can be obtained by calculation with respect t o  known aerodynamic charac
t e r i s t i c s  of isolated elements of the l i f t i n g  system of the  c raf t .  The design 
formulas f o r  determining the  t o t a l  coefficients are  given below, fo r  cer ta in  
special  cases 

These formulas are a l so  used i n  aerodynamic calculations based on t h e  
methods described i n  Sections 4 and 5, i n  which the lift dis t r ibu t ion  between 
individual elements of t he  l i f t i n g  system of the c ra f t  must be known. One of 
the  possible methods of determining the  lift dis t r ibu t ion  between rotors and 
w i n g  is  given i n  Section 4. In this case, t he  formulas derived below are used 
fo r  determining the  t o t a l  coefficients of the  . l i f t i ng  system of the c raf t .  

Single-rotor helicopter with wiw. The sMrmarg coeff ic ients  tyz,t?, and 

mtc are  determined by the  following expressions (Fig.3.2): 

S" v 2t = ( f , c o ~ A a , ~ - t ~ s i n A a , ~ ~ ) + - --X 
yz - F a i 

X (CYW COS Aa ,  -cIw sin Aa,,, ), !
Is, V' 

at-5= ( t , C O s A a ~ + t y s i n A a , t )  +- F -x 
I 

(1.9) 
I 
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X (C., COS Aa, +cy, sill A a w  ), 

mtz =mt 

or, approximately, by /2& 

I 

Figure 3.2 indica tes  t h a t  t h e  angle between the  plane of ro t a t ion  of t h e  
ro to r  and t h e  pa th  ve loc i ty  ( o r  veloci ty  of undisturbed f l aw) ,  which we w i l l  
c a l l  t h e  angle of a t tack  of t h e  hel icopter  a,,, is  equal t o  

ah= a+ A a d .  

The angle of a t tack  of t he  wing i s  correlated with the  angle of a t tack  of 
t he  ro to r  by 

a,-a,-Aa,  +E, 

In these  e q r e s s i o n s  we denote: 
ty,t,, q, CY, cy,, cxw,cy, = 

A c Y ~ ~ ,= 

Acyw = 

S, and e, = 

The s l ipstreamsof  ro to r  and wing 

1% 


= a f - ~ a , o ~ - A a ,+E,,,.. (1.10) 

cha rac t e r i s t i c s  of i so l a t ed  ro tor  and Wing; 
mean downwash angle i n  the  ro to r  region,
induced by t h e  wing; 
mean'downwash angle i n  the  wing region,
induced by t h e  rotor ;  
area and Wing s e t t i n g  angle. 

a r e  	denoted by the  vectors V.' and VN i n  
Fig .3.2. Considering t h a t  t he  f l i g h t  
veloci ty  i s  many times grea te r  than 
the  addi t iona l  v e r t i c a l  ve loc i t i e s  of 
in te r fe rence  Av, the  ve loc i t i e s  V' and 
v" a re  equal t o  

The sequence of determining t h e  
t o t a l  coef f ic ien ts  a t  known S,, and e, 
i s  as follows: 

For selected v, G,and tyc'
assign cy, arid f ind  t, from 

Fig .3.2 Velocities,  Angles of Attack, t he  first equation i n  the  sys
and Forces of a Single-Rotor H e l i - t e m  (1.9'). 

copter with Wing. From the  wing cha rac t e r i s t i c  
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= f(a, >, f ind  CY,, 

Determine the  d o m a s h  angles and Aa,, (see below, Subsect.5). 

From eq.(l.lO), determine the  angle of a t tack  of t he  ro to r  and from /285

the  charac te r i s t ics  of t h e  i so la ted  rotor ,  f ind  t, and m,. 

Note t h a t  eq.(l_.lO) includes the  angle of a t tack  of t he  plane of rota 

t i o n  which, at (pl # 0, d i f f e r s  from the  equivalent angle of a t tack  (see 

Chapt .II, Sect .2). 

Calculate txz0 

After carrying out such calculat ions f o r  several  values of cy , f ind  the  

dependence of t, on mt f o r  given values of 7, M,, and t . Perform c -
these calculat ions f o r  a series of values of t V, &, and then con

s t r u c t  graphs of t he  aerodynamic cha rac t e r i s t i c s  of t he  l i f t i n g  system 
of the  c r a f t .  

Fig.3.3 Forces Created by Rotor and Tractor Propeller.  

It i s  obvious tha t ,  i f  t he  lift of the  fuselage (nonl i f t ing  components) of 
t h e  hel icopter  o r  a var ia t ion  i n  its drag r e l a t i v e  t o  the  angles of a t tack  must 
be t a k e n i n t o  consideration, then the  charac te r i s t ics  of the Lif t ing system to
gether with t h e  fuselage of t he  hel icopter  can be determined i n  the same se
quence. 

Helicopter with t r a c t o r  pyapellers. The additions t o  the  t o t a l  coef f ic ien ts  
of t h e  l i f t i  system a re  expressed by t he  f o l l k n g  formulas, which are evident 
from F’ig.3.3 7interference of t he  t r a c t o r  propel lers  with other  elements of the  
system i s  disregarded) : 



In  these  expressions P t a P  and N t m P  are t h e  thrust and power of the  t r a c t o r  

propeller,  correlated by t he  r a t i o  75 NtmP= P t . P V  . 
N t .  p 

When using a cru ise  jet engine with a th rus t  of P t e P  on a helicopter,  A& 
and A t ,  W i l l  be determined by eqs.(l.l2), and we Win have Amt = 0. 

Two-rotoy _ _hel icopter  -ofsAde-by-side configuration with a wing. For this & 
helicopter tyc, txZ,and m, c aredetermined by the following expressions: 

F.t =. 2 ( t ,  cos Aamt -t ,  sin AUrot) +-s, -X 
YE F a 

X(c COSAU,,, - - C  sin Aa,,,),
YW ,W 

8 2tXc=2( t ,  cos A U , , ~ + ~ ,  sin Aapot)+-sw -x 
F a 

X (c cos A U w  +cy& sin Aa,,,),xw 

. mtB=2m,, 

a,,, =u+Aa,,,t-Aa, +sly. 

Unlike eqs.(1.9), here brat and Acu, a re  the  t o t a l  angles of downwash in
duced both by mutual interference of the  ro to r s  and interference between ro tors  
and wing. 

The sequence of calculat ing the  t o t a l  coef f ic ien ts  i s  the same as f o r  a 
single-rotor helicopter.  

Equations (1.12) are added t o  eqs.(l . l3) i f  t r a c t o r  propel lers  are present. 

Two-rotor h e l i c m t e r  of fore-andzaft configuration. Disregarding downwash 
i n  t h e  region of t h e  f ron t  r o t o r  caused by t he  t a i l  rotor ,  we can obtain the  
fonowing re la t ions  (Fig .3 -4): 
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In 	these eqress ions ,  we denote: 
AcY,,,, = mean downwash angle i n  the  region of the  t a i l  rotor, induced 

by the  f ront  rotor;  
be,,,, = effect ive a l e  of advance of t h e  t a i l  ro tor  re la t ive  t o  the  

f ront  ro to rywi th  consideration of t he  difference i n  deflection 
of t he  automatic ro tor  p i tch  control)  : 

A%tC =AEmt- (D,x)l$(Dlx)?. (1015) 

The subscript 111" denotes character is t ics  of t he  f ront  ro tor  and the  /287
subscript 11211, of t he  t a i l  rotor. 

The performance data of a heli
copter of fore-and-aft configuration 
can be Uniquely determined i f  and only 
if the  conditions of jo in t  operation of 
f ront  and t a i l  rotors  are  known. Usual
ly, such a condition i s  the . re la t ion  
between the  thrus t  of the rotors deter
mined by longitudinal balancing of the  
helicopter. Knowing this relat ion f o r  
selected 8, Mor and t 

YC' 
it i s  possible 

Fig.3.4 Velocities, Angles of t o  f ind tyl and ty2from the first
Attack, and Forces f o r  a Heli

copter of Side-by-Side Configura- equation of t he  system (l.l-4). After 


t ion.  assigning cy1 and calculating AcY,,,, ,  we 
can determine c y 2 .  From the characteris
t i c s  of the  isolated rotor, knowing 7, 

M,, ty,and CY we then f ind t, and m, f o r  both rotors.  Furthermore, t 
are calculated and graphs of the  aerodynamic character is t ics  of the  
system are  plotted. 

5. 	 Induction Coeffici.e.nts of _%?-Rotgr Helicopters 
and Helicopters w i t h  a W i r g  

Determination of t h e  l i f t  and drag of the system of l i f t i n g  elements i s  a 
complex problem f o r  whose solution the  induced velocity and loads per  u n i t  
length i n  each section of the  l if t ing elements should be found, with considera
t i o n  of the e f fec t  of a l l  vortices entering the  system. When using high-speed 
computers, solution of this problem i s  possible i n  cer ta in  cases. 

However, usually i n  aerodynamic designing, t he  computation is  limited t o  
determining the  average downwash angles llcv of each of t h e  elements of the l i f t i n g  
system. As shown i n  Subsection 4, the  dowrrwash angles permit finding the  pro
ject ion of forces of a l l  elements of t he  l i f t i n g  system onto the  direct ion of 
motion and normal t o  it. 

Equations (1.9) - (1.13) show that ,  f o r  A c t >  0 ( i . ee9  f o r  the ve r t i ca l  in
duced velocity component caused by other elements of t he  l i f t i n g  system, Av i s  
directed from the  top downward), t he  drag of t he  c r a f t  increases by an amount 



'Y 

V o r t e x  shee t  '7 

"i. 
"0 


F'ig.3.5 Induced Velocity Dis t r ibu t ion  of Wing 
(Points 1, 2, 3, l', 2', 3' a r e  above and below 

the  Vortex Sheet) 

F'ig.3.6 Induced Velocity Dis t r ibu t ion  along Wing Span 
a t  Different Distances from Vortex Sheet 
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YAcv w h i l e ,  at Act c 0, t h e  drag of t h e  c r a f t  decreases. 

The daimwash angle of t h e  i - t h  element of t h e  l i f t i n g  system induced by t h e  
n-th element i s  determined by t h e  expression 

(1.16) 

where Av, i s  the  v e r t i c a l  induced ve loc i ty  component created by the  n-th element 
a t  t h e  focus of t h e  i - t h  element, averaged over t h e  area of t h e  5-th element; 
Avi i s  proport ional  t o  t h e  mean induced veloci ty  i n  t h e  plane of ro t a t ion  of t h e  
n- th  element: 

The propor t iona l i ty  f a c t o r  n, is ca l led  t h e  induct ion coef f ic ien t .  T h i s  
depends on t h e  mutual arrangement and dimensions of t h e  i - t h  and n 4 h  elements 
of t h e  l i f t i n g  system. 

Let  us r e c a l l  how the  induced veloci ty  of t h e  wing ( o r  ro to r )  i s  d i s t r ibu ted  
i n  space. A t  po in ts  downstream of t he  wing, t h e  induced ve loc i ty  increases  and 
r a the r  rap id ly  reaches double i t s  in i t ia l  value (Fig.3.5). An increase i n  in
duced ro to r  ve loc i ty  w i l l  then take  place within t h e  r o t o r  disk (Fig.2.3). 

A t  po in ts  upstream of t h e  wing, t he  induced ve loc i ty  i s  v i r t u a l l y  equal t o  
zero, while it decreases at poin ts  above o r  below the  vortex sheet (po in ts  1, 
l', 2, 2', 3, 3' i n  F'ig.3.5). I n  cross section, t h e  induced veloci ty  of t h e  
wing with an e l l i p t i c  c i r cu la t ion  d i s t r i b u t i o n  has the  form shown i n  Fig.3.6: 

c l.O), t h e  induced ve loc i ty  i sWithin the  span of t he  wing o r  r o t o r  (5 = ,e
di rec ted  downward while a t  t h e  periphery (Z 2 LO), it i s  directed upward. 

Let  us determine t h e  magnitude of t h e  induction coef f ic ien ts .  

The coef f ic ien ts  of mutual induction depend on t h e  f l i g h t  veloci ty  (7) and 
on t h e  angle of a t t ack  of t h e  ro to r s ;  our values of n are averaged with respect 
t o  y, approximate, and applicable t o  a l l  f l i g h t  regimes a t  v 5 0.15. 

The ro to r s  of a hel icopter  of side-by-side configuration, a s  i s  obvious 
from Fig.3.6, are located i n  t h e  region where the  induced ve loc i t i e s  caused by 
t h e  adjacent r o t o r  are d i rec ted  from t h e  bottom up. I n  this configuration, t h e  
interference reduces the  induced drag of t h e  system. Here, t h e  value of t h e  
mutual induction coef f ic ien ts  H ~ .  was taken from B.N.Yur'yevts book ( R e f  .2) t o  
which correct ions were applied f o r  t h e  f a c t  t h a t  t h e  induced ve loc i t i e s  a t  azi
muth $ = 90' a r e  grea te r  than at azimuth $ = 27@. Therefore, t he  mutual induc
t i o n  coef f ic ien ts  depend on t h e  d i r ec t ion  of r o t a t i o n  of t h e  ro tors :  When t h e  
azimuth $ = 90' is  between t h e  rotors ,  these coe f f i c i en t s  are approximately 25% 
higher than t h e  mean values obtained elsewhere (Ref .2), w h i l e  they are about 25% 
lower i n  another d i r ec t ion  of ro ta t ion .  
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Fig.3.7 Coefficient of Mutual Induc
t i o n  of Rotors for Helicopters of 

Side-by-Side Configuration. 
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F'ig.3.8 Coefficient of Mutual Induc
t i o n  of Rotors for Helicopters of 

Coaxial and Fore-and-Aft 
Configuration. 

The graph of n, .I as a funct ion of t h e  dis tance between t h e  ro to r  axes 
-
z = -

R 
i s  shown i n  Fig.3.7. It i s  obvious t h a t  t h e  optimum distance between 

-rotors ,  a t  which t h e  least induced drag i n  forward f l i g h t  occurs, i s  equal t o  
z = 1.8. 

If ,  i n  hel icopters  of coaxial  configuration, there  i s  no v e r t i c a l  separa
t i o n  of t h e  rotors ,  then t h e  coef f ic ien t  of mutual induction nco obviously Will 
be equal t o  uni ty  (Av = v,,). When there  i s  v e r t i c a l  separation, t h e  induced 
veloci ty  i n  the plane of t h e  second ro to r  av W i l l  decrease (Av c v iv )  so t h a t  
w,, < 1. The graph of zoo as a funct ion of t he  v e r t i c a l  separation of the  

ro to r s  y = -	7 taken from another paper (Ref .2) ,  i s  shown i n  F'ig.3.8.
R '  

According t o  t h e  general  theory of induction, t h e  mean induced veloci ty  of 
t h e  system of l i f t i n g  elements does not depend on t h e i r  stagger i n  the  direc
t ion  of pa th  velocity;  consequently, f o r  a hel icopter  of fore-and-aft configura-

/zso 
t i o n  t h e  mean magnitude of t h e  addi t iona l  induced ve loc i ty  Av i s  the  same as f o r  
a coaxial  hel icopter  ( a t  equal y) . Since t h e  t a i l  r o t o r  does not influence the  
f ron t  rotor ,  we have n r O t  = 0; consequently, f o r  t he  t a i l  ro to r  located behind 
the  f ron t  rotor, Av = 2AvaV so t h a t  t t r O t Z  = 2zO0". Thus, t he  mutual induction 

coef f ic ien ts  i n  hel icopters  of fore-and-aft configuration are a l s o  determined 
i n  accordance with Fig.3.8. 

I n  terms of t h e  general  induction theory, a decrease i n  induced drag f o r  

;C I n  Chapter I, i n  eq.(3.22), we had n = 2n,,. 
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Fig.3.9 Effect ive Cross Section 
of Air Stream f o r  Helicopters of 
Side-by-Side and Fore-and-Aft 

Configurations. 

hel icopters  of side-by-side configuration 
( w ,  ., > 0 )  a d  an increase i n  induced drag 
f o r  hel icopters  of fore-and-aft and co
axial configurations ( w o o  > 0) i s  explained 
i n  the following manner: It i s  known that 
t h e  induced drag of t h e  system of l i f t i n g  
elements i s  d i r e c t l y  proport ional  t o  t h e  
square of l i f t  and inverse ly  proport ional  
t o  t h e  mass of a i r  pa r t i c ipa t ing  i n  produc
ing  l i f t ,  o r  t o  t h e  e f f ec t ive  cross  sectLon 
of t he  air stream (see Fig.2.56). I n  t h e  
i d e a l  case (uniform induced veloci ty  dis
t r i b u t i o n  over t h e  e n t i r e  span), t he  effec
t i v e  cross sec t ion  of t h e  air stream i s  
equal t o  a circumference whose diameter is  
equal t o  t h e  span of t h e  l i f t i n g  system. 

The e f f ec t ive  stream cross sec t ion  F,, 
f o r  hel icopters  of side-by-side and fore-
and-aft configurations i s  given i n  Fig .3.9. 
The sketch shows tha t ,  f o r  the  side-by
s ide  hel icopter ,  F, i s  r e a t e r  than the  
area of t h e  two ro to r s  f w a .  < 0);  a t-
z, . > 2, a gap e f f e c t  appears and F, de
creases.  I n  t h e  fore-and-aft configuration 

without v e r t i c a l  separat ion of the  r o t o r s  (y  = 0),  t h e  e f f ec t ive  stream cross 
sec t ion  is t h e  same as f o r  a s ing le  ro to r  ( w o o  = 1);i n  the  presence of v e r t i c a l  
separation, F, increases  ( x e o  < 1). 

Now l e t  us examine t h e  in te r fe rence  between r o t o r  and wing f o r  single-rotor 
and fore-and-aft hel icopters  (Figs.3.10 and 3.11). It i s  obvious tha t ,  i f  t h e  
wing of a s ingle-rotor  hel icopter  i s  very close t o  t h e  ro to r  (F = 0) and t h e  

1 
spans of both r o t o r  and wing a re  equal (T, = w = 2.0), then w, = wrOt = 1.0.R 
Upon an increase i n  in,due t o  the  f a c t  t h a t  t h e  induced ve loc i ty  is  directed 
upward outside t h e  rotor ,  t he  induced ve loc i ty  of t h e  r o t o r  averaged over t h e  
wing span w i l l  decrease ( w ,  < l . O ) ,  while t he  induced ve loc i ty  of t h e  wing 
averaged over t he  ro to r  a rea  w i l l  change l i t t l e .  Correspondingly, upon a de
crease i n  l , ,  w, w i l l  change l i t t l e  whereas w, w i l l  decrease. A t  T, < 1.0, 
when the  wing i s  underneath t h e  ine f f ec t ive  blade sections,  w, w i l l  decrease. 
The graphs i n  Figs.3.10 and 3.11 are val id  f o r  a hel icopter  of fore-and-aft con
f igurat ion,  but must be taken with consideration of t h e  mutual longi tudinal  dis
placement of both ro to r s  and Wings; f o r  elements located aft, w i s  doubled, /291
whereas f o r  elements located forward, w decreases t o  zero. 

For a hel icopter  of side-by-side configuration, l e t  us examine one of t h e  
ro to r s  i n  calculat ing w .  A t  Z = 2.0, half  of t h e  wing i s  underneath t h e  ro to r  
and half  is outside the  r o t o r  (Figs.3.12 and 3.13); therefore ,  w, and w r O t  a re  
smaller than 0.5 ( they would be equal to' 0.5, i f  the induced ve loc i ty  were equal 
t o  zero outside t h e  r o t o r  d i sk  or wing span and were  uniformly d is t r ibu ted  with
i n  t h e i r  confines). Upon a decrease i n  8, a l l  l a rge r  components of t he  wing 



Fig.3.10 Induction Coefficient of Rotor f o r  a Wing on 
Helicopters of Single-Rotor and Fore-and-Aft 

Configurations. 

and ro to r  w i l l  be within the  f i e l d  of induced downward ve loc i t ies ,  so t h a t  both 
n, and xrot w i l l  increase. 

The numerLca1 values of H, and xrOtplo t ted  i n  t h e  graphs (Figs.3.10-3.13) 
are given f o r  y = 0. A decrease i n  n at y # 0 can be determined from the  graph 
of H,, = f ( y )  i n  fig.3.8, i.e., 

Xf ( i l l>=% (Y=O)%o (id. (1.18) 

with eqs.(l . l6) and (1.17), t he  downwash angles are de-Thus, i n  accordance 
termined by t h e  formulas 

The d o m a s h  angle of t h e  ro to r  induced by t h e  wing can a l so  be found from 
the  expression 

t Y w =  
AQPOt=x,t --%rot m. (1.20)"Z X W  1, 



U 1.0 2.0 3.0r-

Fig.3.U Induction Coefficient of Wing f o r  a Rotor on 
Helicopters of Single-Rotor and Fore-and-Aft 

Configurations 

Fig.3.12 Induction Coefficient of Rotor Fig.3.13 Induction Coefficient of 
f o r  a Wing on Tandem Helicopter. W i n g  f o r  Rotor on Tandem Helicopter. 
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Section 2. 	 Aerodynamic Hel icmter  Design by t h e  /293
Milt -Yaroshenko Method-~ 

Let us examine steady regimes of r e c t i l i n e a r  motion of a helicopter with 
low fl ight-path angles t o  t h e  horizontal. 

Assuming t h e  thrust of t h e  r o t o r  t o  be approximately equal t o  t h e  weight 
arid considering t h e  revolutions of t h e  r o t o r  50 be given, f l i g h t  should always 
t ake  place at a constant thrust coeff ic ient  t. In this case, t h e  magnitude of 
t h e  p ro jec t ion  of t h e  r e s u l t a n t  onto t h e  d i r e c t i o n  of motion can be varied only 
after having changed t h e  angle of a t tack;  at t h e  same time, a l s o  t h e  r o t o r  p i t c h  
must be changed and hence the  power transmitted t o  t h e  rotor ,  so as t o  maintain 
balance of forces  with respect t o  t h e  ve r t i ca l .  

The method proposed below f o r  designing a hel icopter  assumes, f o r  each pos
sible value of r o t o r  pi tch,  t h a t  t h e  aerodynamic r o t o r  cha rac t e r i s t i c s  ( th rus t ,  
longi tudinal  force,  and to r s ion )  are known. 

1. .- . .  -Equations of Motion and Dgsian Principle  

Figure 3 . q  shows t h e  forces  act ing on a hel icopter  i n  steady r e c t i l i n e a r  
motion. 

Lift Horizontal flight 


F’ig.3.q Forces Acting on a Helicopter i n  
Steady Rect i l inear  Motion. 

The equations of motion of a hel icopter  can be w r i t t e n  i n  the form 

R sin 6 +G sin e,,,+ Qm,= 0; 
R COS 6 -G COS e,l,= 0. I 

The angle between t h e  d i r ec t ion  of t h e  r e su l t an t  and t h e  normal t o  t h e  path 
reads 

H h&=a+ t-n-/--=u+ tan+ -..T t (2.2) 
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Eg.3.15 Aerodynamic Characteristics of Rotor 
(p = 0.15; t = 0.13; cs = 0.065). 

U 0.20 

Fig.3.16 Required and Disposable Characteristics 

of Helicopter. 




- 

Below, we w i l l  assume tha t  t h e  angles 6 and B f  .~are s m a l l .  Furthermore, 

owing t o  t h e  smallness of -	H i n  f l i g h t  regimes, we can assume the resu l tan tT 
force of t h e  ro to r  as equal. t o  the  t h r u s t  (R = T). Then e q ~ ~ ( 2 . l )can be re
wr i t ten  i n  the form 

(2.3) 

The angle of i n c l i n a t i o n  of t h e  forward resu l tan t  6,. required f o r  hori- 1295
zontal  f l i g h t  i s  found from eqs.(2.3), s e t t i n g  O f l . p  - 0: 

(2-4)  

The fl ight-path angle f o r  any given regime wTll be determined then from 
eqs (2.3) : 

Thus, the problem consis ts  i n  determining the  possible angles of inclina
t i o n  of the resu l tan t  6 f o r  each given regime. 

and the  torque coef-Figure 3.15 shows the angle 6 ,  the  angle of a t tack CY, 
f i c i e n t  of the  ro to r  m, r e l a t i v e  t o  the condition of constancy of the  th rus t  
coeff ic ient  t, as a function of t he  blade p i t c h  ‘p f o r  a spec i f ic  f l i g h t  regime p .  
The la rger  the  se t t i ng  angle cp, t he  more nega t iw  must be the  angle of a t tack  CY 
of the  en t i r e  helicopter,  so as t o  maintain balance of forces  with respect t o  the  
vertica1,and the  l a rge r  must be t h e  angle of inc l ina t ion  of the  forward resu l tan t .  
The graphs i n  Fig.3.15 show tha t  large s e t t i n g  angles of ten  require a la rger  
torque, i.e., a grea te r  expenditure of power. Hence it i s  c l ea r  t ha t ,  a f t e r  de
termining the  magnitude of t he  torque, it i s  possible - f o r  example, from the 
t o t a l  engine power as shown i n  Fig.3.15 - t o  obtain the  maximum (disposable) 
p i t c h  c p d i s  f o r  a given regime and hence the  corresponding magnitudes of the  
angles of inc l ina t ion  of the  resu l tan t  6 d i s  and angle of a t tack  adis. Converse
ly ,  on assigning the  value of 6 - f o r  exanple, from the  condition of horizontal  
f l i g h t  - by means of eq.(2.4), it i s  possible  t o  obtain the  required blade set
t i n g  angle cp, t he  torque coeff ic ient  mt, and the  angle of a t tack  of t he  ro to r  a. 

Figure 3.16 gives the resu l tan t  values of 6 d 1 8  and t j h e f  as a function of p a  
The graphs i n  Fig.3.16 a r e  a l so  the main graphs f o r  the calculation, by means of 
which a l l  necessary f l i g h t  data  can be determined. The in te rcept  of t he  curves 
determines 

v,,, =P,BPR. 

The v e r t i c a l  ve loc i t i e s  as a funct ion of p o r  V can be found from the 
f om* 

V,= -ve*, 

“4. 

I 



where t h e  quantity Q i l . p  = 4 6  i s  taken from the  graph i n  Fig.3.16. 

2.. Determination of. A e r o d x d c  Rotpr Character is t ics  

The quant i t ies  m,, 6, and cy as a function of t he  p i t c h  cp and at a given 
value of t he  thrust coefficient t - f o r  example, similar t o  those shown i n  
Fig.3.15 - which are necessary for calculation, can be determined experimentally 
o r  theoret ical ly .  

Within cer ta in  limits, the  Glauert-Lock theory gives r e su l t s  close t o  
reali ty (Sect.2, Chapt.11). These limits are bounded by a ce r t a in  regime p and 
by the  magnitude of the  th rus t  coefficient t, characterizing the  value of t he  
average working l i f t  coeff ic ient  of t he  blade sect ion cy and thus determining 
t h e  admissibility of assumptions made i n  the  theory f o r  t he  l i nea r  dependence
of cy on the  angle of a t tack  and f o r  t he  p o s s i b i l i t y  of adopting an average ,&&

value of the  coeff ic ient  of p r o f i l e  

h’
t 4 

0.7 0 

drag cxp,, = const which does not depend 

on the  angle of a t tack of the section. 

In  t h e  aerodynamic design of a 
helicopter it i s  convenient t o  define 
the  flow coeff ic ient  h on the  basis of 
eq.( 2.50) f o r  t he  th rus t  coeff ic ient  
(see’Chapt.11). For this, we make use 
of t h e  second equation of t he  above 
system (2.3) which expresses the condi
t i o n  tha t ,  f o r  any rec t i l i nea r  motion, 
t h e  ro to r  t h rus t  i s  approximately equal 
t o  the  weight of t h e  c raf t .  Thus-, t he  
thrust coeff ic ient  i n  helicopter f l i g h t  
a t  a given r p m  i n  a l l  r ec t i l i nea r  re
gimes is  constant, and i ts  value is  de
termined from the  condition T = G. Then 
h ,  at given values of p, and cp, will be 

0.10 0.20 0.30 t determined from the equation 

Fig. 3.17 A u x i l i a r y  Graphs f o r  2t 

Calculation of Rotor Characteris- (2.8)


a- 8 2
t i c s  (p  = 0.1). 

If now we subs t i tu te  the  value of h 
i n t o  the  expression f o r  h (2.68), m (2.4.7), and CY (2.53) i n  Chapter I1 and p lo t  
t h e i r  dependence on cp (see Fig.3.15j, then each point  of these curves W i l l  cor
respond t o  one of t h e  possible regimes of r ec t i l i nea r  f l i g h t .  

To simplify the  calculations,  l e t  us p l o t  graphs of the  quantit ies 

0.20 

0 



and 

as a funct ion of t, where cp is  a parameter. 

Figures 3.17 - 3.20 show these graphs, p lo t t ed  on t h e  assumption t h a t  /297 
t h e  coef f ic ien t  of t i p  losses  i s  B = 1and t h a t  t h e  m a s s  charac te r i s t ic  of t h e  
blade is  y = 5. On a change in f l i g h t  a l t i t ude ,  y W i l l  vary i n  d i r e c t  propor
t i o n  t o  the  var ia t ion  i n  air density. A s  a consequence of a var ia t ion  i n y ,  

a l s o  h' and m$ Wi l l  vary,  but  the  changes i n  these quant i t ies  are small f o r  

values p s 0.3. 

C " 

0.20 

0.10 

0 PI0 0.20 0.30 t 0 0.10 0.20 a30 t 

Fig.3.18 Auxiliary Graphs f o r  Calcula- Fig.3.19 A u x i l i a r y  Graphs f o r  Calcu
t i o n  of Rotor Character is t ics  l a t i o n  of Rotor Character is t ics  

(p = 0.15). (p = 0.2). 

The quant i t ies  m$ and -h' 
t represent components of t h e  coef f ic ien ts  of /298 

torque and longi tudinal  force due only t o  l i f t  and induced drag of t h e  blades; 
t h e  components of these coef f ic ien ts  due t o  t h e  p r o f i l e  drag of the.  sect ions do 
not en ter  i n t o  eqs.(2.9). For values of p Within limits from 0.1 t o  0.3 and f o r  
t he  usual p r o f i l e  surface finish, a value of cxPay= 0.012 gives sa t i s f ac to ry  
results 
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3. Calculation of F l igh t  Data 

A se l ec t ion  of bas ic  parameters usual ly  precedes t h e  aerodpam5.c design. 
Let us assume t h e  r o t o r  diameter as given. 

Obtainment of optimum f l i g h t  da ta  i n  v e r t i c a l  regimes requires m i n i "  loads 
on t h e  d isk  area; therefore ,  t he  r o t o r  
diameter is  se lec ted  a s  la rge  as pos
sible with respect  t o  design and weight 
considerations.  Also t h e  magnitude of 
t h e  s o l i d i t y  r a t i o  o is  mostly predicated 
on design considerations.  

The magnitude of blade loading 
which determines the  working cy of t he  
sec t ion  thus depends la rge ly  on t h e  
ro to r  rpm. For a r a t i o n a l  s e l ec t ion  of 
t h e  rpm it is  therefore  suggested t o  
ass ign 3 o r  4 values of t h e  angular 
r o t o r  ve loc i ty  and t o  perform a complete 
ca lcu la t ion  f o r  these.  

A s  regards ava i lab le  power trans
mitted t o  t h e  ro tor ,  i n  t he  case of two-
or mult i ro tor  configurations it,i s  
necessary t o  account f o r  t he  e f f ic iency  
of transmission and f o r  losses  due t o  
cooling; i n  t h e  case of a single-rotor 
configuration, t h e  power expended f o r  
dr iving t h e  t a i l  r o t o r  must a l so  be taken 

Fig.3.20 Auxiliary Graphs f o r  i n t o  account. I n  first approximation, 
Calculation of Rotor Characteris- this power can be found for hovering 

t i c s  ( p  = 0.3). 	 f l i g h t  and i s  taken as unchanged i n  
forward f l i g h t ,  which W i l l  y i e ld  smaller 
values f o r  t h e  performance data  i n  /;299

forward f l i g h t  than  can be expected i n  r e a l i t y .  

The sequence of ca lcu la t ion  i s  as follows: After assigning several  values 
of w, a s e r i e s  of values of t is  derived; f o r  given values of p and y, t he  ro to r  
angle of a t t ack  cy and t h e  coef f ic ien ts  h and mt are determined, and eq.(2.2) i s  
used for defining t h e  corresponding values of 6. 

The found values of 6 and m, a r e  p lo t t ed  as a funct ion of cp i n  t he  form of 
graphs similar t o  those i n  Fig.3.15, each of which i s  constructed f o r  a d e f i n i t e  
value of p .  Then, p l o t t i n g  on t h e  y-axis t he  values of t h e  avai lable  torque 
coef f ic ien t  

m = 75"t 
1 

tdis 
ae nR2 (wR)3 (2.10)

2 

t h e  corresponding values of disposable 6, ,ck?d$ , and y d  a re  obtained. The 
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Fig.3.21 Rate of C l i m b  of Helicopter 
as a Function of Fl ight  Velocity. 

next s tep i s  t o  determine t h e  
Of sh f 9 ah.  f 9 (Ph. f 9 ad 

required f o r  horizontal  
mth f 
f l i g h t  and t o  construct a graph of 
these values l o t t e d  against  IJ, 
(see Fig.3.167 i n  the  same manner 
as presented above. 

The power required f o r  hori
zontal  f l i g h t  Nh. is  fourad i n  
terms of t h e  torque coeff ic ient  

by means of eq.( 2.10).
5 I . f  

Having determined, by 
eq.(2.7), t h e  values of Vy as a 
function of V, we then construct 
t h e  graphs shown i n  Fig.3.2. 
From these graphs, we f i n d  t h e  

Of v~ and V, and the  
o p t i ”  rate of climb V, f o r  each f l i g h t  a l t i t u d e  and r o t o r  rpm. Data corre
sponding t o  other  a l t i t u d e s  can be determined i n  t h e  same manner as t h a t  given 
above; t h e  graphs, shown i n  Fig.3.15, should be constructed f o r  values of tH 
corresponding t o  a c e r t a i n  height on t h e  basis of t h e  r e l a t i o n  

To obtain f l i g h t  da t a  f o r  a hel icopter  with respect t o  height above ground,
it i s  a l s o  possible  t o  use t h e  
following method which does not 
reguire constructing t h e  graphs 
shown i n  Fig.3.16. A change t o  
another a l t i t u d e  i s  characterized 
by a change i n  p. The graphs /300
w i l l  remain unchanged i f  t h e  value 
of t h e  t h r u s t  coe f f i c i en t  i s  re
tained. Since 

Fig.3.22 Graph of Helicopter Fl ight  
Data ( n  = 240 rpm) . then, f o r  constancy of t, we must 

r e t a i n  t h e  equa l i ty  pow: = pHw$.  
Hence, we determine t h e  value of 

wH a t  which t and thus  a l s o  a l l  other  coe f f i c i en t s  remain constant. The curve 
of 6 h . f  = f ( p )  i n  Fig.3.16 remains t h e  same, s ince t h e  drag Qpar depends on pw2, 
and this product does not change with height. The available torque coe f f i c i en t  
must be.calculated f o r  power at am a l t i t ude ,  with consideration of t h e  new value 
of angular velocity.  If t h e  power a t  a l t i t u d e  NH = AN,, t hen  



Having (mtdr )H,  t h e  described process of obtaining 6,, ,(pd , and ad1 i s  
repeated; t h e  resu l tan t  values are p lo t t ed  on graphs as shown i n  Fig.3.16. 
After.determining A6, graphs of Vy = f ( V )  are plot ted,  f inding Vy and VmaX as 

m a x  

a funct ion of r o t o r  r p m  f o r  various heights taking f o r  each height nH = n, -.1 
A 

These calculat ions must be carr ied out f o r  at least three values of r o t o r  rpm. 
Then, recording from t h e  graphs the  values Vy m a x  and Vmax with respect t o  /301 
a l t i t u d e s  f o r  given revolutions, a raph as shown i n  Fig.3.22 i s  p lo t ted ,  from 
which we can determine the  ce i l i ng  dynamic) and a l s o  t h e  var ia t ion  i n  Vmax with 
a l t i t udes ,  at given revolutions.  

cpc" 
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50 100 I50 

Fig.3.23 Rotor 	Pi tch  i n  Autorotation Fig.3.24. Rotor Rpm i n  Autorotation 
Regime. Regime. 

The calculat ions f o r  any weight can be made j u s t  as f o r  any a l t i t ude ,  ?.e., 
using t h e  graphs shown i n  Fig.3.15 and changing only t h e  value of n i n  conformi
ty  with t h e  var ia t ion  i n  weight. 

From the  condition mt = 0, the  p i t c h  cp f o r  an autorotat ion regime i s  deter
mined. After constructing graphs (Eg.3.23) of t h e  dependence of cp,, on t h e  num
ber of revolutions of t h e  ro to r  m, f o r  each value of p, we can f ind  the  ro to r  
T m  i n  an  autorotat ion regime as a- func t ion  of f ly ing  speed and f o r  any constant 
value of (po. The dependences n, = f(V) f o r  d i f f e ren t  f l i g h t  a l t i t u d e s  are 
p lo t t ed  i n  Fig.3.24. 

4. Limits of Applicabili ty of. t h e  Memod 

The presented method permits analyzing t h e  influence of numerous parameters 



t h a t  determine t h e  f l i g h t  regime of a helicopter.  Moreover, t h e  degree of accu
racy of t h e  ca lcu la t ion  of performance data, based on this method, i s  f u l l y  de
termined by t h e  extent t o  which the  theory underlying t h e  calculat ion of ro to r  
aerodynamics y ie lds  results close t o  reality. 

In  regimes p within the  lim_its from 0.1 t o  0.3 and with thrust coef f ic ien ts  
smaller than  t h e  maxi" permissible, t he  sec t ion  angles of a t tack  are within 
the  range f o r  which t h e  assumptions made i n  t h e  theory are va l id  ( c y  = "-ar; 
c x p a v  = const). 

A t  l a rge  values of fi and, i n  par t icu lar ,  at la rge  blade s e t t i n g  angles, 
the  sec t ion  angles of a t t ack  i n  a l a rge  por t ion  of the  disk area exceed t h e  
c r i t i c a l  value, and f l o w  separat ion takes place.  An ultimate analysis  ind ica tes  
t h a t  t h e  theory i n  these regimes gives values of t he  longi tudinal  force, and 
espec ia l ly  of the torque, t h a t  are lower than r ea l i t y ,  and a l s o  produces e r ro r s  
i n  the  angle of attack. Thus, t he  results of t he  calculat ion by the  proposed 
method should give higher values of maximum speed i f  this i s  determined i n  the  
region p > 0.3. The assumption of a uniform induced veloci ty  d i s t r ibu t ion  does 
not hold a t  s m a l l p  (p < 0.15). In r ea l i t y ,  t he  induced losses  are l a rge r  i n  
these regimes owing t o  nonuniform induced veloci ty  d i s t r ibu t ion  so t h a t  the  
ca lcu la t ion  w i l l  give l a rge r  values of the  rate of climb of the c ra f t .  

These e r rors  are small (of t he  order of 10%)f o r  hel icopters  with low d isk  
area loading, but markedly increase with increasing G/F, i.e., with increasing 
r e l a t i v e  percentage of induced losses .  

An increase i n  the  accuracy of calculat ion of t h e  f l i g h t  data  can be 
achieved by ref ining t h e  theory o r  by using data  obtained from wind-tunnel tests. 

Section 3. General Method of- Aerpdpanac- Design f o r. 

_I
Rotam-Wing Ai rc ra f t  

In this method of calculat ion,  j u s t  as i n  the  Mil?-Yaroshenko method, t h e  
first s tep  i s  t o  p l o t  - on spec ia l  graphs - the aerodynamic ro to r  charac te r i s t ics .  
Then, t he  propulsive .force coef f ic ien t  t, i s  p lo t ted  against  t he  torque coeffi
c i en t  m,, f o r  constant values of t h e  coef f ic ien ts  ty,M f l  (or g ) ,  M, (see 
Figs.2.l4.2 - 2.&5). To ca lcu la te  a hel icopter  with a combined l i f t i n g  system,
t h e  same graphs are p lo t t ed  f o r  t h e  t o t a l  coeff ic ients ;  the  design formulas f o r  
determining the  t o t a l  coef f ic ien ts  were derived i n  Section 1.4.. Thus, this /302
method of calculat ion encompasses a l l  types of ro ta ry  Wing a i r c r a f t .  

I n  determining t h e  performance, %.e., i n  solving the  equations of motion, 
no simplifying assumptions are made and t h e  accuracy of t h e  calculat ion i s  de
termined by the  accuracy of t h e  graphs of aerodynamic cha rac t e r i s t i c s  of t h e  
l i f t i n g  system and by t h e  correctness of estimating t h e  pa ras i t e  drag of t h e  
hel icopter  and the  engine power losses .  We make only t h e  assumptiol? t h a t  t he  
performance data  can be calculated separately from the  balance calculat ion a t  
some average ( f o r  a given centering of t h e  hel icopter)  value of def lec t ion  of t h e  
automatic p i t c h  cont ro l  w.,,. T h i s  leads t o  an e r ro r  i n  determining t h e  angle of 
a t tack  of t h e  fuselage and Wing; therefore ,  at great differences betweenw. and 
xaY f o r  a hel icopter  with a la rge  wing (S,/F > 0.05 - 0.07), t h e  assumption i s  
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no longer va l id .  

A shortcoming of this method i s  i ts  r e l a t i v e l y  great  expenditure of time. 
Consequently, it ranges among methods of final aerodynamic design. However, 
whenever graphs of t h e  aerodynamic cha rac t e r i s t i c s  of t h e  l i f t i n g  system a r e  
available,  t h e  ca lcu la t ion  of t he  performance da ta  i s  not excessively laborious 
and t h e  method can be used also f o r  preliminary calculat ions.  

I n  the  calculat ion,  auxiliary graphs suitable f o r  a l l  c r a f t  with similar 
l i f t i n g  systems and equal p a r a s i t e  drag coe f f i c i en t s  a r e  constructed. By means 
of these graphs, p lo t t ed  once and f o r  all,  numerous aerodynamic design calcula
t ions  of versions of a c r a f t  can be performed, including calculat ions f o r  d i f 
f e ren t  conditions of hel icopter  use (var ia t ions  i n  f ly ing  weight, rotor rpm,  or 
atmospheric conditions).  

1. Construction of. A_wdliim-a&-gr E g c q p t e r  
Performance Data 

In this Subsection, we present  a method of constructing auxiliary graphs 
f o r  calculat ing hel icopter  perfmmance data.  S t r i c t l y  speaking, these graphs, 
constructed f o r  a hel icopter  with a spec i f i c  l i f t i n g  system and spec i f i c  de
pendence Ex on cy, , are appl icable  only t o  this type or t o  other  hel icopters  with 
similar l i f t i n g  systems and i d e n t i c a l  dependences of Fx onct,.  However, t he  
graphs can be used with s u f f i c i e n t  accuracy f o r  all hel icopters  of t h e  same con--f igu ra t ion  having i d e n t i c a l  values of 0, cx(a=o)  and other  dimensionless charac

-
t e r i s t i c s  ( f o r  example, e,, S, f o r  a hel icopter  with wing) and M, not grea te r  
than  0.55 - 0.6, when the  blade shape does not excessively influence t h e  aero
dynamic ro to r  cha rac t e r i s t i c s .  Therefore, a t  Mo < 0.55 - 0.6, t h e  auxiliary
graphs are universal .  Characterizing t h e  p a r a s i t e  drag of t h e  hel icopter  only-by i t s  magnitude at cyf = 0, c ~ ( ~ = ~ ), it w i l l  be assumed t h a t  t h e  increment of C, 
upon a var ia t ion  i n  ctf can be considered i d e n t i c a l  f o r  hel icopters  of t he  same 
configuration. We w i l l  disregard the  l i f t i n g  force  of t h e  nonl i f t ing  elements. 

For hel icopters  with a narrow var ia t ion  range of M, ( f l i g h t  a t  constant 
r o t o r  r p m ;  dynamic ce i l i ng  l e s s  than 5000 - 6000 m) and with a maximum M, l e s s  
than 0.6 - 0.65, the  auxiliary graphs are constructed for a mean value of %. 
For hel icopters  with higher M,, determination of t h e  performance data  f o r  t h e  
mean value of M, leads t o  noticeable e r rors ,  as a r e s u l t  of which t h e  auxiliaqy 
graphs lo se  t h e i r  un iversa l i ty  and can be used only f o r  one value of Moo 

The method of employing the  graphs f o r  determining performance data  of a 
hel icopter  i s  presented i n  Subsection 2. 

A w d l i a r y  graphs f o r  required helicgpter- power. In horizontal  f l i g h t  
of a ro t a ry  wing a i r c r a f t  (e, . p  = 0), t he  equaxions of motion (1.6) and (1.7) 
take the  form 
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In eqs.(3.1) and (3.2), t h e  index 8 2 1 1  m e a n s  t h a t  t h e  coeff ic ients  t, and t, 
are t o t a l  coe f f i c i en t s  of t h e  l i f t i n g  system of a hel icopter .  

If t h e  c h a r a c t e r i s t i c s  of t he  l i f t i n g  system are calculated with considera
t i o n  of z, of t h e  helicopter,  then < i n  t he  first equation i s  assumed as equal 
t o  zero. 

Below, we w i l l  omit t he  index Til. For simplicity,  we w i l l  use t h e  term 
r o t o r  instead of l i f t i n g  system and hel icopter  instead of ro t a ry  wing a i r c r a f t .  
The geometric r o t o r  cha rac t e r i s t i c s  W i l l  be labeled by t h e  s o l i d i t y  r a t i o  0. 

It follows from eq.(3.1) t ha t ,  f o r  a given value of i n  helicopters with 
i d e n t i c a l  ro to r s  (equal  0 )  and equal drag coeff ic ients ,  t h e  coeff ic ient  t, has 
an i d e n t i c a l  value. Since t h e  aerodynamic r o t o r  cha rac t e r i s t i c s ,  i.e., t he  in
t e r r e l a t i o n s  of t h e  quan t i t i e s  t,, t, , m,, V, and M, are known (see Figs.2.l-4.2 
t o  2.L!+.5), it i s  possible  t o  construct aux i l i a ry  graphs va l id  f o r  a l l  f l i g h t-
conditions of a given hel icopter  and f o r  a l l  hel icopters  with-equal 5, c,, and 
M,, by means of which - f o r  any value of t, as a function of V - we can f i n d  the  
torque coeff ic ient  mth .i, angle of a t t ack  a h s f ,and angle of r o t o r  s e t t i n g  
required f o r  horizontal  f l i g h t .  

The sequence of constructing t h e  auxiliary graphs f o r  calculat ing horizontal  
f l i g h t  regimes will be described f o r  t h e  Mi-4 hel icopter  with rectangular m e t a l  
blades (0 = 0.063, ~ x ( a - o )  = 0.009 with consideration of t he  r o t o r  hub, o r--

a=,) = 0.0075 without it). The calculat ion i s  made on the  basis of experi

mental aerodynamic c h a r a c t e r i s t i c s  of a r o t o r  with rectangular metal blades, 
5 = 0.0525. When using these  cha rac t e r i s t i c s  f o r  t h e  r o t o r  of the Mi-&, the  
conversion formulas are u t i l i z e d  (see Sect .6, Chapt.11). Ln this case, the con
version i s  required because of differences i n  the r o t o r s  with respect t o  t h e i r  
s o l i d i t y  r a t i o ,  and t h e  difference i n  M, must be allowed f o r .  No differences 
exist i n  p r o f i l e  o r  qual i ty  of blade manufacture, and both blade mass character
i s t i c  and flapping compensator are p r a c t i c a l l y  iden t i ca l .  The p a r a s i t e  drag of 
t h e  hel icopter  i s  taken without the r o t o r  hub ( t h e  influence of t he  hub i s  taken 
i n t o  account i n  the  experimental cha rac t e r i s t i c s  of t h e  ro to r ) .  

Thus, conversion of t he  r o t o r  cha rac t e r i s t i c s  i s  performed by t h e  formulas: 
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where tXl,cu, ,mtl ,  eol are cha rac t e r i s t i c s  'of t he  t e s t ed  ro tor .  

The coef f ic ien ts  and angles without t h e  subscr ipt  p e r t a i n  t o  the  Mi-& 
rotor .  

The p a r a s i t e  drag coef f ic ien t  of t h e  Mi-& hel icopter  entering eq.(3.1) was 
determined from t h e  curve of Ex = f(aI ) obtained from fu l l - sca le  wind-tunnel 
tests of a hel icopter  without ro to r  (F'ig.3.25). If t h e  angle of a t tack  CY a t  
zero def lec t ion  of t he  autopatic p i t c h  cont ro l  i s  indicated on the  aerodynamic 
cha rac t e r i s t i c s  of t he  rotor ,  then the  angle of a t tack  of the  fuse la  e i s  r e l a t ed  
with t h e  angle of a t tack  of t h e  ro to r  by the  a p p r o h a t e  expression fFig.3.26): 

Here, ef i s  the  angle of advance of t h e  fuselage as is  t o  the  plane of rota
t ion ,  and D1x,, i s  the  difference i n  t h e  a les  of a t tack  of t he  ro to r  a t  K # 0 
and x = 0. For t h e  M i - 4  helicopter,  cf = 7 and t h e  quantity qx,, i s  taken t o  
be equal t o  -3'. 

P l a n e  o f  r o t a t i o n  
ot.??+u \ 

-z c o n t r o l  

F u s e l a g e  a x i s  

Fig.3.25 Paras i te  Drag Coefficient of Fig.3.26 For Determining the  Fuselage
Mi-4 Helicopter vs. Fuselage Angle Angle of Attack. 

of A t  tack 

Equations (3.3) - (3.7) are used i n  t h e  following sequence: For t h e  se
lec ted  values of t, and V, prescr ibe t h e  angle of a t tack  of t he  ro to r  CY and f ind-
a t ,  c,, and t,

h . f  
. Using eqs.(3.3) and (3.4) for determining tXland g from 

t h e  graph of the  aerodynamic charac te r i s t ics ,  check whether the  values of tXl 
and el correspond. If not, assign a new value of CY and again f ind  tXland al. 
Select ion of the  value of CY can be done rapidly i n  prac t ice .  After determining 
t h e  f i n a l  value of tX1,use the graphs of the  aerodynamic charac te r i s t ics  t o  
f ind  mtl  and eol ,  and determine f jmc0 from eq.(6.l8) of Chapter I1 by means of 
t h e  graphs i n  Figs.2.80 - 2.88. In this case, again make use of eq.(3.3) t o  
f ind  t h e  value of t:l corresponding t o  o = 0.091, f o r  which the  graphs of Am,, 
are constructed: 
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(a0 - a )  f 2" = t , + - (0.091 -0.063) f i  

t;,=tx+ 4B2p2 4.0 .96v2 

The calculat ion is  car r ied  out i n  Table 3.1. 

I n  hovering f l i g h t ,  mt was determined a l so  from t h e  experimental curve 
( f i g . 2 . a l )  with conversion t o  (5 = 0.063 by the  formulas: 

TABLE 3.1 


t,=0.14; a=0.063; Mo=0.6 
~-~ -

0.15 0.20 0.25 0.30 

-3.5 -5.25 -8.0 -11 .o 
4.5 2.75 0 -3 

0.007 0.0072 0.0077 0.0081 

-0.0025 -0.00457 -0.00765 -0.01155 

-0.00239 -0.00134 -0.00086 -0.0006 

-0.00489 -0.00591 -0.00851 -0.01 215 

-0.98 -0.55 -0.35 -0.25 

-4.5 -5.8 -8.35 -11.25 

0.0055 0.00545 0.00645 0.00875 

7.6 7.9 9.0 10.2 

0.00008 0.0001 0.00015 0.0002 

0.00558 0.00555 0.0066 0.00895 

Having made similar calculat ions f d r  a la rge  range of ty,we construct 
universal  auxiliary graphs f o r  determining t h e  charac te r i s t ics  of the  horizontal  
f l i g h t  of hel icopters  with (5 = 0.063, F'x(a=o)= 0.0075 (without a ro to r  hub), 

and M, = 0.6. These graphs are shown i n  Figs.3.27 - 3.29. 

Same s impl i f ica t ion  i n  t h e  use of t he  a d l i a r y  graph of m t h . f ,  shown i n  
Fig.3.27, changing from physical  quant i t ies  t o  dimensionless and v5ce versa i s  
poss ib le  by constructing a graph i n  which the  ordinate does not give m h a i  but 
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0 0.10 0.20 v 

Fig.3.27 Auxiliary Graph f o r  Calcu
l a t i n g  Horizontal Fl ight  Regimes : 
Required Power Coefficient as a Func
t i o n  of v, t, (M, =.0.6;o = 0.0630-

a=,) 
= 0.0075 without ro to r  hubj. 

. .  
'k 


Fig.3.28 Auxiliary Graph for Calcu
l a t i n g  Horizontal Fl ight  Regimes : 
Set t ing  Angle of Rotor ( a t  k =.0.55; 
y = 4.85) as a Function of 7 and t, 
(M, = 0.6; o = 0.063; ??x(a=o) = 0.0075 

without Rotor Hub). 

Fig.3.29 Auxiliary Graph f o r  Calculating Horizontal Fl ight  
Regimes: Rotor Angle of Attack as a Function of v and t 

(M, = 0.6; o = 0.063; Tx(a=o)= 0.0075 without Rotor Hubj . 
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t h e  quantity m t h * f  which i s  connected with t h e  physical  quant i t ies  by a rela
t Y  

t i o n  having a simpler form than eq.(1.6): 

( 3 . 9 )  

Such a graph i s  shown i n  Fig.3.30. 

In Figs.3.27 - 3.30 t h e  curves are p lo t t ed  t o  values of 7 permissible f o r  
the  condition of flow separat ion at t h e  r o t o r  blades (see figs.2.120 and 2.121). 
The curves corresponding t o  t, = 0.24 w e r e  obtained by extrapolat ion of t h e  ex
perimenta1 graphs . 

A t  l a rge  Mor when the  compressibility e f f e c t  i s  appreciable and the  auxili
ary graphs become applicable only t o  t h e  value of M, f o r  which they were con
structed,  it i s  expedient t o  p lo t ,  f o r  hel icopters  with a turboprop engine, a 
graph f o r  determining N h S f  i n  reduced parameters: N,,. f r  = f (V,  ) with the  para- /307 
meter G, for M, = const (a, = const). The reduced parameters are determined by 
the  formulas: 

Since, i n  the  case of a turboprop engine, N, determines the  reduced f u e l  

consumption pe r  hour G h ,  = Ghr -P /?,- it i s  possible  t o  construct auxiliary 

graphs f o r  determining Gh, and t h e  relative f u e l  consumption pe r  kilometer 
r 


-qr = 2 i n  the  case of hel icopters  with turboprop engines.Gr G 

A@.liary graph f o r  t he  helicopt-er dynamic c e i l i r q .  Fran the  “aof the  
c-es of t h e  required torque coef f ic ien ts  (broken curve i n  Fig.3.27, designated 
by V,) we can construct a graph of ( m t h m f  = f(t,).  T h i s  graph, shown i n  

fig.3.31, can be used f o r  determining t h e  d n i m u n  required power at any f l i g h t
a l t i t u d e  ( a t  any t,) and f o r  finding t h e  theo re t i ca l  dynamic ce i l i ng ’o f  t he  heli
copter  HdYnt,i.e., t h e  heights at which t h e  avai lable  power i s  equal t o  t h e  
minimum required power. The graph can a l s o  be used f o r  determining t h e  a l t i t u d e  
up t o  which horizontal  f l i g h t  i s  possible  upon failwe of some of t he  engines 
of a multiengine helicopter.  
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0 0.10 0.20 a3 i7 0.10 0.15 0.20 t Y  

Fig .3.30 A u x i l i a r y  Graph f o r  Calculating 	 Fig.3.31 Coefficient of Minimum 
Required Power of Helicopter as 

Horizontal Fl ight  Regimes: Ratio m t  as a Function of t, (M, = 0.6; 
Y 0 = 0.063; Fx(a=o)  = 0.0075 

Function of 7and t, (M, = 0.6; (5 = 0.063; without Rotor Hub). . -
a=01 = 0.0075 without Rotor Hub). 

A u x i l i a r y  graDh f o r  maximum rate of c a .  To ca lcu la te  f l i g h t  regimes of 
a he l i c  ter  i n  which the  f l ight-path angle O f l . p  is  not equal t o  zero, eqs.(l.6) 
and (1.8must be solved f o r  Bf . p  after determining t h e  value of m, wi th  respect 
t o  t h e  available engine power f o r  optimum rate of climb and after se t t i ng  m, = 0 
f o r  gl iding i n  au toro ta t ion  of t he  ro tor .  T h i s  problem i s  solved e i t h e r  with 
t h e  assumption of a small value of t he  angle Of (cos = I), or by suc
cessive approximations; however, it i s  more convenient t o  construct a universal  
auxiliary graph. 

F i r s t  we determined the  f ly ing  speed at which the  v e r t i c a l  speed i s  ”m, 
i.e., the  opthum rate of climb V, . Calculations show tha t ,  f o r  a helicopter,  
t h e  optimum rate of climb p rac t i ca l ly  coincides with t h e  rate of horizontal  
f l i g h t  at which t h e  required power i s  minimum. T h i s  i s  explained by the  f a c t  
t h a t  t h e  excess of r o t o r  shaf t  horsepower used f o r  climbing i s  maxi” i n  this 
regime (s ince t h e  ava i lab le  shaf t  horsepower of t he  r o t o r  depends l i t t l e  on t h e  
f ly ing  eed) and t h a t  t h e  propulsive eff ic iency of t h e  r o t o r  ( see  Sect.?, 
Chapt .IT, i.e., t h e  e f f ic iency  of converting t h e  excess r o t o r  shaf t  horsepower 
t o  an excess of propulsive power creat ing v e r t i c a l  speed, depends very l i t t l e  on 
t h e  f ly ing  speed (with t h e  exception of near-separation regimes). Therefore, 
t he  optimum rate of climb f o r  a l l  values of t, i s  found i n  Fig.3.27 from the  
curve connecting t h e  minima of t h e  required torque coef f ic ien ts .  

It i s  obvious tha t ,  f o r  a l l  values of ty, the  regime of optimum climb cor
responds t o  v =  0.15 - 0.2. 

Therefore, t h e  auxiliary graph f o r  determining t h e  v e r t i c a l  speed of a 
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- -  
hel icopter  i s  constructed f o r  two values of V: V = 0.15 and 7 = 0.2; f o r  i n t e r 
mediate values t h e  v e r t i c a l  speed can be determined by interpolat ion.  The 
awdliary graph i s  constructed i n  t h e  following sequence: 

Assign several  values of ef 1. (both pos i t i ve  and negative). 
From eq.(1.6), f i n d  t,

8’ 
and determine 8, as a function of ai: 

at =afhd -Of1.p; (3.=I 
Assign a number of values of t, and f i n d  t 

y e  

tYg=t ,  COS of+; (3-121 

From t h e  graph of aerodynamic r o t o r  cha rac t e r i s t i c s  with respect t o  t,
8and t, 

8
, determine m, f o r  a l l  values of t,. 

Then, determine Am, (see Fig.3 4 2 )  : m 
Am,=m,- mthf ’’ (3.131 

Determine t h e  v e r t i c a l  component of f ly ing  speed 

Construct t h e  graph of 7, = f(Am,) with t h e  parameter t,; such a graph 
i s  shown i n  Fig.3.33. 

It should be noted t h a t ,  because of t h e  l i n e a r i t y  of t h e  aerodynamic ro to r  
cha rac t e r i s t i c s  and because of t h e  equidistant 
t r a n s l a t i o n  of t h e  curves of t, upon a va r i a t ion  
i n  (J, t he  aux i l i a ry  graph shown i n  Fig.3.33 i s  
applicable f o r  calculat ing hel icopters  with any 

c 
 a, and (J ( f o r  M, l e s s  than 0.6). 
mt If t h e  graph i s  constructed f o r  l a rge  nega

t ive values of Am,, then t h e  v e r t i c a l  rate of 
descent of t h e  hel icopter  during gl iding i n  an 
autorotat ion regime a t  a given per ipheral  r o t o r  
speed can be determined.% 

To determine t h e  s t a t i c  c e i l i n g  of a heli-
Fig.3.32 For Determining copter and t h e  rate of climb i n  v e r t i c a l  ascent, 
t h e  Increment i n  Power l e t  us we t h e  graph shown i n  Fig.3.34 which i s  
Coefficient i n  Flight a reconstructed graph of t h e  aerodynamic ro to r  
along an Inclined Path. c h a r a c t e r i s t i c s  f o r  V = 0. 

2. -Determination of Helicopter Performance Data_ _  

The secpence of determining t h e  performance da ta  of a hel icopter  from 



Fig.3.33 Aux i l i a ry  Graph f o r  Determining M a x i "  
Rate of Climb. 

0.010 

0.005 

0 
0.05 0.10 0.15 t 

Fig.3.34 Torqpe Coefficient as a Function of t 
and vy f o r  V = 0 (M, = 0.6; 0 = 0.063). 
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awdliary graphs i s  as follows: 

Select t h e  design f l i g h t  a l t i t u d e s  and calculate,  f o r  each a l t i t ude ,  t h e  
l i f t  coeff ic ient  i n  horizontal  f l i g h t  and t h e  available power coefficient of t h e  
r o t o r  : 

The design f l i g h t  a l t i t u d e s  are selected a t  i n t e r v a l s  of 1000 - 1500 m. 
The design a l t i t u d e s  should include the  c r i t i c a l  a l t i t u d e  and other  s a l i e n t  
po in t s  of t h e  a l t i t u d e  c h a r a c t e r i s t i c s  of t he  engine. 

The torque coe f f i c i en t  m, angle of a t tack a h .  , and angle of s e t t i n g
h. f ' 

� I o h e f  required f o r  horizontal  f l i g h t  of t h e  hel icopter  are found f o r  calculated 

t, by in t e rpo la t ion  from the  aux i l i a ry  graphs i n  Figs.3.27 - 3.30. 

M a x i "  and minimum f ly ing  meeds. These are determined from the  in t e r 
sec t ion  po in t s  of t he  curvesom, and.m, . There i s  no need t o  construct a 

h . f  - d i  6 

spec ia l  graph of mthmf  and m, d i e ,  and V,,, and 7, i n  can be found by d i r e c t  /311 
i n t e rpo la t ion  from Figs.3.27 - 3.30. If t h e  curves of m t h e f  and m, 

d i e  
at l a rge-


V do not i n t e r s e c t  (a t  t h e  limit of separation m, 
h . f  < m t d i #  

), then the  m a x i "  


f l y i n g  speed at  this a l t i t u d e  i s  not l imited by the  available engine power but  

by t h e  separation of flow. 


M W u m  v e r t i c a l  rate of climb. This i s  determined from the  a w d l i a r y  
graph i n  Fig.3.33. Here, TH and (mth,f ) are found from Fig.3.27 f o r  a l l  

calculated f l i g h t  a l t i t udes ,  calculat ing 

After determining Ty from t h e  graph i n  Fig.3.33, we f i n d  

As a t y p i c a l  example, l e t  us determine &mum and m i n i m u m  speed, optimum 
rate of  climb, and maximum v e r t i c a l  speed of t h e  EL-4 hel icopter  with an all-up 
weight of G = 7200 kg, wR = 196 m/sec, and R = 10.5 m. A l l  calculations are 
given i n  Table 3.2, and t h e  results are p lo t t ed  i n  fig.3.35. 

P r a c t i c a l  and t h e o r e t i c a l  dynamic cei l ings.  These can be found from /312 
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I Il l1 I l l  I1 I 

-II 
0 loo0 1860 3500 5000 5500 

0.138 0.152 0.166 0.195 0..229 0.243 
1430 1500 1550 1315 1380 1300 

0.00836 I 0.00966 

0.008775 0.01015 0.0115 0,01145 0.0141 0.0141 
0.297 0.312 0.325 0.305 - -

210 220 230 215 - -
0.035 0.033 0.03 0,09 0.103 0.122 

25 23 21 63 72 85 
0.170 0.18 0.18 0.20 0.19 0.18 

120 127 127 141 134 127 
0.00537 0.00595 0.00665 0.00795 0.010 0.0109 
0.0034 0.0042 0.00485 0.0035 0.0041 0.0032 
0.024 0.0277 0.0292 0.0179 0.0179 0.0132 
4.7 5.4 5.7 3.5 3.5 2.6 

Fig.3.35: The former i s  the  a l t i t ude  at which Vym aX 
= 0.5 m/sec and the  latter, 

t h e  a l t i t ude  at which Vy = 0. From Fig.3.35 we can determine, by e x t r a p o h
m ax 

t i on ,  t ha t  the  cei l ings of t he  Mi-& helicopter are equal to:  Hd,, = 6400 m and 
H d y n r  = 6550 m. These data  can be found without constructing a graph of V, max' 

using instead the  graph shown i n  Fig.3.31. For this, t h e  data i n  Table 3.2 are 
used f o r  plot t ing,  i n  Fig.3.31, 
t he  curves of m t d i B  and m 

td i'B 
0.51- tyTy -

mtd i B 
- t, 

rl WQ 

against  t, ( the propulsive effi
ciency of the  ro to r  i s  deter
mined from the  graphs i n  Sect.", 
Chapt .11). The values of t, at 
which these curves in te rsec t  with 
the  curve of (mth correspond 
t o  the  theore t ica l  and p rac t i ca l  
dynamic cei l ings.  Such construc
t ions  are performed i n  Fig.3.36

Fig.3.35 Flight Characterist ics of from where we f ind tha t ,  a t  the  
Helicopter. 	 prac t i ca l  dynamic ceil ing,  we have 

t, = 0.268 and, at the  theore t ica l  
dynamic cei l ing,  t, = 0.274.. After 

determining, by means of eq.(3.19), t he  r e l a t ive  air density 



a 

A=- 	 f% (3.19) 
f Y  ' 

from the standard atmosphere t ab le  or from the  formula 

t h e  ce i l ings  a re  determined. In  our example we have 

which coincides with t h e  values obtained above. 

S t a t i c  ce i l ing-I-__of helicopter-2nd-

Fig.3.36 Determination of P rac t i ca l  
and Theoretical  Dynamic Ceilings of 

Helicopter (M, = 0.6; o = 0.063;-
cx(a=oo) = 0.0075 without Rotor Hub) . 
-

r a t e L f - c - k b  i n  v e r t i c a l  ascent. These 
a r e  found from the  auxi l iary graph i n  
Fig.3.%, f o r  which purpose the  curve 
of m, = f(t,)w a s  p lo t ted  there .  

The s t a t i c  ce i l ing  of a heli
copter i s  determined under maxi" 
engine operating conditions, since 
t ransport  helicopters a re  generally 
not intended f o r  prolonged hovering 
and usually hover b r i e f ly  during take
oTf and landing, closely above the  
f i e l d  i n  the zone of influence of t he  
a i r  cushion. 

A s  a typ ica l  example, l e t  us de
termine the  s t a t i c  ce i l ing  and v e r t i c a l  
rate of ascent of a helicopter a t  
takeoff power, with wR = 212 m/sec. 
The calculations,  made by means of the  
graph shown i n  Fig.3.34, a r e  given i n  
Table 3.3. 

From the  in te rsec t ion  of t he  
curve of m, 

d l S  
with the  curve m, f o r  

V = 0, we f ind  t, corresponding t o  the  s t a t i c  cei l ing,  and the  s t a t i c  ce i l i ng  

itself: t, = 0.128; A = 	 Oon7* = 0.917; H,, = 890 m.
0.128 

For a more complete study of hel icopter  data  i n  hovering, a graph of maxi
mum ro to r  t h rus t  should be p lo t ted  as a function of f l i g h t  a l t i tude ,  f o r  dif
f e ren t  temperature conditions trotwith and without consideration of the ground 
e f f e c t  ( t he  la t ter  i s  required f o r  estimating the  p o s s i b i l i t y  of takeoff and 
landing of a hel icopter  i n  mountainous t e r r a in ) .  The calculat ion (Table 3.3) i s  
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0 750 lo00 1500 1860 
0.1175 0.126 0.13 0.136 0.141 
1700 1720 1685 1600 1560 

0.00784 0.00854 0.00858 0.00857 0.00865 
0.001 0.002 -0.0005 - -
0.2 0.4 -0.1 - -
0.119 0.1285 0.129 0.129 0.130 
7287 7320 7170 6820 6630 

performed by means of the-graph i n  Fig.3.34 i n  terms of the  curve f o r  V, = 0: 
Here, m, i s  determined from t h e  avai lable  engine power, t i s  found from the  
graph, and t h e  "um r o t o r  t h rus t  Tmax i s  then defined. The graph of Tmax f o r  
t h e  Mi-& hel icopter  at takeoff power of t h e  engine i s  shown i n  Fig.3.37. Con
s ide ra t ion  of t h e  ground e f f e c t  on t h e  ro to r  t h r u s t  i s  accomplished by means of 
t h e  coef f ic ien t  K, which, f o r  a given rotor ,  depends on t h e  r e l a t i v e  dis tance 
t o  the  ground h/R. Thrust w i t h  consideration of t h e  ground e f f e c t  T g e e  i s  
equal t o  

In Fig.3.37, T p e e  i s  determined during hovering of t h e  hel icopter  at a dis
tance of 2 m from t h e  ground, when Kh 1.12; this dis tance enables a hel icopter  
of t h e  s i z e  of t h e  Mi-& t o  take  off v e r t i c a l l y  and t o  change t o  forward f l i g h t  
without touching t h e  ground (ground contact may take  place du r i  t h e  takeoff 
run when t h e  p i l o t  de f l ec t s  t he  hel icopter  and it drops s l i g h t l y7. 

The maximum range of horizontal  f l i g h t  4. ax and maximum durat ion of &I4 
horizontal  f l i g h t  T ~ . a r e  determined by t h e  expressions:~ m a x  

I n  these 	expressions, we denote: 
= weight of t h e  f u e l  consumed i n  horizontal  f l i g h t  of t h e  hel i 

'ha* copter; 
G, = h o u r b  f u e l  c o n s q t i o n  i n  horizontal  f l i g h t  of a helicopter;  
q = f u e l  c o n s u q t i o n p e r  kilometer i n  horizontal  f l i g h t  of t h e  

hel icopter  : 
G q=-. V (3.23) 
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Tmax ks 

8000 

7000 

6000 
0 1000 ZOO0 H m  

Fig.3.37 M a x i ”  Rotor Thrust of H e l i 
copter i n  Hovering Flight.  

To determine the  minimum f u e l  
consumption per  kilometer, the  
mini” f u e l  consumption per  hour, 
and t he  economic and cruising
speeds, we construct a graph of t he  
fue l  consumption per  hour and kilo
m e t e r  as a function of fwng 
speed. To construct the  graph, we 
first use Figs.3.27 or 3.30 t o  f ind  
the  engine power required f o r  hori
zontal  f l i gh t ,  and the  engine char
a c t e r i s t i c s  t o  f ind the  f u e l  con
sumption per  hour. 

The ro tor  rpm at  cruising and 
economic speeds should be estab
l ished beforehand. Usually these 
are equal t o  the  minimum permis
sible rpm selected by the heli
copter designer, on the  basis of 
f l i g h t  safety and design considera
t ions;  they should be combined w i t h  
the  cruising regime of t he  engine. 
For the  Mi-4 helicopter, the peri

pheral  rotor speed i n  cruising and economic regimes i s  equal t o  wR = 180 m/sec. 
Calculation of t he  graph shown i n  Fig.3.38 i s  accomplished i n  Table 3.4. f o r  an 
average gross weight of G,, = G - h Gf = 6900 kg. 

TABU3 3.4 

~ 

v 0.10 0.15 0.20 0.225 0.25 0.30 
V,km/hr 65 97 130 146 162 194 

0.0086 0.00725 0.00685 0.00715 0.0078 0.01015 
985 830 785 819 893 1162 
230 175 163 170 195 308 
3.54 1.8 1.25 1.164 1.203 1.587 

It follows from the graph tha t  t h e  mini” f u e l  consumption per  hour and 
kilometer and t h e i r  corresponding cruising and economic speeds are equal t o  
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- -  - - -  

The normal f u e l  load of the  Mi-& helicopter i s  600 lsg. From this amount, 
we must subtract  t he  f u e l  consumed fo r  s t a r t i ng  and ground t e s t ing  of t he  engine,
for taxi ing before takeoff, f o r  tes t  hovering, climbing, descending, and landing,

and a l so  amount of f u e l  needed f o r  

i l l v .1
/Ill
R 1/n 


I In

I 1
I 1  

-11 
50 "&dhr 

Fig.3.38 Fuel Consumption per  
Hour and Kilometer of Helicopter. 

as equal t o  5% of the  t o t a l  f u e l  supply. 

maneuvering i n  the  air. The remainder 
of the  unconsumed f u e l  i s  incorporated 
i n t o  the  empty weight of the  helicopter 
and i s  disregarded i n  defining the  
f u e l  load. 

I n  determining the  above f u e l  con
sumption values, it i s  assumed tha t  
engine t e s t ing  takes 5 min a t  low speed, 
taxi ing at an engine power of 0.3 of 
the rated power takes 2 min (distance 
0.3 - 0.5 km), test hovering and land
ing at takeoff power takes 2 - 3 min, 
climbing at the  optimum ra t e  takes 
place a t  ra ted power, descent proceeds 
a t  the  most advantageous speed of V, = 
= 4 - 5 m/sec a t  0.3 - O.5of the rkted 
power. For t ransport  helicopters, the  
f u e l  needed f o r  navigation i s  assumed 

For the Mi-& helicopter i n  long-distance f l i g h t  at an a l t i t ude  of 1000 m, 
the  sum of a l l  f u e l  expenditures, together with the  navigation supply, amounts 
t o  100 - 115 kg, %.e., t o  about 15 - 20% of the  t o t a l  f u e l  load. The path & 

mth 
M,- const, 

T a n g e n t  t ojy
o r i g i n  ofc o o r d i n a t e  
~~ 
~ 

I 

0 v 
Fig .3.39 For Determining Cruising 

and Economic Speeds. 

and f ly ing  time consumed i n  climbing 
and descending are, respectively, equal 
t o  20 km and 0.2 hr. 

Thus. the  Mi-L he l i cmte r  consumes 
600 - 115-= 485 kg 'of f u e i  i n  horizontal 
f l i g h t ;  the  maximum range and endurance 

-of the  helicopter a re  Lh.f ,  ,, 
- 485-

1.16 	 - 418 lan, Th .f a x  
- 485 

3-63 
= 3 hr, w h i l e  the  technical range and 
endurance a re  L,,, = 418 + 20 = 438 lan, 
T,,, = 3.2 kr. 

On the  a s s q t i o n  tha t  t he  specif ic  
f u e l  consumption i s  independent of 
engine power and tha t  the power u t i l i za
t i o n  coeff ic ient  i s  independent of f ly
ing speed, t he  regimes corresponding t o  

range and endurance can be determined d i r ec t ly  from the graphs i n  
Fig.3.27 i n  the  manner shown i n  Fig.3.39. 

Usually the  optimum rpm i n  cruising and economic regimes i s  below tha t  
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selected by the  hel icopter  designer. However, i f  the  optimum rpm i s  t o  be de
termined, calculat ion of N h e f  and Ghr i s  performed f o r  several values of wR 

h . f
and the  optimum rpm is  selected from this. On the  a s smpt ion  tha t  t he  spec i f ic
f u e l  consumption is independent of both engine power and engine rpm and i f  the  
power u t i l i z a t i o n  f ac to r  does not depend on t h e  f l s ing  speed, t he  maximum range 
and duration can be determined from t h e  following expressions: 

The f ly ing  speeds and the  corresponding ro to r  rpm (or 'if and tY)at  which 

m t h ,  and m t h * f  reach a mini" can be found from the  graphs of these quanti
t yv  t? 

t i e s  p lo t ted  on the  basis of the graphs shown i n  Fig.3.27. 
mthIt should be noted tha t  t he  quantity 1/-- e f  i s  equal t o  the  product of
t y T  

helicopter erformance and propulsive eff ic iency of t he  ro to r  Kh7) [see eq.(7.10) 
i n  Chapt.11P ; consequently, 

(3.24') 

_ _ --Minimum ve r t i ca l  rate- of descent. T h i s  ra te ,  i n  gl iding i n  an autorota- /317
t i o n  regime a t  a g5ven per ipheral  ro to r  speed i s  determined f r o m t h e  awri l iary 
graph shown i n  Fig.3.33. For this, eq.(3.2) i s  used f o r  calculat ing tYhBf ;f o r  

a m t  = - ( m t h e p  and vo, Fig.3.33 i s  used f o r  determining Ty and then V, = 
-

= VYwR. 

However, i n  autorotat ion the  v e r t i c a l  rates of descent aredetermined i n  the 
e n t i r e  range of f ly ing  speeds, both a t  constant ro to r  r p m  and at constant p i t c h  
Q o 0 .  To solve these problems, the  graphs of ro to r  charac te r i s t ics  i n  autorota
t ion ,  shown i n  F'i .2.llO, a r e  used [if necessary, these charac te r i s t ics  are 
converted by eqs. ?3.3) - (3.6)1. 

For constant ro to r  rpm, the  calculat ion i s  performed by the  method of sue
cessive approximations. A s  first approximation, we use cos ef 1. = 0.97; after -
calculat ing (tY by means of eq.(1.5), t h e  quant i t ies  (txa)l,Cy,1, ail, cX1 

f o r  a s e r i e s  of V a r e  determined from the  graphs of t h e  ro to r  charac te r i s t ics ,  
and the  equations of motion of the  hel icopter  are used f o r  finding t h e  angle 
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After repeating t h e  calculat ions u n t i l  t he  values of t h e  angle Q f l m P  coin
cide, w e  f ind  the  f l ight-path speed and i ts  v e r t i c a l  and horizontal  components 

v =Pol?; 

We note t h a t  - tan O f  i .  i s  equal t o  t h e  inverse hel icopter  performance 
during gl iding i n  autorotation: 

In calculat ing the  autorotat ion regime with a selected ro to r  s e t t i ng  (usual-
=ly �log3 - 5'), t h e  quant i t ies  tYo,tXo,and a. are determined f o r  several  7 

from t h e  ro to r  charac te r i s t ics .  Then, Bf 1. ,wR, and M, are obtained from the 
expressions : 

If % i s  l e s s  than 0.6, t he  solut ion i s  considered val id  since, i n  this 
case, t h e  e f f ec t  of M, on the  ro to r  charac te r i s t ics  can be disregarded. 

If Mo > 0.6, t h e  calculat ions must be repeated, determining t,,, tXc,and /318 
a, f o r  M, obtained i n  the  preceding approximation. The successive a p p r o a t i o n s  
are carr ied out rapidly and present no d i f f i c u l t i e s .  After f inal  determination 
of wR, we determine V, V,, and V, by means of e q ~ ~ ( 3 . 2 7 )- (3.29). 

As a typ ica l  example, l e t  us calculate  gl iding i n  autorotat ion of the  Mi-4 
hel icopter  with a gross weight of 7200 kg a t  an a l t i t u d e  of H = 0 f0.r wR = 
= 196 m/sec. The experimental charac te r i s t ics  of t h e  ro to r  converted t o  the  
s o l i d i t y  r a t i o  u 0.063 are shown i n  Figs.3.40 and 3.41. 

The calculat ion is  made i n  Table 3.5, and t h e  dependence of Vy and Qf l . p  on 
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Fig .3.40 Polars of Rotor i n  Autorotation 'Regime
(M, = 0.6; cr = 0.063). 

Fig.3.4.1 Angle of Attack of Rotor in Autorotation 
Regime (M, = 0.6; cr = 0.063). 

Fig.3.42 Rate of Descent and Gliding Angle of Helicopter
i n  Autorotation Regime 



V i s  plot ted i n  Fig.3.42. T h i s  diagram indicates t ha t  t he  m i n i "  ver t i ca l  rate 
of descent of t he  helicopter i s  7.2 m/sec at V = 130 lan/hr, w h i l e  the  " u m  
gliding range, equal t o  

i s  obtained f o r  �32 p ,  = -10'; ( K h , ) m a x  = 5.7; V = 180 km/hr. 

TABU 3.5 

H=O; oR=196 m Isec; ty=0,138 

0.15 0.20 0.25 0.30 


106 141 176 211 


0.0315 0.0202 0.0166 0.0150 


13 7 4.2 2.6 


21 15 12.2 10.6 


0.00239 O.OO425 0.00664 0.00957 

-0,253 -0.183 -0.174 -0.163 

-14'40' -10'35' -10" -10"35' 

0.967 0.983 0.9845 0.963 

0.1334 0.1356 0.1358 0.1356 

0.0315 0.0206 0.0168 0.0152 

-0.254 -0.183 -0.1726 -0,1826 

-14"42' -10"35' -10" -10"30' 

-7.5 -7.2 -8.45 -10.7 

3. 	Graphs f o r  D-eterminiqg Optimum Helicopter m 
Aerodynamic Parametxs 

The described method of aerodynamic design and the  graphs of rotor  charac
t e r i s t i c s  used i n  it are  convenient f o r  a check calculation of a helicopter with 
known parameters, since suff ic ient  data are available f o r  determining the  coeffi
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c ien t s  t and t, i n  calculat ing horizontal  f l i g h t  regimes and the  coeffi
'h. f h.f 

c ien t  m t d i s  in calculat ing climbing regimes. 

I n  designing a helicopter,  a preliminary version of t he  parameters i s  se
lected on the  basis  of p r a c t i c a l  experience with previous models and on the  
basis of applicable values of per ipheral  speed, t h rus t  coeff ic ient ,  load p e r  
square meter of ro to r  disk,  e tc .  The next step is  t o  r e f ine  the  hel icopter  
parameters. To study t h e  e f f ec t  of parameters on the  performance data  of a 
helicopter, spec ia l  graphs should be constructed. Such graphs are necessary 
a l so  i n  invest igat ing the  maximum p o s s i b i l i t i e s  of hel icopters  f o r  inproving the  
f l i g h t  charac te r i s t ics .  

Calculations f o r  aerodynamic parameter se lec t ion  should be accompanied by 
weight calculat ions and by invest igat ions of t he  var ia t ion  of parameters i n  a 
l imited range within which the hel icopter  has a su f f i c i en t  useful  load. 

I n  this Subsection, a graph i s  described t o  be used f o r  defining the  ro tor  
parameters ensuri  t he  m i n i "  required power ( m i n i "  f u e l  consumption pe r
hour and k i l o m e t e 3  a t  given weight, Cc,S, speed, and a l t i t ude .  From this 
graph, the  optimum diameter, s o l i d i t y  r a t io ,  and per ipheral  speed of t he  ro to r  
can be determined. 

The equations for calculat ing horizontal  f l i g h t  regimes a re  transformed i n  
such a manner tha t ,  i n  a l l  equations, the  smallest number of sought parameters 
W i l l  ' correlate  dimensionless coef f ic ien ts  with the  prescribed quant i t ies .  Equa
t ions  (3.1) and (3.2) can be reduced t o  the  form 

In  l i k e  manner, we transform the  equation f o r  determining the  reqxired power 

G N r o  tIt should be noted t h a t  t h e  quant i t ies  &, Mi,, -,-a re  propor-
Pa2 Pa3 

t i o n a l  t o  t h e  reduced parameters of the  helicopter:  u), ,V, ,G,, N,, t, . 
It is  obvious t h a t  the  required power w i l l  be lowest at a m i n i "  of the  
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TABU 3.6 


MO 0.61 

0.12 


-0.00853 


0.14 


-0.00995 


0.16 


-0.01138 


0.I8 

-0,0128 

0.12 


-0.00853 


0.14 


-0.00995 


0.16 


-0.0 1138 
 -0.0128 

0.00825 


0,03056 


0.00%8 


0.C0957 


0.03039 


0.OO651 


0.01157 


0.03214 


0.00744 


0,0146 

0.0360 


0.00837 


0.0086 


0.0342 


0.00643 


0.0098 


0.0334 


0.0075 


0.01165 


0.0347 


0.00857 


0,0143 


0.0379 


0.00965 


0.00024 0.o0033 0.00043 0.00055 0.00028 

-0.00877 -0.01028 -0.01181 -0.01335 -0.00881 

0.0084 0.00972 0.01178 0.01483 0.00872 

0.0312 0.03085 0,0327 0.0366 0.03465 

0.00614 0.00715 0.00817 0.0092 0.00706 

O.OOO38 0.00050 O.OOO63 

-0,01033 -0.01 188 -0.01343 

0.00993 0.01188 0.0146 

0,0338 0.0354 0,0387 

0.00824 0.00942 

I 

0.0106 

0.18 



r a t i o  qMc8'1 . To f ind  it, a graph i n  coordinates ) is-t, 
plo t ted  fo r  a value of t h e  r a t i o  tyM'l given by eq.(3.33; a t  M f ,  = V/a = /322 
= const. - t x  

The sequence of constructing the  graph is  as follows: For the  value of M f ,  
selected f o r  t h e  investigation, define the  aerodynamic character is t ics  of t he  
ro tor  i n  the form of a dependence, shown i n  Figs.2.105 - 2.109, f o r  several  
values of M,. After assigning several  values t o  the  coefficient t, and the  

quantity -G 
1/2 

1 
pa2 ' determine t, from eq.(3.33) and f ind  m, f o r  each Mo 

c c,s 
from the  graphs of t h e  aerodynamic cliaracterist ics.  Then, calculate t he  r a t i o  
of the  coeff ic ients  entering eqs.(3.32) and (3.34.). When using the  so l id i ty  
r a t i o  of t he  rotor,  t he  quantity t, i s  converted by eq.(3.3) o r  by the  formula 

I n  Table 3.6 a calculat ion i s  made f o r  a flying speed of V = 275 h / h r  a t  

an a l t i t ude  of H = 1000 m ( a  = 336.1 m/sec, 9 pa2 = 6400 kg/m2) f o r  -G -
= 4670 kg/m2. For these data, we have c %S 

MI1 =0.227; 

TABLE 3.7 

Optimum
Assigned P a r  am e t e  r Parameter Vr~fllll" 

hP 

6816 
=0.00682; 

D,pf=37.43 m 

0.0331 7117 

aopt =0.095 0.0336 7224 

The graph f o r  determining the  optimum aerodynamic parameters i s  shown i n  
Fig.3.43. C u r v e  1connects the m i x h a  of the  curves with ident ica l  0. From 
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curve 1we f ind  the optimum ro tor  diameter at a given rpm (M,) and o. Curve 2 
i s  the  envelope of t he  curves .kith i d e n t i c a l o ,  from which we f ind  the optimum 
rpm at  given diameter and o* Curve 3 i s  the envelope of the  curves with identi
c a l  &, from which we f ind  the  optimum s o l i d i t y  r a t i o  a t  given diameter and M,. 

A s  an example, Table 3.7 gives the optimum parameters of a helicopter f o r  
G = 35,000 kg and Cc,S = 7.5 m2. 

/-

F’ig.3.43 Graph f o r  Determining the Opthum Aerodynamic Para-
G 

meters of a Helicopter (Mfl = 0.227; + pa2cc,S 
= 0.73). 

The above method can be used f o r  finding the  optimum aerodynamic parameters 
of a helicopter with a t r a c t o r  propel ler  and Wing; however, i n  this case, it i s  
necessary t o  f i r s t  determine the  parameters of t he  propel ler  and Wing (mtt 

* P  , 
tYV/tYC, at which the  dependence t,etc.)  c = f ( m t c )  i s  optimum, %.e., at which 

the  smallest values of tXCf o r  a l l  mtc and tYcare  obtained. 

Section 4. 	Aerodynamic Desian of a Hel icmter  Based on 
Concats  of Rotor Performance and Efficiencx-

The concepts of performance K and propulsive efficiency ‘ll of a ro tor  a re  
given i n  Chapter 11, Section 7.  There graphs are presented, obtained from ex
periment and calculation and useful  f o r  finding the values of K and T. 

I n  this Section, we present a method of aerodynamic design of a helicopter 
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with t h e  use of t h e  concepts of performance K and eff ic iency 7 .  The design 
formulas f o r  determining required power and v e r t i c a l  speed of a helicopter are 
completely analogous t o  t h e  formulas f o r  calculat ing airplanes.  

This i s  a very simple method of calculation, e a s i l y  extended t o  hel icopters  
of any configuration with a Wing and t r a c t o r  p rope l l e r  or c ru i se  je t  engine.
I n  a general form, it permits making various estimate calculat ions i n  a simple 
manner: estimating t h e  expediency of  i n s t a l l i n g  a wing and t r a c t o r  propel lers  
on a helicopter,  f inding the  power/weight r a t i o  N/G required f o r  producing 
a given maximum speed, and determiningthenthe amount by which t o  reduce t h e  
required power when reducing t h e  p a r a s i t e  drag of t h e  helicopter.  

Since t h e  performance and eff ic iency yield an approxjmate descr ipt ion of 
t h e  aerodynamic cha rac t e r i s t i c s  of t h e  rotor ,  this method of calculat ion ranges 
high among t h e  approximate methods of aerodynamic design. 

1. Hel icmter  Performance-

The helicopter performance i n  horizontal  f l i g h t  regime i s  determined by 
eq.(7.9) of Chapter I1 

In calculat ions it i s  more convenient t o  use t h e  inverse quantity, namely 
t h e  inverse performance of t h e  helicopter:  

Changing t o  dimensional quantit ies,  Y = G and Q p a r ,  we obtain 

where t h e  p a r a s i t e  drag of t h e  hel icopter  i s  

When using t h e  conversion formulas f o r  determining t h e  performance of a 
r o t o r  with d i f f e r i n g  parameters (see Chapt .II, Sect .7.6), t h e  hel icopter  per
formance i s  found f r o m t h e  expression 



2. Performance of MultA.rotor a& Composite-Helicopters-

In  t h e  general case, t h e  inverse performance of t h e  c r a f t  i s  

where CY and E X  are t h e  sums of lifts and drag of a l l  l i f t i n g  elements of t h e  
helicopter. 

Let us derive t h e  expressions of CY and EX, f o r  two types of helicopters. 

Siwle-rotor  he-l&copter with d.w. The l i f t  of t h e  helicopter l i f t i n g  
system consists of t he  sum of l if ts  of t h e  ro tor  and Wing 

We represent Cy i n  t h e  form CY = G(?, + y,, ) having designated: ?= = 

-- Y r o t--and Y, = -.yw 
CY CY 

In  horizontal f l i gh t ,  we have 

z Y = G ;  

tu, =tumt +*, ; 
cot+%=l; I 

The drag i s  made up of the drags of t he  isolated ro tor  and wing and of pro
jections of t he  ro tor  and Wing l if ts  onto the  d i rec t ion  of motion (see Fig.3.U) 

where AarOtand Aa, are t h e  averaged downwash angles of t h e  ro tor  and wing. 

On substi tuting eqs.(4.8) and (4.10) i n t o  eq.(4.6), we obtain 
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The downwash angles are determined, as described i n  Section 1, by t h e  ex
pressions 

Aa, =0.26%w 7. I (4.121 
tya 

Two-rotor h e l i c m t e r  with wing. After performing similar calculations,  we 
f i n d  

where t h e  subscr ipts  111" and 112" denote quant i t ies  per ta ining t o  each of t h e  
rotors .  

The t o t a l  downwash angles due t o  t h e  other  two elements of t h e  l i f t i n g  
system of t h e  hel icopter  are equal t o  

afl/IAak =0.26xwI T-$0.26xw, a&.V2 


For a hel icopter  of side-by-side configuration, both ro to r s  operate under 
equal conditions ( a l l  quant i t ies  with t h e  subscr ipts  111Il and 11211are equal t o  
each other),  and H . ~= x2 = N,. ,. Therefore, f o r  a hel icopter  of side-by-side 
configuration we obtain the  following expressions : 

For a hel icopter  of fore-and-aft configuration with a wing between t h e  
ro to r s ,  t h e  f r o n t  r o t o r  i s  v i r t u a l l y  outside t h e  influence of t h e  t a i l  r o t o r  and 
wing, and t h e  wing i s  outs ide t h e  influence of t h e  t a i l  rotor .  However, t h e  
induction coe f f i c i en t s  H. f o r  t h e  t a i l  r o t o r  and f o r  t h e  wing should be doubled 
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e q ~ ~ ( 4 . 8  

The t o t a l  required power of r o t o r s  of a fore-and-aft hel icopter  depends 
l i t t l e  on t h e  r e l a t i o n  of r o t o r  lifts. T h i s  i s  explained by t h e  f a c t  t h a t ,  i n  
conformity with t h e  general  theory of induced drag, this power does not depend 
on t h e  l i f t  d i s t r i b u t i o n  between individual  elements of t h e  l i f t ing system, and 
t h e  p r o f i l e  power of t h e  r o t o r s  does not g r e a t l y  depend on t h e  l i f t i n g  fo rce  
of t h e  r o t o r s  ( i n  regimes not close t o  flow separation).  Therefore, t o  deter
mine t h e  t o t a l  required power of two r o t o r s  we can set  Y, = Yz. Actually, t h e  
lifts of both r o t o r s  are close i n  value with respect t o  balancing conditions of 
t h e  helicopter.  

- - -After s e t t i n g  Y r o t l  - Y r o t z  = Y r o t  and Kl = K2 = K i n  e q ~ ~ ( 4 . 1 3 )and (4.l4), 
we f i n d  t h a t  t he  quantity K, can be determined by eqs.(4.16) and (4.17), with 
t h e  induction coe f f i c i en t s  not doubled. The physical  meaning of this expression 
i s  t h a t ,  t o  determine t h e  t o t a l  power, it i s  possible  t o  replace two ro to r s  by 
one with a double l i f t i n g  force inser ted between t h e  rotors .  The downwash of 
this r o t o r  i s  equal t o  the half-sum of the  downwashes of t he  f r o n t  and t a i l  
rotors ,  i.e., equal t o  half  of t h e  downwash of t h e  t a i l  rotor .  

The sequence of ca l cu la t ion  of hel icopter  performance i s  as follows: In a 
check calculat ion of a hel icopter  t h e  gross weight, diameter, s o l i d i t y  r a t i o ,  
r o t o r  rpm, and p a r a s i t e  drag coe f f i c i en t  are known. After assigning t h e  f l y i n g  
speed and a l t i t u d e ,  f i n d  t h e  following dimensionless coeff ic ients :  

on t h e  basis of which, using t h e  graphs i n  Section 7, Chapter 11, find t h e  r o t o r  
performance. Then, ca l cu la t e  Qpar from eq.(4.5) and determine K,. 

I n  calculat ing t h e  performance of composite helicopters,  i t  i s  necessary 
t o  know_ t h e  Qft d i s t r i b u t i o n  between individual  elements of t h e  l i f t i n g  system, 
i.e., Y r o t l ,  Y r o t 2 ,  Y,, . For estimate calculations,  we can assign Y,, and cy 
f o r  some f l i g h t  regime, bearing i n  mind t h a t  these quant i t ies  can be obtained by 

r iate se l ec t ion  of the s e t t i n g
tYrOt

angle and t h e  wing area. Then, using 
an approp and (4.91, we f ind Y r o t ,  from t h e  r o t o r  and wing cha rac t e r i s t i c s  
we.dete&ne K, K,. After calculat ing t h e  d o m a s h  angles by eqs.(&.17), we 
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f i n d  \. 
When t h e  geometric cha rac t e r i s t i c s  and t h e  s e t t i n g  angle of t h e  Wing are 

given, t h e  following method can be used f o r  determining r o t o r  and wing l i f t  i n  
horizontal  f l i g h t .  

The angle of p i t c h  of a two-rotor helicopter,  measured from the plane of 
r o t a t i o n  of t h e  r o t o r  ( f r o n t  r o t o r  f o r  a hel icopter  of fore-and-aft configura
t ion ) ,  i s  determined by t h e  following expression: 

Equation (4.19) i s  obtaiped from t h e  condition of equating t o  zero t h e  sum 
of project ions of a l l  forces  onto the d i r ec t ion  of motion, on t h e  assumption-
-t h a t  t h e  angle 9 = cy, = cy1 i s  small, Tl = T2, Hl = H2 = He + TDln,  He = 0.35 VT, 
Y r o t  = T, X r o t  = T S  + H:TIS + T2 (6 + e r O t )  + H1 + H 2  + + X, = ZX = 0. 

From t h e  angle of p i t c h  of t h e  helicopter,  we can f ind  t h e  angle of a t tack 
of t he  Wing 

where E, i s  t h e  s e t t i n g  angle of t h e  wing r e l a t i v e  t o  the  plane of r o t a t i o n  of 
t he  rotor .  

- Sw -1, ,-,E,, e r O t , ,  DIN. ( t h e  desired value ofFor known V, tyC,5, Qpar
G 

Dln i s  obtained by se l ec t ing  t h e  an l e  of s t a b i l i z e r  s e t t i ng ) ,  using eqs.(4.19) 
-and ( & . a ) ,  as w e l l  as (4.9), (4.14-7, and (4.15), a l l  quant i t ies  enter ing these 

formulas are found by successive approximations: cy,, 6, cy,, tyro Y,, Y, .t ,  

-W e  recomend t h e  following sequence of calculation: After assigning c y w ,  

f i n d  cy,, Y,, K,; by means of eq.(4.15) determine 2Yrot, and then tY p O t ,  A ~ W ;  
f i n d  6 and, from eq.(&.S),  determine cy, of t h e  second approximation. 

Two or three approximations must be performed. I n  this manner a l l  quanti
t i es  f o r  calculat ing K, can be obtained. 

& an example, Table 3.8 gives a calculat ion of t he  reciprocal  performance 
of t h e  Mi-4 helicopter.  The in i t ia l  data  of this hel icopter  are given i n  Sec
t i o n  3. Performance and eff ic iency of t h e  r o t o r  w e r e  determined from the graphs 
i n  Figs.2.159 and 2.160, with conversion t o  t h e  difference i n  s o l i d i t y  r a t i o .  
The difference i n  blade p r o f i l e s  f o r  M, = 0.6 can be disregarded. 

1
The r e s u l t s  of calculat ing -f o r  t h e  e n t i r e  range of t, are p lo t t ed  i n  

Kh 

F'igL3.&, indicat ing t h a t  t h e  inverse performance of t h e  hel icopter  i s  m i n i m a l  
at  V = 0.25 - 0.3 and at a lift coeff ic ient  c lose t o  t h e  maximum permissible 
owing t o  flow separation. 



- -  
-- 

The maximum performance i s  Kh = 6.0. A t  s m a l l  v, t h e  rec iproca l  per
m a x  

formance of a hel icopter  increases  owing t o  a decrease i n  ro to r  performance and 
at la rge  v, owing t o  an increase i n  hel icopter  drag. 

TABLE 3.8 

1 - 1 (0.063-0.091) t y  + ~ 

cxv* f y = 0 . 1 4~ 

uh --k 4*0:96F 0.063ty ’ ua, 
-
~ ~.-

0.15 0.20 0.25 0.30 0.35 
3.5 5 . 4  6.95 8.5 9.25 
1.011 0.980 0.972 0.964 0.947 
0.286 0.1854 0.144 0.1176 0.108 

0.063-0.&1’ 
4-0,96vz 

-0.0462 -0.0261 -0.0167 -0.0116 -0.0085 

0.2398 0.1593 0.1273 0.106 0.0995 
0.009 0.009 0.009 0.0095 0.01 

0.023 0.0408 0.0638 0.0980 0.139 

0.2628 0.2001 0.1911 0.204 0.2385 

A second example of ca lcu la t ion  i s  t h a t  of t he  performance of hel icopters  
of d i f f e ren t  configurations: single-rotor,  fore-and-aft, tandem, single-rotor 
with wing, and tandem with wing. 

The calculat ions were made under the  following conditions: For hel icopters  
without a wing, t he  l i f t  coef f ic ien t  of t he  r o t o r  i s  equal t o  t, = 0.13, and 

r o t  
f o r  hel icopters  with a wing t o  t yc = 0.16 and 0.32. The la rger  value of t 

,C 
f o r  hel icopters  with a wing corresponds t o  two cases: a decrease i n  ro to r  dia
meter when a wing i s  i n s t a l l e d  and a decrease i n  per iphera l  speed without a 
change i n  ro to r  diameter. The s o l i d i t y  r a t i o  of t h e  r o t o r  i s  o = 0.091, M, = 

= 0.65, and Mo = 0.65 ,/== 0.587 i n  the  l a t t e r  case. The angle of wing 

s e t t i n g  was selected so t h a t  r e l i e f  of t he  ro to r  load was equal t o  at l e a s t  20% 
at M f l  > 0.2. The performance and eff ic iency of t h e  r o t o r  were determined /329
from t h e  graphs i n  Figs.2.159 and 2.160 and both cy and Wing performance, from 
F’ig.3.45. The p a r a s i t e  drag coef f ic ien t  of t he  sir@e-rotor helicopter,  re
fe r red  t o  ro to r  area, i s  ecpal  t o  0.0075 and, on a decrease i n  diameter, becomes 

0.160.0075 -= 0.00925; f o r  two-rotor helicopters,  t he  magnitude of Cc,S i s
0.13 

twice t h a t  of t he  s ingle-rotor  hel icopter .  The wing area of t h e  single-rotor 
hel icopter ,  re fe r red  t o  ro to r  area, i s  equal t o  0.0325; on a decrease i n  r o t o r  
diameter, t he  wing area d id  not change and i n  r e l a t i v e  values was equal t o  
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0 1 60.0325 A = 0.04. The relative wing span t,/R i s  equal t o  0.85 and 0.95,
0 e 1 3  

respectively.  For tandemhelicopters, the wing area i s  determined by t h e  r o t o r  
dimensions and i s  assumed as 0.16 of t h e  area of one rotor .  The aspect r a t i o  
of t h e  wings i s  equal t o  X, = 7.2. 

0.5 

0.15 0.20 10 

Fig.3.a  Reciprocal Performance of Fig.3.45 Lift Coefficient and Wing 
Helicopter as a Function of Eft Coef- Performance as a Function of Angle 

f i c i e n t  and Relative Flying Speed. of Attack. 

Calculation of t h e  performance of hel icopters  without a wing i s  made i n  
Table 3.9, w h i l e  t h e  performance of hel icopters  with a wing in a version with a 
decreased r o t o r  diameter i s  given i n  Table 3.10. 

1 

Kh 
0.3p

I	
I -
I 

u.zl 
I
I
I 

0.7 
0 

Fig.3.46 Reciprocal Performance of 
Helicopters of Different Configura

t i o n s  with and without a Wing as 
a Function of M,, . 

Legend : 
-	Single-rotor configuration; 

Side-by-side configuration; 
-.-.- Fore-and-aft configuration;

wo/w, hel icopter  without wing;
I, hel icopter  with wing and 
reduced diameter; 

11, hel icopter  with wing and 
reduced per ipheral  speed. 

353 




TABLE 3.9 


H E ~ C O F ' T E R S  WITHOUT WIN2 


S i n g l e - r o t o r  c o n f i g u r a t i o n  

Fore- a n d - a f t  c o n f i g u r a t i o r  

X ~ O=0.65 
t y ,  =0.26 

Side-by- s i d e  c o n f i g u r a t i o  

~~ s =. -0.4 
typ =0.26 

0.15 0.20 0.30 0.40 

3.5 5.2 7.85 8.42 

1 .OO 0.977 0,962 0.936 


0.0142 0.0253 0.057 0.1014 


- . ~ 

0.286 0.1925 0.127 0.119 

0.300 0.2178 0.184 0.220 


-~~ __ 

0.143 0.0962 0.0635 0.0595 

0.181 0.102 0.0454 0.0255 

0.2335 0.1472 0,0862 0.0722 


0.3907 0.2687 0.2092 0,2373 


~.-

A ,arot -0.0558 -0.0314 -0.0139: -0.00785 
1

-+Aa, t  0.2302 0.1611 0.1130: 0.11075
K 

1 

0.2444 0.1864 0.1700: 0.21215 


' h  

The r e su l t s  of the  calculations a re  p lo t ted  i n  Fig.3.46, which shows that ,  
i n  the en t i r e  speed range, t h e  reciprocal performance of t he  helicopter of side
by-side configuration has a lower value and t h a t  of the  fore-and-aft configura
tion, a higher value. The maxi" p e r f o A n c e  i s  equal to:  6 f o r  a side- m 
by-side helicopter at = 0.27; 5.5 f o r  a s i n g l e r o t o r  helicopter a t  = 0.29;
4.8 f o r  a fore-and-aft helicopter at =.0.3. A t  M,, = 0.26 (v = 0.4), the per
formance of t h e  helicopters is, respectively, equal to:  4.7; 4.55; and 4.23.. 

The Wing, re l ieving X, - 30% of the  ro tor  load at high f lying speeds, 
changes the  helicopter performance i n  the following manner: If, on in s t a l l a t ion  
of a wing, the  ro tor  diameter was decreased, the  helicopter performance increases 
very l i t t l e  (curve I). If the  ro tor  diameter was not decreased but i t s  r p m  was 
raised (curve II), the  m a x i "  performance of the  helicopter increases by
0.5 - 0.9 (by 10 - 15%) and, at h u m speed ( M f l  = 0.26), increases by 0.4 
(approximately 9%). Calculations showed t h a t  i f ,  on install ing a wing, t he  
ro to r  parameters a re  not changed so t h a t  the ro tor  a t  high speeds has a very low 
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TABU 3.10 


0.15 0.20 I 0.30 0.40 0.15 0.20 
-0.45 -2.48 -7.10 '-12.66 -0.6 -2.9 

12.36 14.63 12.7 8.23 8.4 9.7 
0.795 0.915 0.810 ' 0.545 0.548 0,63 

19 15.8 18.4 23.8 22.5 21.8 
0.112 0.0595 0.0235 

, 
0.0126 0.1276. 0.066 

0.049 0.10 0.200 0.24 0.068 0.139 
0.951 0.90 0.80 0.76 0.932 0.861 
0.152 0.144 0.128 0.122 0.149 0.1376 
3.45 5.3 7.8 8.05 < 3.5 5.23 
0.0065 0.0075 0.0066 0.0045 0.00'145 0.00167 
- - - - ' 4.0640 -0.0332 

0.0065 0.0075 0,0066 0.0045 -0.06255 -0.031 53 
I 

0.2963 0,1961 0.1348 0.1287 i 0.2274 0.1595 
I 

1 

0.1644 0.1228 I 0.0778 I 0.0546 0.172 0.1119 
I: 

0.282 0.176 0.1078 0,0979 ~ 0.212 0.1373 

0,00809 0.0123 0.0156 0,031 0.0117 0,0156 

0.0143 0.0254 0.0571 0.1015 0.0143 0.0254 
0.305 0.214 0.180 0.212 0.238 0.1813 

0.30 0.40 
-7.62 -12.5 

7.22 2.95 
0.48 0.22 

22.8 15.9 
0.b262 0.0155 
0.237 0.195 
0.763 0.805 
0.122 0.1286 
7.6 8.3 
0.00126 O.OOO58 

-0.0131 -0.00777 
-0.01184 -0.007 19 

0.1198 0.1134 

0.0701 .0.0783 

0.0915 0.0913 

0.0166 0.0153 

0.0571 0.1015 
0;  1652 0." 

w 
wl 
wl 



t h r u s t  coeff ic ient ,  then i n s t a l l a t i o n  of a wing w i l l  not r e s u l t  i n  a decrease i n  
required power. 

It should be noted t h a t  an increase i n  t h r u s t  coeff ic ient  tYCf o r  a hel i 

copter with a wing l eads  t o  a decrease i n  i t s  dynamic cei l ing.  This i s  so since, 
at  t h e  optimum rate of climb vc = 0.2, t h e  wing only in s ign i f i can t ly  relieves 

4 v  

0.1 M , ~  

Fig.3.47 Relat ive L i f t  of 
Wing f o r  Helicopters of 

DIifferent Cokigurat  ions. 
Legend : 

Single-rotor con
f igurat ion;  

---_ Side-by-side con
f igurat ion;  

I - Helicopter with wing 
and decreased dia
meter ; 

I1 - Helicopter with wing 
and decreased peri
pheral  speed. 

markedly decreases and t h e  lift 

t h e  r o t o r  load, and t, acquires t h e  maximum 
permissible ( i n  v i e w  of flow separation) value 
at  a lower a l t i t u d e .  Furthermore, at  l a rge
tyC,flow separation at t h e  r o t o r  may occur a t  

low f ly ing  speeds when t;, i s  s t i l l  s m a l l .  To 
reduce t, 

r o t  
at these  a l t i t u d e s ,  a 5 - 8%in

crease i n  r o t o r  rpm can be advantageous. 

It follows from Table 3.10 t h a t  t h e  wing 
performance with consideration of downwash by 

t h e  r o t o r  (z1 ---+ AcY,,) decreases by
KW 

several  u n i t s  at high f ly ing  speed and even 
more at  low speed. The "ing, producing down-
wash near t h e  ro to r ,  somewhat reduces i t s  per
formance. This explains t h e  s l i g h t  change i n  
hel icopter  performance when a wing i s  i n s t a l l e d .  

On a hel icopter  without a t r a c t o r  pro- /332
pe l l e r ,  a wing without a f ixed angle of s e t t i n g  
has a maximum angle of a t t ack  CY,, i n  horizontal  
f l i g h t  at  v = 0.3 - 0.15. A t  smaller 8, t h i s  
angle decreases owing t o  an increase i n  down-
wash from t h e  r o t o r ;  at  l a rge r  values, it de
creases due t o  an increase i n  pi tch angle of 
t h e  helicopter.  Therefore, when a wing has a 
small a rea  and l a r g e  angles of attack, i t s  lift 
increases  at high speed desp i t e  a decrease i n  

9 but i n s ign i f i can t ly  (Fig.3.47, single-
r o t o r  configuration) . Conversely, i f  t h e  wing 
has a l a r g e  area and small CY, (side-by-side 
configuration), then at l a r g e  speeds cyw 

becomes less than a t  average speeds. 

Thus, on hel icopters  without a t r a c t o r  propel ler  or  other propeller,  t h e  
wing should have a small area and l a rge  CY,, o r  be  provided with mechanization f o r  
control l ing t h e  amount of cy,. 

I n  a climbing regime, t h e  angle of a t tack of t h e  wing decreases, while it 
increases  i n  gliding. A t  a f ixed angle of wing s e t t i n g  i n  an autorotat ion 
regime, flow separation from t h e  wing i s  inevi table ,  which can be to l e ra t ed  i n  
t h e  presence of a small wing l i f t  (small wing area and reduction i n  cy, by 
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mechanization of t h e  wing), 

3. Determination of. __Helicopter Fl ight  D a t a-

If both hel icopter  performance and ro to r  eff ic iency are known, t h e  required 
power of a hel icopter  i s  determined by t h e  expression (see Sect.7, Chapt.11): 

o r  

The sequence of calculat ion f o r  hel icopters  of various configurations i s  
described i n  Subsection 2. The r o t o r  eff ic iency i s  determined from t h e  graphs 
given i n  Section 7, Chapter 11. Consequently, on assigning t h e  f ly ing  speed /333
and a l t i t ude ,  a graph of t h e  required power of t h e  hel icopter  can be  plotted.  
I n  hovering f l i g h t ,  t h e  required power i s  determined' from aerodynamic charac
t e r i s t i c s  of t h e  ro to r  i n  a hovering regime: Nhaf i s  calculated a t  a l l  f l i g h t  
a l t i t u d e s  under t h e  condition T = G. 

The maximum and minimum f ly ing  speeds a r e  d e t e r d n e d  from t h e  points of 
i n t e r sec t ion  of t h e  curves of required and disposable power. A t  a l l  f l i g h t  
a l t i t u d e s  we must f i nd  t h e  maximum permissible speed V,,, with respect t o  flow 
separation conditions; i f  Vmax > V,,,, then t h e  f l y i n g  speed of t h e  hel icopter  
i s  l imited by t h e  value of V,, ,. 

Having plot ted t h e  curves of required power and knowing t h e  engine chasac
t e r i s t i c s  w i t h  respect t o  f u e l  consumption, t h e  f u e l  consumption of t h e  he l i 
copter per hour and kilometer can be plot ted as a function of f ly ing  speed ( see  
Fig.3.38) and, as described i n  Section 3, t h e  maximum range and endurance, 
cruis ing and economic f ly ing  speeds can be determined. 

If t h e  hel icopter  f l i g h t  path i s  inclined, t h e  propulsive force of t h e  
r o t o r  should balance t h e  projection of helicopter weight onto t h e  d i r ec t ion  of 

VYf l i g h t ,  which is  equal t o  G s i n  Qf or G - ( see  Fig.3.1). Therefore, t h e  
V 

expression f o r  engine power t akes  t h e  form 

It follows from eq.(4.23) t h a t  t h e  m a x i "  r a t e  of climb of a helicopter i s  
determined by t h e  formula 
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Fig.3.48 Required and Available Horsepower 
o f .Helicopter. 

Fig.3.49 Ratio N,,. /Ga f o r  Helicopters of 
Different Configurations with and w5thout 

Wing, as a Function of M i l .  
Legend: 

Single-rotor configuration; 
----- Side-by-side configuration; 

Fore-and-aft configuration; 
wO/w - Helicopter without wing; 

I - Helicopter with wing an2 decreased 
diameter ; 

I1 - Helicopter with wing and decreased 
peripheral speed. 



The opthum rate  of climb and mini” power consumption N h a f m i n  are found 
from t h e  graph of required powers. After determining V Y B a x  a t  a l l  a l t i t u d e s  and 

constructing t h e  graph Vy, LLx = f ( H ) ,  t h e  dynamic ce i l i ng  of t h e  hel icopter  i s  
determined by graphical means (see Fig.3.35). 

From eq.(k.%) fo r  N d i ,  = 0, t h e  minimum r a t e  of descent of a hel icopter
i n  an autorotat ion regime of t h e  r o t o r  (Vye)m3,,i s  derived. 

To determine t h e  angles of a t t ack  cy and angles of s e t t i n g  00 of t h e  r o t o r  
it i s  necessary t o  calculate  t h e  coeff ic ient  of propulsive force of t h e  ro to r  

and, knowing t, and t,, t h e  angles CY and must be  determined from t h e  graphs 
( s e e  Figs.2.63 - 2.70 and 2.105 - 2.109) or  from eq.(3.95) given i n  Section 3, 
Chapter 11. 

A s  an example, l e t  u s  carry out an aerodynamic calculat ion of t h e  Mi-4 
hel icopter  with rectangular m e t a l  blades. The graph of helicopter performance 
i s  given i n  Fig.3.44. The graph of t h e  required and ‘disposable powers i s  shown 
i n  Fig.3.43 f o r  six f l i g h t  a l t i t udes .  

A t  7 = 0, Nh.f  i s  determined by t h e  expression: 

, 

where m t  i s  found from t h e  graphs shown i n  Fig.3.34 f o r  7, = 0. 

The max imum v e r t i c a l  r a t e s  of climb and m i n i m u m  r a t e s  of descent i n  an /335
autorotat ion regime are calculated i n  Table 3.11. 

Determination of t h e  other f l i g h t  da t a  i s  accomplished by means of t h e  
graph i n  Fig.3.U. 

A comparison of N h S i  calculated by t h e  auxiliary graph i n  Fig.3.27 with 
Nh. f found from hel icopter  performance and eff ic iency shows sa t i s f ac to ry  agree-
merit; VYmax i s  a l s o  close i n  magnitude. 

Figure 3.49 shows a graph of required power based on G a  f o r  hel icopters  of 
various configurations. The graph is  calculated by m e a n s  of t h e  helicopter 

Nh. fperformance graph given i n  Fig.3.46. The r a t i o  -G a  i s  determined by t h e  
formulas : 
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i n  forward f l i g h t ,  and by 

i n  hovering f l i g h t .  

- -
0 1000 1860 3500 5000 5500 

1430 1500 1550 1315 1380 1300 
115 115 120 125 125 115 
0.163 0.163 0.170 0.177 0.177 0.163 
0.138 0.152 0.165 0.195 0.229 0.242 
1.010 1.002 0.989 0.953 0.850 0.850 
880 865 837 865 970 1060 
550 635 693 450 410 240 
4.86 5.57 6.0 3.75 3.05 1.83 
-7.8 -7.6 -7.4 -7.2 -7.2 -7.9 

The power u t i l i z a t i o n  f ac to r  5 was taken as equal t o  0.93-for two-rotor 
helicopters,  and as 5 = 0.88 f o r  a single-rotor hel icopter  at  V 2 0.15 and as 
5 = 0.83 at V = 0. I n  hovering f l i g h t ,  t h e  hel icopter  wing i s  swept by t h e  
r o t o r  and c rea t e s  a negative l i f t ;  therefore ,  at  V = 0 t h e  l i f t  coeff ic ient  of 
t h e  ro to r  increases  by 2% f o r  t h e  single-rotor hel icopter  with a wing and by 8% 
f o r  t h e  hel icopter  of side-by-side configuration with a wing; t h e  value found 
from eq.( 4.28) increases  accordingly. 

We see from t h e  graph t h a t ,  because of a difference i n  5 i n  hovering 
regime, t h e  r a t i o  N/G i s  lower f o r  two-rotor hel icopters  than f o r  single-rotor 
versions . 

The l a r g e s t  value of N/G r e f e r s  t o  hel icopters  with a wing and with a re
duced r o t o r  diameter, while t h e  smallest value refers t o  hel icopters  with a wing 
and with reduced r p  f o r  t h e  single-rotor hel icopter  and f o r  t h e  side-by-side 
hel icopter  without a wing. 

Thus, t o  ensure t h e  p o s s i b i l i t y  of hovering, t h e  he l i cop te r s  i n  question 
should have a d i f f e ren t  engine power per kilogram of gross weight. Correspond

'ingly, they w i l l  have d i f f e r e n t  f l i g h t  da t a  i n  forward f l i g h t .  Table 3.12 gives 
some f l i g h t  cha rac t e r i s t i c s  of hel icopters  which w e r e  obtained i n  our example /336
at a f ly ing  a l t i t u d e  H = 0 f o r  t h e  following c h a r a c t e r i s t i c s  of t h e  engine: 
N t . 0  = N h o v ;  NnO, = 0.85 N t . 0 ;  Ne," = 0.7 N t . 0 .  

The m a x j . "  v e r t i c a l  speed of t h e  hel icopter  was determined by t h e  formula 
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The m i n i "  r a t e  
mined f o r  N d l r  = 0. 

-
H e l i c o p t e r

6 n  f i  y r a t i o n  

Si de- by- a i  d e  
S i n g l e - r o t o r  

Fo re- and- a f t 
Si de- by- s i d e  wi th  

wing and r educed  
d i a m e t e r  

S i d e - by- a i  d e  ri t h  
wing and r e d u c e d  
p e r i p h e r a l  s p e e d  

S i n  gl  e- r o t o r  w i th  
wing and r e d u c e d  
d i a m e t e r  

S i n g 1  e- r o t o r  .rit h  
r i n g  hnd r educed  
p e r i p h e r s l  apeed  

Si de- by- si d e  

S ing1  e- r o t o r  
Fore- and- a f t  

Si de- by- sid e  ri t h  
wing and r e d u c e d  
d i  m e t e r  

S i d e - b y - s i d e  wi th  
r i n g  and r e d d c e d  
p e r i p h e r a l  s p e e d  

S i n g l e - r o t o r  ri t h  
r i n g  and r e d u c e d  
d i m e t e r  

S i n g l e - r o t o r  w i t h  
r i n g  and r e d u c e d  
p e r i p h e r a l  s p e e d  

of descent i n  an autorotat ion regime ( V y c ) m i n  w a s  deter-

TABL;E 3.12 

. - .-

la 
U

'4.f mIn 
4 0  h: 5,

."$2
- I - - ,  

3.253 301 0 0.456 6.6 - 7.66 246 1.127 . 
3.284 304 0 0.527 6.76 - 9.38 244 1.144 
D.253 280 (47.7) 0.694 2.61 -11.65 185 1.169 
D . 3 0 6  332 0 0.356 10.03 - 7.21 280 b.134 

-0.271 321 0 0.348 9.02 6.24 275 1.121 

-0.315 325 0 0.465 7.59 9.17 268 1.145 

0.281 317 0 0.448 7.06 - 7.89 261 D. 133 

N 

for  h e l i c o p t e r 8  i i d e n t i c a l  

0.264 306 0 0,439 7.19 - 7.66 252 0.129 
0.264 292 29.4 0.668 4.67 - 9.38 230 0,141 
0.264 287 0 0.667 3.20 -11.65 203 0.160 
0.264 310 28.2 0.413 7.64 - 7.21 258 0.126 

0.261 317 8.8 0,357 8.61 - 6,24 272 0.119 

0.264 300 47.7 0.655 4.88 - 9.11 235 0.138 

0,264 308 23.a 0.477 6.16 - 7.86 i51 0.129 

b 



- 

_-

The f u e l  supply required f o r  f l i g h t  over a given range at t h e  cruis ing /337 
power of t h e  engine was  found by t h e  formula 

The coeff ic ient  1.1 i s  introduced t o  account f o r  t h e  f u e l  supply f o r  navi
gation and f u e l  consumption i n  t r a n s i t i o n a l  regimes f o r  a height of H = 0. Here, 
-	 Gf
Gf = -

G w a s  calculated f o r  L = 500 km at C, = 0.32 kg/hp hr. 


Table 3.12 ind ica t e s  t h a t ,  under equal conditions i n  hovering f l i g h t  
( N t e 0  = N h o v ) ,  t h e  fore-and-aft hel icopter  has t h e  worst f l y ing  q u a l i t i e s  i n  
forward f l i g h t :  The rate  of climb and cruis ing speed a r e  appreciably smaller, 
t h e  f u e l  requirement i s  greater ,  t h e  r a t e  of descent i n  an autorotat ion regime 

i s  greater ,  and -- 0.69, i.e., continuation of horizontal  f l i g h t  i s  pos-N h * f
Nt. 0 

s i b l e  only i f  not more than one of t h e  t h r e e  engines fa i ls .  

To improve t h e  f l i g h t  cha rac t e r i s t i c s ,  t h e  fore-and-aft helicopter should 
have a more powerful engine: Nt.  > N h o v .  

The side-by-side hel icopter  has t h e  bes t  f l i g h t  data. 

The q u a l i t a t i v e  difference i n  f l i g h t  da t a  of hel icopters  of d i f f e r e n t  con
f igu ra t ions  i n  forward f l i g h t  a l s o  remains f o r  hel icopters  of equal avai lable  
horsepower per unit weight ( s ee  t h e  second par t  of Table 3.12), and a l so  i f  we 
t ake  i n t o  account t h a t  hel icopters  of d i f f e r e n t  configurations have a somewhat 
d i f f e r ing  f ly ing  weight at  an i d e n t i c a l  lift capacity. A t  equal avai lable  power 
per un i t  weight f o r  single-rotor and two-rotor helicopters,  t h e  former can hover 
only on a ground cushion, with i t s  minimum speed outside t h e  ground cushion 
being about 30 km/hr. 

By i n s t a l l i n g  a wing on a single-rotor hel icopter  t o  reduce t h e  r o t o r  dia
meter by 11% and increasing t h e  engine power a l s o  by 11% t o  ensure hovering out
s ide  t h e  ground e f f ec t ,  t h e  f l i g h t  c h a r a c t e r i s t i c s  of a hel icopter  i n  forward 
f l i g h t  a r e  improved: The maximum and cruis ing speeds increase by 20 km/hr and 
t h e . r a t e  of climb by about 2 m/sec. Without an increase i n  engine power, t h e  
cha rac t e r i s t i c s  of a hel icopter  i n  hovering f l i g h t  deter iorate ,  but i n  forward 
f l i g h t  they change negligibly: The m a x i ”  and cruis ing speeds increase by
5 - 8 km/hr and t h e  r e l a t i v e  f u e l  feed decreases by 3%. When a wing i s  in
s t a l l e d  without changing t h e  ro to r  diameter but  with decreasing t h e  peripheral  
speed, t h e  f l i g h t  cha rac t e r i s t i c s  of t h e  hel icopter  improve both i n  hovering and 
i n  forward f l i g h t :  The maximum and cruis ing speeds increase by 15 - x) km/hr, 
and t h e  relative f u e l  feed decreases by 8 - 9%. 

A s  noted above, t h e  dynamic c e i l i n g  of a hel icopter  with a d n g  decreases. 
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4. Calculation of a H e l i c o p t e r  with -a Tractor Propeller-~ -

When calculat ing a helicopter with a t r a c t o r  propeller ( j e t  engine) de
veloping a thrus t  Pt. p ,  t h e  drag of t h e  hel icopter  must b e  reduced by t h e  quanti-

G 
t y  Pt.p,  i.e., t h e  drag w i l l  be equal t o  -K + Qpar - P t e P .  

The t r a c t o r  propeller requires an amount of power determinable by t h e  
expression 

Therefore, t h e  required power of a hel icopter  with a t r a c t o r  
i s  equal t o  

o r  

I n  calculat ions using eqs.(4.32) or  (4.33) we must assign t h e  value of P t n D  
o r  N t e P ;  i n  so doing we must bear i n  mind t h a t  i n  steady horizontal  f l i g h t  t h e  
drag of t h e  hel icopter  cannot be  negative; consequently, t h e  following condition 
should be  sa t i s f i ed :  

%"++*. 

G 

Q (4.34) 

Accordingly, i n  a climbing or  descending regime t h i s  condition takes  t h e  
form 

(4.35) 

Such an addi t ional  term i n  formulas f o r  Nhaf as i n  eq.(4.33) appears when
ever t r a c t o r  propel lers  are i n s t a l l e d  on hel icopters  of any configuration. 

The f l i g h t  da t a  of a helicopter with a t r a c t o r  propeller a r e  determined i n  
t h e  same sequence as one without t r a c t o r  propellers.  

Let us estimate how much t h e  required power and m-um rate of climb may 
vary when a t r a c t o r  propeller is  i n s t a l l e d  on a helicopter.  

For M g  = 0.60 and average values of t, at high f ly ing  speeds (v = 0.35), 
t h e  efficiency 'll of t h e  r o t o r  can be  considered equal t o  0.87. Having taken 
5 = 0.91 fo r  a two-rotor hel icopter  and q t m p= 0.78, S t . P  = 0.97 f o r  t h e  t r a c t o r  

= propeller,  we f ind t h e  value i n  .parentheses i n  eq.(4.33): 1- -
0.91 X 0.87 

= - 0.05. 0.97 X 0.78 
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I f  t h e  t r a c t o r  propeller completely overcomes t h e  hel icopter  drag, i.e., i f  

then t h e  increase i n  reauired power amounts t o  5%, bu t  i f  it overcomes t h i s  drag 
only by ha1-f, then t h e  Tncrease i n  required power amounts t o  2.5%. Consequently, 
t h e  l o s s e s  are s m a l l .  

For Me = 0.7 and v = 0.35 - 0.4, when ll = 0.85 - 0.8, t h e r e  can be  a 
1- 3%gain i n  required power when a t r a c t o r  propel ler  i s  used. 

I n  a m-um rate-of-climb regime f o r  Me ‘u 0.6 - 0.7, = 0.2, and at 
average values of ty,t h e  eff ic iency can be considered equal t o  at least 7 = 
= 0.87. Consequently, i f  it i s  possible t o  obtain a very high value of t r a c t o r  
propeller eff ic iency ( l l taP= 0.78) i n  a maximum rate-of-climb regime, then t h e  
value i n  parentheses i n  eq.(4.33) i s  equal t o  -0.05. For a side-by-side hel i 
copter, more than ha l f  o f  t h e  ava i l ab le  hel icopter  power i s  consumed i n  a maxi
mum rate-of-climb regime f o r  producing v e r t i c a l  speed. Consequently, when a l l  
power i s  delivered t o  t h e  t r a c t o r  propeller,  t h e  t o t a l  t h r u s t  of t h e  hel icopter  
decreases by 5%, whereas t h e  excess of t h r u s t  used f o r  climbing decreases by 
10%. The rate-of-climb l o s s  w i l l  be  about 1m/sec. A t  ll = 0.9, we have T I t a p  = 
= 0.7, and when half  of t h e  avai lable  power i s  supplied t o  t r a c t o r  propel lers  /339
t h e  rate-of-climb l o s s  will amount t o  20%, o r  about 2 m/sec. General considera
t i o n s  on when t h e  i n s t a l l a t i o n  of a t r a c t o r  propel ler  or  other propeller on a 

hel icopter  i s  expedient o r  necessary 
a r e  given a t  t h e  end of Section 7, 
Chapter 11. 

5. Comparison of Helicopter and AJrplan-e 

A t  i d e n t i c a l  f l y i n g  weight of he l i 
copter and airplane,  t h e  r e l a t i o n  D = 
= L, i s  approximately s a t i s f i e d ;  t h i s  
r e l a t ionsh ip  i s  determined by design 
adv i sab i l i t y  of t h e  s i ze  of wings and

0 1 2 3 CY, ro to r s .  A commrison of  t h e  parameters 
Fig.3.50 Comparison of t h e  Product of regular  aircraft and hel icbpters  
of Aircraf t  Performance and Ef f i - shows t h a t  a wing has an aspect r a t i o  
ciency f o r  Regular Aircraf t  and l a r g e r  by a f a c t o r  of 7 - 9 and an 

Helicopter . equally l a r g e r  load per square meter of 

-area. Consequently,
(+) airs 

. =  (G)= P= const. This means t h a t  a given a i r c r a f t  and helicopter have 
h h 

an approximately equal induced drag at  t h e  same f ly ing  speed. 

Provided t h a t  D = L,, t h e  dimensionless coe f f i c i en t s  of an airplane and 
hel icopter  are connected by t h e  r e l a t i o n  
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(4.37) 

For ompari m, l e t  u s  t ake  t h e  following da ta  of helicopter and an air
plane. For a helicopter,  CT = 0.091; t, = 0.15, -Ex = 0.0075. For an airplane,  
t h e  wing cha rac t e r i s t i c s  are taken from da ta  of wing exposure t o  propeller s l i p  
stream of a modern low-speed t ransport  a i r c r a f t .  A rectangular wing with a slat 
and double s l o t t e d  f l a p  w a s  tes ted.  The wing aspect r a t i o  w a s  X, = 9. The 
pa ras i t e  drag coeff ic ient  cxa i r  of t h e  airplane,  based on wing area, w a s  taken 

t o  be equal t o  0.025 [Cc,S of  t h e  airplane i s  approximately one half  t h a t  of a 

hel icopter  : ( C G S ) a i r o  --
S a t r e  = = 0.0036 and f o r  t h e  hel i -

Fro t ' X a f r c  F~~~ 
T r h ,

4 
copter, C, = 0.00751. 

TABLIZ 3.13 

-
R e t  r ec t ed Moved 

Forward-I S l o t  I Over1 apped 
I 

)pen 

-
D e f l e c t i o n  
o f  Flap 50 

-
0.4 0.8 1.2 1.45 2 2.4 2.55 2.87 
0.0185 0.0439 0,0873 0.1175 0.232 0.417 0.45' 0.582 

21.6 18.25 13.75 12.35 8.63 5.77 5.6 4.93 
9.2 11.6 10.65 10.2 7.8 5.44 5.36 4.72 
6.44 8.12 7.45 7.15 5.46 3.8 3.75 3.31 

7.82 9.86 9.05 8.67 6.62 4.62 4.55 4.02 

. - - .. ~ ~~ 

0.479 0.34 0,277 0.252 0.214 0.196 0.19 0.179 - 9.3 8.2 7.3 5.9 5.12 4.19 4.45 - 0.875 0.915 0.93 0.965 0.975 0.98 1.o 
- 5.75 6.03 5.77 5.1 4.66. 4.5 4.11 
- 4.43 4.85 4.72 4.33 4.00 3.88 3.62 

For t h e  selected values of cy, we f ind,  i n  Table 3.13, c , , ~  K,, K a i r o ,  

K 8 i r c ? l t . p .  For these  same values of cy,, t h e  values of v, K, 7,  K h ,  and K h I  are 
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determined f o r  t h e  helicopter.  Since t h e  hel icopter  has  add i t iona l  engine power 
losses ,  t h e  product Kh7]5, where 5 = 0.88, i s  calculated f o r  a single-rotor he l i 
copter with a t a i l  ro to r .  The graph i n  Fig.3.50 i s  constructed from t h e  da t a  of 
Table 3.13. 

A comparison of wing and r o t o r  performance shows t h a t ,  i n  t h e  examined 
example, t h e  wing without mechanization, at  a l l  cy,, has a performance greater 
by a f ac to r  of 2 - 1.7 than  t h e  rotor .  The wing with mechanization has a 4.6% 
greater performance a t  cy, = 2.0 ( a t  t h i s  c,, t h e  minimum f ly ing  speed corre-
sponds t o  V,,, = 0.214), whereas at  = 2.87 (vmin= 0.18), t h e  wing 

performance i s  only 10% higher than t h a t  of t h e  ro to r .  

It follows from Table 3.13 and Fig.3.50 t h a t  t h e  maximum value of KalrcVt.p 
at 7 ) t , P  = 0.7 i s  by a f ac to r  of 1.75 greater  than KhV5.  The f u e l  consumption 
of t h e  airplane per kilometer i s  l e s s  by t h e  same fac to r  than t h a t  of t h e  hel i 
copter (a t  equal spec i f i c  consumptions of t h e  engine). The speeds corresponding 
t o  mazima of t h e  product of t h e  c r a f t  performance and eff ic iency i s  by a f a c t o r  
of 1.2 g rea t e r  f o r  t h e  airplane (actual ly ,  a i r  l anes  f l y  t h e  range at  a greater  
speed and with a performance less than maximumy. 

On comparing a hel icopter  and an airplane at  equal flying speeds, it w i l l  
be  found t h a t  a t  speeds reached by an airplane without t h e  use of wing mechaniza
t i o n  (v  2 0.3 - 0.25), (KV)alre i s  by a f ac to r  of 1.5 - 2 greater  than (KVS), .
A t  v > 0.43, flow separation from t h e  r o t o r  blade begins at t h e  helicopter.  A t  
low f ly ing  speeds, reached by an airplane with t h e  use of powerful mechanization, 
(KV),irc i s  less than (KVS), owing t o  t h e  l a r g e  p r o f i l e  drag of t h e  wing. Thus, 
it i s  aerodynamically less expedient t o  use such an a i rp l ane  with i t s  low at
t a inab le  speed f o r  long f l i g h t s ;  a hel icopter  i s  then preferable.  

Table 3.13 shows t h a t ,  at equal f l y i n g  weight and at D = L,, t h e  minimum &!& 
speed of t h e  airplane,  determined by t h e  quant i ty  = 2.87, w i l l  be  = 

= 0.18. A low f ly ing  speed can correspond t o  t h i s  value of v on ly  i f  t h e  air
plane has a small wing loading. The minimum speed of t h e  hel icopter  i s  deter
mined by t h e  ava i l ab le  engine power a n d . i s  usual ly  equal t o  zero, whereas when 
t h e  hel icopter  i s  overloaded it w i l l  not exceed a value corresponding t o  = 

= 0.05. 

- .6. Power of Front and T a i l  Rotors i n  a H e l i c o p t e r  of_ _
Fore-and-BFtConfigw-atiin 


An expression w a s  derived i n  Subsection 2 f o r  determining hel icopter  per
formance and t o t a l  required power of both rotors .  However, t h e  t a i l  r o t o r  usu
a l ly  requires  subs t an t i a l ly  greater  power than t h e  f ron t  r o t o r  (by a f a c t o r  of 
.1.5 and more). L e t  u s  der ive an expression f o r  determining t h e  power required 
by each r o t o r  separately.  

F i r s t ,  l e t  us f i n d  t h e  propulsive fo rces  of t h e  rotors .  They are not 
ident ical ,  s ince various ro to r s  may have d i f f e r e n t  l i f ts  and d i f f e ren t  angles of 
attack. 
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According t o  eq.(4.8), t h e  r e l a t i o n  between cy1 and az i s  equal t o  

-Aarotl +A E , ~ ~ ,  

where 	A % o t ,  i s  determined by eq.(4.14) with consideration of eq.(4.18). 

Proceeding from t h e  approximate expression f o r  X:X = Y(a + al), we f i n d  

From t h e  condition of equilibrium of forces  act ing i n  t h e  d i r ec t ion  of 
motion (Fig.3 .4), we  obtain t h e  following equality: 

I n  eq.(4.39), Qpar f o r  a helicopter with a wing and t r a c t o r  propeller re
present s t h e  sum Qp ap + x,,+ Y,,Aa,, - p,. ,,. 

From eqs.(4.38) and (4.39), we obtain 

Equations (4.40) and (4.u)indicate  t h a t  vee-ing of t h e  r o t o r s  by an angle 
A�, r e d i s t r i b u t e s  t h e  propulsive forces  of t h e  ro to r s ,  t hus  influencing t h e  
power required by t h e  rotors .  Owing t o  downwash of t h e  t a i l  rotor ,  i t s  propul
s ive  force i s  greater  (more negative) by an amount of Y,Acu,. t2. A t  Yl Y2, t h e  

f ron t  and t a i l  r o t o r s  do not furnish an equal share of pa ras i t e  drag. 

Subst i tut ing X1 and X2 i n t o  t h e  expression f o r  calculat ing t h e  required &2 
power 

we obtain 
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It i s  easy t o  demonstrate t h a t ,  on adding t h e  expressions i n  parentheses i n  
eqs.(4.43) and (4.4!+), t h e  sum w i l l  coincide with eq.(4.13) f o r  t h e  case of a 
fore-and-aft helicopter.  The angle of vee-ing of t h e  r o t o r s  Aerot,  and t h e  

r a t i o  -Yl at = T 2  will not influence t h e  t o t a l  power of t h e  helicopter.  A t  
y2 

Yl = Yz and Aerot, -- AcY,,,,, t h e  power of both r o t o r s  i s  iden t i ca l .  It i s  
necessary t o  note, however, t h a t '  t h e  longi tudinal  s t a b i l i t y  of t h e  hel icopter  
de t e r io ra t e s  when e r o t ,  > 0. 

- .  - Helicopters7. Retraction of Landing- G e a r  on~. .~ 

It i s  known t h a t  hel icopters  have a pa ras i t e  drag about twice t h a t  of 
regular a i r c r a f t .  

This can be a t t r i b u t e d  t o  t h e  spec i f i c  configuration of a hel icopter ,  t h e  
presence of a cabane and l a r g e  hub of t h e  r o t o r j  t a i l  boom with a t a i l  r o t o r  
placed high, and a l s o  t o  t h e  necessity of loading and unloading i n  hovering 
f l i g h t  and maintenance without t h e  use of an airdrome. Therefore, various 
hois t ing devices, numerous r a i l i n g s  and hatches, movable doors, b l i s t e r s ,  e t c .  
are o f t en  i n s t a l l e d  on t h e  outside of a helicopter.  On t h e  other hand, t h e  
weight coeff ic ient  which i s  lower than t h a t  of a regular  a i r c r a f t  necess i t a t e s  
a careful  approach t o  any measures t h a t  reduce t h e  p a r a s i t e  drag but increase 
t h e  s t r u c t u r a l  weight. 

Below, we w i l l  estimate t h e  expediency of i n s t a l l i n g  a r e t r a c t a b l e  landing 
gear on a hel icopter  from t h e  viewpoint of i t s  load-carrying capacity. 

Retraction of  t h e  landing gear reduces t h e  p a r a s i t e  drag of a hel icopter  by 

Nh. f20 - 25%. Figure 3.51 shows t h e  graph of t h e  r a t i o  Ga f o r  two values of 

Zx: 0.0075 and (by 25% l e s s )  0.0056. The graph a l s o  contains t h e  quantity 

Ne, u N h o v.Ga-= 0.7 Ga. It i s  obvious t h a t ,  with r e t r a c t i o n  of t h e  landing gear, 

t h e  cruising speed of t h e  hel icopter  increases  from V,,, = 253 h/hr (Mil = 
= 0.207) t o  V,,, = 269 km/hr (Mil  = 0.22), i.e., by 6%. "he required fue l  sup
p l y  will decrease by t h i s  same amount, while t h e  range will remain unchanged. 
If t h e  cruis ing speed i s  retained, then t h e  required power diminishes by 9% 
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(T N 
= 0.000555 i n  place of 0.000605). Since the  spec i f i c  f u e l  consumption of 

turboprop engines g rea t ly  increases upon a decrease i n  engine power, a change i n  
power - as shown by calculat ions - w i l l  r e s u l t  i n  a change i n  f u e l  consumption 
smaller by a f ac to r  of about 1.5. Consequently, we a r r i v e  at t h e  same figure: 
The required f u e l  supply decreases by 6%. 

Now we can calculate  t h a t  portion of t h e  s t r u c t u r a l  weight increase by /3rc3
r e t r a c t i o n  of t h e  landing gear which i s  compensated by a decrease i n  f u e l  re

quirement. Thus, an increase i n  structu
r a l  weight by 1% of t h e  takeoff weight 
w i l l  be  compensated a t  a f u e l  requirement 
equal t o  17%of t h e  takeoff weight, i.e.,
E.. = 0.17, s ince 6% of 17% i s  1%.A 
1.5% increase i n  s t r u c t u r a l  weight w i l l  be 
compensated when Gf = 0.25. 

The normal f u e l  supply of modern 
turboprop hel icopters  i s  about 15%of t h e  
takeoff weight, with a m-um of X)-25%. 
It i s  obvious t h a t  i n s t a l l a t i o n  of a re
t r a c t a b l e  landing gear on modern heli

0 0.1 0.2 M j l  	 copters i s  expedient i f  t h e  increase i n  
s t r u c t u r a l  weight does not exceed 1- 1.5% 

Fig.3.51 Ratio N h ,  /Ga of Heli- of t h e  takeoff weight. I n  so doing, how-
copter f o r  Two Values of Para- ever, t h e  max5mum load-l i f t ing capacity 
s i t e  Drag Coefficient, as a of t h e  hel icopter  decreases i n  f l i g h t s  

Function of M i l  . with a smaller f u e l  supply. 

A 6% decrease of f u e l  supply and an 
equal increase i n  cruis ing speed lead t o  cheaper hauling on helicopters,  which 
should a l so  be taken i n t o  account by t h e  designer when attacking t h e  problem of 
landing-gear r e t r ac t ion .  

It should be  pointed out t h a t ,  on airplanes with a higher performance of 
t h e  l i f t i n g  system, a decrease i n  pa ras i t e  drag wi l l  lead t o  a greater  decrease 
i n  f u e l  consumption. Furthermore, regular a i r c r a f t  have greater  r e l a t i v e  f u e l  
supplies F, f o r  which reason r e t r a c t i o n  of t h e  landing gear on airplanes has 
become advantageous at  cruis ing speeds lower than those presently used f o r  he l i 
copters . 

- - _Section 5. Aerodynamic Calculation of -a Helicopter by t h e  Power Method 

I n  an aerodynamic design of a hel icopter  by t h e  power method, t h e  condition 
of  power balance i n  steady hel icopter  f l i g h t  i s  used: The power supplied t o  t h e  
r o t o r  i s  equal t o  t h e  sum of  a l l  power losses .  Thus, having determined a l l  
l o s s e s  of power - both of t h e  p r o f i l e  and induced type - produced i n  overcoming 
t h e  p a r a s i t e  drag of t h e  non l i f t i ng  p a r t s  as w e l l  as t h e  hel icopter  weight com
ponent i n  climbing, we f i n d  t h e  power which must b e  supplied t o  t h e  rotor .  

The formulas f o r  determining t h e  torque coeff ic ient  of a rotor ,  derived i n  
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Section 3, Chapter 11, express t h e  condition of t h e  power balance. The same 
Section contains formulas and graphs f o r  calculat ing t h e  p r o f i l e  and induced 
power l o s s e s  f o r  a ro to r .  

It i s  general  p rac t i ce  t o  determine a l l  power l o s s e s  approximately so as 
t o  simplify t h e  calculat ions;  therefore,  t h e  aerodynamic calculat ions of a he l i -

/3rcrc 
copter by t h e  power method cons t i t u t e s  an approximate method. 

1. Determination o f  Required Power Horizontal 
Helicopter Fl ight  

The required power of a hel icopter  i s  equal t o  t h e  sum of t h e  p r o f i l e  and 
induced lo s ses  at t h e  r o t o r  and t h e  l o s s  due t o  overcoming t h e  p a r a s i t e  drag of 
non l i f t i ng  p a r t s  of t h e  hel icopter  

The p r o f i l e  power l o s s  coeff ic ient  mpr i s  determined from spec ia l  graphs, 
o r  by t h e  approximate formula (3.75) from Chapter 11: 

1 
mpr =-4 ',pa, (1 +5v2)P+Amco . (5.2) 

I n  dimensional form, t h e  p r o f i l e  l o s ses  of a r o t o r  are calculated by t h e  
formula 

Npp=	-l -e mpra( O R ) ~ F ,  
(5.3)75E 2 

where 5 i s  t h e  engine power u t i l i z a t i o n  factor .  

The induced power loss  coeff ic ient  i s  determined by means of eq.(3.83) 
from Chapter I1 

while, i n  dimensional form, t h e  induced lo s ses  of a r o t o r  are determined by 

The induced l o s s e s  can a l s o  be  represented as t h e  product of t h e  force of 
t h e  induced drag of t h e  r o t o r  and t h e  f l y i n g  speed, or  as t h e  product of r o t o r  
lift and average downwash angle i n  t h e  r o t o r  plane and f ly ing  speed 

(5.6) 

determined by t h e  averageThe, average downwash angle i n  t h e  r o t o r  plane i s  
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induced ve loc i ty  of t h e  r o t o r  

It i s  obvious t h a t  eq.(5.5) i s  also obtained from eqs.(5.6) and (5.8). 

It follows from eq.(5.5) t h a t  t h e  induced power lo s ses  are d i r e c t l y  pro
port ional  t o  t h e  square of f l y i n g  weight, r e f e r r ed  t o  t h e  e f f ec t ive  l i n e a r  di
mension BD (Le. ,  t h e  span of t h e  l i f t i n g  system determines t h e  volume of air 
flowing through t h e  rotor) .  The induced l o s s e s  are inversely proportional t o  
flying speed and a i r  density. 

Consequently, upon an increase i n  hel icopter  weight without a proportional 
increase i n  r o t o r  diameter, t h e  induced l o s s e s  increase d t h  respect t o  a /3rc5 
quadratic re la t ion.  I f  t h e  load per u n i t  ro to r  disk area p = -F i s  retained, 

then t h e  induced lo s ses  w i l l  be d i r e c t l y  proportional t o  t h e  f ly ing  weight and 
1% n dt h e  r a t i o  -

G 
w i l l  remain unchanged. However, s ince increasing t h e  hel icopter  

tonnage causes p t o  increase ( f o r  decreasing t h e  r e l a t i v e  weight of t h e  ro to r ) ,  

N i n at h e  r a t i o  -G i s  greater  f o r  heavy hel icopters  than fo r  l i g h t  ones. 

For multirotor helicopters,  t h e  induced power lo s ses  a r e  determined as t h e  
sum of t h e  product of t h e  type of eq.(5.6), taken f o r  a l l  elements of t h e  lift
ing system: 

I n  eq.(5.9), t h e  downwash angles OCY are equal t o  t h e  sum of a l l  downwash 
angles f o r  each element of t h e  l i f t i n g  system: t h e  downwash angle due t o  self-
induction defined by eq.(5.8) and t h e  downwash angles due t o  interference*, 
whose expressions a r e  given i n  Sections 1and 4. 

A s  a t y p i c a l  example, l e t  us develop eq.(5.9) f o r  a fore-and-aft hel icopter ,  
using eqs.(4.14) and (4.18) f o r  t h e  downwash angle due t o  interference: 

* For t h e  terms containing t h e  downwash angles due t o  interference,  we can.t a k e  
G/B2 = 1. 



Having subst i tuted Acyl and Acy2 i n t o  t h e  expression f o r  Ni,,, we obtain 

If t h e  r o t o r s  have no excess, then t h e  graph. of nC0 i n  Fig.3.8 furnishes 
N,, = 1and 

The expression f o r  N i n d  shows t h a t ,  a t  nc0 = 1, t h e  quant i ty  N l n d  does not 
depend on t h e  d i s t r i b u t i o n  of hel icopter  weight between t h e  f ron t  and t a i l  
r o t o r s  and i s  determined only by t h e  sum of l i f ts  Yl + Y2 = G. Displacement of 
t h e  l i f t i n g  elements along t h e  d i r e c t i o n  of f l i g h t  does not influence t h e  quanti
t y  N i a d ,  so t h a t  t h e  expressions f o r  N l n d  coincide f o r  single-rotor and fore-
and-aft hel icopters  . 

However, it must be  borne i n  mind t h a t ,  f o r  a two-rotor hel icopter  of fore-
and-aft configuration, t h e  f l y i n g  weight i s  equal t o  t h e  t h r u s t  of t h e  t w o  r o t o r s  
and t h a t ,  at  i d e n t i c a l  load on t h e  r o t o r  disk area p, t h e  r a t i o  G/D i s  twice 
t h a t  of a single-rotor helicopter.  Therefore, as already indicated i n  Chapter I, 
N i n d  i s  by a f ac to r  of 4 grea te r  f o r  a fore-and-aft hel icopter  than fo r  a single-

r o t o r  type, and t h e  r a t i o  N i n d  i s  twice as large.  This explains why fore-and-
G 

aft hel icopters  have poorer f ly ing  c h a r a c t e r i s t i c s  i n  horizontal  f l i g h t  and why 
t h e  f lying cha rac t e r i s t i c s  d e t e r i o r a t e  more noticeably upon an increase i n  /346
f ly ing  weight. 

16@ G2 1 + N C OI f  Hco # 1, then N i n d  = 75nB45 
-i 

VAD” 2 
For t h e  side-by-side helicopter,  t h e  e f f ec t ive  t ransverse dimension, i.e., 

t h e  span of t h e  system, increases  with inc reas in  f ly ing  weight, which i s  ex-
.
pressed by t h e  f a c t  t h a t  N ~ < 0.~ A t  = 0 ?with t h e  r o t o r s  spaced far 

apart) ,  G i s  t h e  same f o r  t h e  side-by-side hel icopter  as f o r  t h e  single-

N i n dro to r  hel icopter ;  at  < 0, t h e  r a t i o  -
G 

of t h e  former i s  lower. 

Losses f o r  overcoming t h e  pa ras i t e  drag of t h e  non l i f t i ng  p a r t s  of a hel i 
copter a r e  determined by t h e  formula 

(5.10) 


o r , . i n  dimensionless form, 
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-
mw= -t%# “1 

where 

t ,
hf 

= - c ,  
- P7. (5.12) 

When calculat ing a hel icopter  with a wing, we wiL r e f e r  t h e  wing drag t o  
t h e  pa ras i t e  drag of t h e  helicopter,  i.e., 

where c,, i s  t h e  p a r a s i t e  drag coeff ic ient  of an i so l a t ed  wing; Acu, i s  t h e  down-
wash angle of t h e  wing due t o  interference of t h e  rotors .  

The interference of t h e  wing with t h e  r o t o r s  should be taken i n t o  account 
when determining t h e  t o t a l  rotor-downwash angles f o r  calculat ing N, n d  by 

5.9) . 
Thus, t h e  required engine power of a helicopter,  i n  conformity with 

eqs.(5.1), (5.3), (5.5), and (5.10), i s  equal t o  

I f  t h e  hel icopter  has a propeller,  then t h e  power balance i s  expressed i n  
t h e  form 

Nhf +*=N,+& +Npr. 

The aerodynamic calculat ions can be performed i n  dimensionless form. I n  
t h i s  case, t h e  coeff ic ient  of required torque i s  determined, i n  conformity with 
eqs.(5.4) and (5.11), by t h e  expression 

t’ B 

m =mpr+0.285 Y - t ,  v. (5.15)
‘h.f V h.f 

A s  a dimensionless form of calculation, convenient - f o r  example - f o r  

Nhi fcomparative calculations,  we can determine t h e  r a t i o  -G a  which, when using 

t h e  method of powers, i s  equal t o  

wh ere 
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G F height, and speed, t h e  value of t h e  productsA t  given p = T, C, = a, 
t,oMg and t,,. ,oM$ does not change upon a change i n  t h e  r o t o r  parameters LOR and. 
0. 	 Consequently, when studying t h e  e f f e c t  of r o t o r  parameters on t h e  magnitude 
of required power of t h e  helicopter,  eqs.(5.16) and (5.18) are transformed i n t o  

A an example of t h e  aerodynamic calculat ion by t h  power method, l e t  u s  
determine t h e  required power of t h e  Mi-4 helicopter.  The hel icopter  da t a  were 
given i n  Section 3. The calculat ion i s  performed by means of eq.(5.14) i n  
Table 3.14. For simplicity,  t h e  p r o f i l e  l o s s e s  w e r e  determined f r o m t h e  graphs 
i n  Figs.2.63 - 2.66, using eq.(6.10) of Chapter I1 f o r  converting t,; we can 
disregard t h e  differences i n  blade p r o f i l e s  f o r  Me = 0.6. 

TABIB 3-14. 
G =7200 kp ;0 =0,063; 0 R = 196 m b ;  E =0.84; 

1F=346m2; Mo=0.6; ty=0.138-;
A 

Npr=163.103 mp,.A; 

1 I:c,sNjnd =9000 
VA 
-; Npap= 1010 v3A; 

ty=n.i52; A = o , ~ o ~  

0.15 0.20 0.25 0.30 
106 141 176 212 
29.4 39.2 49 58.8 
4 .5  2.75 0 -3 
0.0088 0.0089 0.0092 0.0096 
3.04 3.08 3.18 3.32 

-0.003 14 -0.00565 -0.009 15 -0.0137 
0.0046 -0.00135 -0.0063 -0.01 17 

’0.00286 0.00306 0.0034 0.0037 
420 450 500 545 
338 253 203 168 
70 165 340 610 

828 868 1043 1323 

H = I O O O ~ ;  
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Helicopter Performance Data2. 	 Determination .of . - _ _ . _ - .-. . . _ _ _  

The dependence of required power on f ly ing  speed i s  found by means of t h e  
formulas given i n  Subsection 1. Maximum and plini" speeds, maximum range and 
endurance, cruis ing and economic speeds are then determined by t h e  method de
scribed i n  Section 3. 

During ascent, t h e  propulsive force of t h e  ro to r  increases by an amount 
equal t o  t h e  project ion of t h e  hel icopter  weight onto t h e  f l i g h t  d i r ec t ion  
G s i n  Q f l a P .  Consequently, t h e  engine power of t h e  hel icopter  increases by an 
amount of 

1 1N ---G sin O,LpV =-GV,
756 75E 

while t h e  t o t a l  power of t h e  engine i s  equal t o  

Here, N,,, represents  t h e  va r i a t ion  i n  po ten t i a l  energy of t he  hel icopter  
upon a change i n  i t s  f l i g h t  a l t i t u d e .  

The components N p r  , N,nd, and N, on v e r t i c a l  ascent and i n  horizontal  
f l i g h t  d i f f e r  somewhat i n  magnitude. However, f o r  approximate calculat ions we 
can disregard t h i s ,  and under t h i s  assumption eq.(5.21) can be represented i n  
t h e  form 

It i s  obvious t h a t  t h e  maxi-" v e r t i c a l  r a t e  of ascent of t h e  helicopter i s  

The discrepancy between eqs.(5.23) and (4.24) can be  explained by t h e  as
sumption t h a t  N I n d  and N,, a r e  equal i n  horizontal  f l i g h t  and v e r t i c a l  ascent. 
Equation (4.24) gives a more correct r e s u l t .  A t  f l i g h t  a l t i t u d e s  where t h e  
r o t o r  lift coeff ic ient  
t o  flow separation, we 
and 2.167, t h e  average 
determine VYmaxby t h e  

i s  l e s s  than t h e  max imum value permissible with respect 
can take, i n  conformity wi th  t h e  graphs i n  Figs.2.166 
value of t h e  propulsive eff ic iency as equal t o  0.95 and 
formula : 

A t  high f l i g h t  a l t i t u d e s  i n  a climbing regime, where t, = tYe,,t h e  speed 
should b e  determined from eq.(4.24).

vym a x  
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3. Relation between N P r ,  N i n a ,  and Npar during Horizontal- _  - . - - ~-
FlightofiSingle-Rp_tp_roker 

It i s  of i n t e r e s t  t o  examine t h e  r e l a t i o n  between individual  components of 
t h e  required power of a helicopter.  Since t h e  hel icopter  parameters determining 
N p r ,  N i n d ,  and Npar depend on t h e  gross  weight of t h e  hel icopter ,  we w i l l  give
da ta  f o r  hel icopters  of d i f f e r e n t  weight classes.  

Helicopters of d i f f e r e n t  weight c l a s ses  have a m a x i "  weight coeff ic ient  , 

at a d i f f e ren t  load per square meter of r o t o r  d i s k  area p and correspondingly 
have d i f f e r e n t  peripheral, speeds and s o l i d i t y  r a t i o s ,  s ince t h e  lift coeff ic ient  
t, limited i n  value by flow separation should b e  within 0.23 - 0.27 a t  t h e  dy
n d c  c e i l i n g  and 0.13 - 0.17 near t h e  ground. 	 Let us  assume t h a t  t h e  charac

t e r i s t i c  parameters f o r  a l i g h t  
hel icopter  with an all-up 
weight t o  G = 3000 kg are: 
Mo = 0.55, cr = 0.05; f o r  a 
medium hel icopter  G = 
7000 - 14,000 kg; Mo = 0.6, cr = 
= 0.07; for a heavy helicopter:  
Mo = 0.65 - 0.7, 0 = 0.09. 

The quant i ty  Cc,S of t h e  
hel icopter  r e fe r r ed  t o  gross 
weight decreases upon an in
crease i n  weight owing t o  t h e  
r e l a t i v e  decrease i n  t h e  ove ra l l  
s i z e  of t h e  hel icopter  (so-
cal led "scale effect").  How
ever, with an increase i n  G of a 
hel icopter  t h e  value of p w i l l  
increase,  while t h e  pa ras i t e  
drag coe f f i c i en t  referred t o  t h e  

-
' G sr o t o r  area, c, = -

G 
p, w i l l  

change l i t t l e  f o r  hel icopters  
of d i f f e r e n t  weight classes.  
L e t  u s  t ake  it t o  be  equal t o  
0.0085 f o r  l i g h t  and medium 
he l i cop te r s  and 0.0075 f o r  
heavy hel icopters .  

For calculat ions at  # 0, 
0 0.7 0.2 we use eqs.(5.4), (5.11), 

(5.12), and (5.16). The coeffi-
Fig.3.52 Quantity Nh. f / G  and Relation cient  mpr i s  found from t h e  
between Components of Required Power of  graph i n  Figs.2.63 - 2.70 as a 
Helicopters of Different Weight Classes. function of t h e  coe f f i c i en t s  t, 

and t,. A t  V = 0. we  use 
eq.(8'127) and the-graph i n  
Fig.2.174. 
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The calculat ion r e s u l t s  axe shown i n  Fig.3.52. Owing t o  an increase i n  p, 

Nh fU, Me, t h e  quant i ty  -
G 

i n  hovering f l i g h t  i s  much greater  fo r  heavy hel i 

copters than f o r  l i g h t  helicopters.  

I n  forward f l i g h t ,  eq.(5.16) can be  written i n  t h e  form /350 

Nh fThis expression ind ica t e s  t h a t ,  a t  high f ly ing  speeds, t h e  value of -G y 

despi te  t h e  increase i n  p and Mo, i s  lower f o r  heavy hel icopters  than fo r  l i g h t  

ones owing t o  a decrease i n  t h e  r a t i o  -.c c , s  
G 

I f  t h e  avai lable  power of hel icopters  i s  equal t o  t h e  required power i n  
hovering f l i g h t ,  then t h e  average value of t h e  m a x i "  speeds of hel icopters  of 
d i f f e ren t  weight c lasses  i s  equal t o  210 km/hr ( M f l  = 0.17), 260 km/hr ( M f l  = 
= 0.21), and 310 km/hr (Mf, = 0.25). 

The graph shows t h a t  t h e  p r o f i l e  power lo s ses , in  percentage of t h e  power of 
horizontal  f l i g h t ,  are 22 - 27% at = 0 and 50% at average f ly ing  speeds, while 
they a re  45% fo r  l i g h t  and medium hel icopters  and 55% and more fo r  heavy he l i 
copters a t  vmax.It w i l l  be  r eca l l ed  t h a t  t h e  graphs of mPr i n  Figs.2.63 - 2.70 
pe r t a in  t o  a ro to r  of average blade manufacturing qua l i t y  and t h a t  cXp of t h e  
p r o f i l e  increased by AcXp = 0.002. 

! b e  induced power lo s ses  amount t o  73 - 78% i n  hovering f l i g h t ,  40% at 
average f lying speeds, and only 13%at  max imum speed. 

Losses due t o  pa ras i t e  drag amount t o  15 - 10% at average f lying speeds and 
t o  40 - 35% a t  max imum speed. 

Thus, it t u r n s  out t h a t ,  although hel icopters  of d i f f e ren t  weight c lasses  
d i f f e r  i n  speed range, i n  load per square meter of ro to r  disk area, i n  peri
pheral  speed, and i n  r e l a t i v e  pa ras i t e  drag, t h e  power lo s ses  i n  f r ac t ions  of 
t h e  required power show a d i s t r i b u t i o n  t h a t  i s  p rac t i ca l ly  t h e  same at corre
sponding speeds. 

The above data  permit an approximate estimate as t o  t h e  degree of va r i a t ion  
i n  required power of a hel icopter  on introduction of various modifications i n  
t h e  hel icopter  design. For example, an improvement i n b l a d e  finishmay cause i t s  
p r o f i l e  drag t o  decrease by 23%; consequently, t h e  required power of t h e  hel i 
copter w i l l  decrease by 10% at  medium and high speeds. In  hovering f l i g h t ,  t h e  
required power diminishes by 5%, which i s  very subs t an t i a l  since, i n  t h i s  case, 
t h e  r e l a t i v e  eff ic iency of t h e  r o t o r  increases by a l i k e  quantity while t h e  

2m a x i "  t h r u s t  of t h e  r o t o r  increases by -3 
2 

X 5 = 3.3% [ the  coeff ic ient  -2 i s  
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o b t a h e d  i n  accordance with eq.(S.34) of Chapt.II]. 

Upon a change i n  blade shape, t h e  induced losses  of t h e  ro to r  may vary 
within severa l  percent. It i s  obvious t h a t  t h i s  subs tan t ia l ly  a f f e c t s  t h e  m a x i 
mum t h r u s t  of t h e  ro to r  i n  hovering f l i g h t  but p rac t i ca l ly  causes no change i n  
t h e  required power at high f ly ing  speeds. The change i n  blade shape at  la rge  MQ 
s ign i f i can t ly  changes t h e  ro to r  p ro f i l e  losses  ( see  Sect .3, Chapt .a). 

A 25% decrease i n  paras i te  drag of a hel icopter  leads t o  a 3%decrease i n  
required power a t  medium f ly ing  speeds and t o  a 10% decrease close t o  maximum 
speed; t h i s  y i e lds  an increase i n  m a x i ”  speed by 15 - 20 km/hr. 



CHAPm IV 

ROTOR FLUTTER 

The phenomenon of r o t o r  f l u t t e r  has been a pe r s i s t en t  companion of t h e  de
velopment of hel icopter  construction. Numerous cases are known of t h e  occur
rence of f l u t t e r  i n  experimental hel icopters  during t h e i r  first ground tes t  or  
during f l i g h t  tests. Cases of t h e  appearance of f l u t t e r  have been observed a l so  
during operation of hel icopters  t h a t  had already undergone a l l  t e s t  stages. 
Rotor f l u t t e r - h a s  been t h e  cause of a number of accidents. 

The g rea t e s t  number of cases of f l u t t e r  was observed at  a time when t h i s  
phenomenon had not ye t  been adequately studied and due a t t e n t i o n  had not ye t  
been given t o  i t s  investigation. A t  present, f l u t t e r  has been studied in. great  
d e t a i l ,  and the re  a r e  numerous means f o r  completely preventing i t s  appearance. 
However, t h e  hel icopter  designer must keep constant t r ack  of t h e  ro to r  para
meters and hold them t o  l i m i t s  t h a t  ensure t h e  necessary safety margin before 
onset of f l u t t e r .  However, t hese  parameters vary constantly with design and 
technological modifications made i n  designing and plant t e s t i n g  of a helicopter 
and during i ts  s e r i e s  production. Such va r i a t ions  continue even when t h e  hel i 
copter has been placed i n  service. This i s  due t o  various circumstances. The 
most common case i s  de te r io ra t ion  of t h e  individual blade balance, e i t h e r  due t o  
penetration of moisture i n t o  t h e  blade or due t o  i t s  increase i n  weight during 
r epa i r  . 

Experience shows t h a t  even t h e  s l i g h t e s t  l e t t i n g  up i n  control of t h e  ro to r  
parameters w i l l  irmnediately cause appearance of f l u t t e r .  This i s  primarily ex
plained by t h e  f a c t  t h a t  t h e  designer s t r i v e s  t o  reduce t h e  margin before onset 
of f l u t t e r  t o  a minimum since the  expenditures produced by an increase i n  r o t o r  
weight a r e  generally proportional t o  t h e  magnitude of t h i s  margin. I ts  increase 
requires  a corresponding increase i n  blade weight or i n  weight of t h e  s t r u c t u r a l  
elements of t h e  ro to r  control  system. 

A s  a r e s u l t ,  t h e  most economic design of a helicopter keeps these  para
meters at  t h e  minimum l e v e l  allowable by t h e  f l u t t e r  l imi t s .  Even t h e i r  s l i g h t e s t  
va r i a t ion  produced by some unforeseen happening may lead t o  f l u t t e r .  The blade 
parameters, a t  a l l  times, are kept close t o  t h e  f l u t t e r  l i m i t .  

This circumstance necessitated taking r e l i a b l e  measures t o  keep t h e  f l u t t e r  
cha rac t e r i s t i c s  of a ro to r  within l i m i t s  t h a t  would ensure prescribed margins /352
before onset of f l u t t e r ,  which, as a ru l e ,  are rigorously standardized. These 
measures should be  enforced both during production and service of t h e  helicopter.  
I n  addition, each hel icopter  must be  subjected t o  spec ia l  ground tests t o  check 
f o r  f l u t t e r  i n  t h e  f i n a l  inspection. Experience gained i n  m a s s  use of helicop
ters  confirms t h e  r e l i a b i l i t y  of t h i s  inspection system. We can consider t h a t ,  
a t  present, conditions have been created t h a t  preclude t h e  p o s s i b i l i t y  of acci
dents  owing t o  f lu t te r .  Actually, cases of unforeseen occurrence of f l u t t e r  
have almost completely stopped 

379 



I l l l l l  I I1 I I I 

The achievement of t h e  present favorable s ta te  as regards f l u t t e r  was pre
ceded by extensive t h e o r e t i c a l  and experimental invest igat ions.  

Valuable contributions t o  t h e  development of t h e  theory of f l u t t e r  were 
made by P.M.Riz, L.N.Grcdko, V.D.Ilfichev, M.S.Galkin, A.I.Pozhalostin, F.L. 
Zarzhevskaya, M .E .Lipskaya, V.M .Pchelkin, and many other engineers. Numerous 
papers by foreign authors are a l s o  wel l  known [see (Ref.39 - 42) ] .  

Results of great  importance f o r  t h e  development of t h e  theory were obtained 
i n  f l i g h t  t e s t s  on f l u t t e r  carr ied out by S.B.Bren and A.A.Dokuchayev and per
formed by t h e  p i l o t  V .V .Vinit skiy . 

Many highly useful  r e s u l t s  were obtained by L.S.Popov, B.A.Kirshteyn, 
N.V.Lebedev, and B.B.Maxtynov i n  t e s t s  of dynamically similar models. 

A l l  t h i s  work l e d  t o  r a the r  c lear  a.nd d i s t i n c t  corxepts concerning t h e  phe
nomenon of f l u t t e r  which permitted developing new blades with t h e  necessary 
parameter margins, without addi t ional  modifications a f t e r  tests, as had of ten 
been necessary before. However, f o r  t h i s  it was  necessary, i n  designing t h e  
blade, t o  perform numerous r a the r  laborious calculat ions.  This Chapter w i l l  be 
devoted mainly t o  an account of t h e  method of t hese  calculat ions.  

I n  wri t ing t h i s  Chapter F.L.Zaszhevskaya was of considerable help t o  t h e  
author, f o r  which t h e  author extends h i s  g r a t i t u t e .  

Section 1. Basic Assumptions and Character is t ics  of an 
Approach t o  Flutt-er Ca1culatio.n 

1. Bending and Torsional Vibrations of t h e  Blade. 
Possible Cases of S t a b i l i t y  Loss 

The theory of r o t o r  f l u t t e r  i s  developed on t h e  b a s i s  of an invest igat ion 
of bending and t o r s i o n a l  vibrat ions of blades during t h e i r  r o t a t i o n  i n  a i r .  

When solving t h e  problem of bending and t o r s i o n a l  vibrat ions of blades i n  
air ,  t h e  designer i s  in t e re s t ed  primarily i n  two q u a l i t a t i v e l y  d i f f e ren t  prob
lems. The first of them reduces t o  a determination of steady bending and to r 
s iona l  vibrat ions of t h e  blade, occurring i n  a l l  hel icopter  f l i g h t  regimes. 
This problem requ i r e s  t h e  development of spec ia l  calculat ion methods which are 
a fu r the r  development of calculat ion methods f o r  forced vibrat ions of a blade 
and should, i n  pa r t i cu la r ,  answer t h e  problem of t h e  e f f ec t  of t o r s i o n a l  de
formations of a blade on i t s  bending vibrat ions and, accordingly, on t h e  magni
tude of var iable  s t r e s s e s  from blade bending. The second question i s  associ
ated with a determination of t h e  s t a b i l i t y  of blade motion. Usually, purely 
bending vibrat ions of blades a r e  s table .  Loss  of t h e i r  s t a b i l i t y  occurs only 
i n  flow-sepaxation regimes. 

I n  studying bending and to r s iona l  vibrat ions we f i n d  t h a t ,  at  c e r t a i n  ro to r  
parameters, t h e r e  i s  a loss of s t a b i l i t y  of motion of blades which leads t o  
f l u t t e r  or  divergence. The phenomenon i n  which blades undergo o s c i l l a t o r y  in
s t a b i l i t y  i s  cal led f l u t t e r ,  whereas t h e  phenomenon of aperiodic i n s t a b i l i t y  of 
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blade motion i s  cal led divergence. The most common of  these  two phenomena 
i n  pract ice  i s  r o t o r ,  f l u t t e r .  Therefore, when examining bending and t o r s i o n a l  

/353 
vibrat ions of a blade, t h e  designer i s  more interested i n  t h e  conditions leading 
t o  f l u t t e r .  

.2. 	 Effect of B l a d e  Attachment t o  Hub and t h e  P o s s i b i l i t y  
of Theoret icarInvest . igat ion o f  g u t t e r  of an. - .  -

Is6lated-Blade- -

The r e s u l t s  of calculat ing f l u t t e r  largely depend on t h e  design configura
t i o n  of t h e  r o t o r  and primarily on t h e  conditions of blade attachment t o  t h e  
root,  i.e., on hub design and r o t o r  control  system. The cha rac t e r i s t i c s  of 
blade attachment influence t h e  boundary conditions of t h e  problem and hence t h e  
design formulas f o r  determining f l u t t e r  parameters. 

The most common type of r o t o r  with individual hinge'attachment of each 
blade t o  t h e  hub, with t h e  control  exercised over an automatic pi tch control  
mechanism, w i l l  be  examined below when presenting t h e  method of calculat ing 
f l u t t e r .  For r o t o r s  with a r i g i d  and universal  j o in t  attachment of t h e  blade t o  
t h e  hub or with some other type of control, t h e  approach t o  f l u t t e r  calculat ion 
remains t h e  same. However, t h e  conditions under which f l u t t e r  occurs may change 
extensively. 

F l u t t e r  i s  g rea t ly  influenced by t h e  design of t h e  system control l ing t h e  
angle of blade s e t t i n g  and, primaxily, by t h e  design of t h e  automatic pi tch 
control. The automatic p i t ch  control  couples t h e  o s c i l l a t i o n s  of t h e  d i f f e ren t  
ro to r  blades. Thus, as soon as t h i s  couple becomes s u f f i c i e n t l y  strong - and 
t h i s  generally t akes  place on r e a l  hel icopters  - it i s  impossible t o  invest igate  
t h e  f l u t t e r  of an i so l a t ed  blade. It i s  then necessary t o  study t h e  f l u t t e r  of 
t h e  ent i re  ro to r  a s  a whole. 

In  a l l  p r a c t i c a l  cases, t h e r e  occurs only f l u t t e r  of t h e  e n t i r e  ro to r  as a 
whole, when each advancing blade of t h e  r o t o r  dupl icates  t h e  motion of  t h e  re
t r e a t i n g  blade with some lag.  F l u t t e r  of a s ingle  blade has never been noted. 

However, i n  many cases t h e  invest igat ion of f l u t t e r  of a r o t o r  as a whole 
can be reduced t o  calculat ion of t h e  vibrat ions of an i so l a t ed  blade. Therefore, 
calculat ion of t h e  f l u t t e r  of an i so l a t ed  blade of ten furnishes a s u f f i c i e n t l y  
comprehensive answer so t h a t  we can frequently r e s t r i c t  ourselves t o  t h i s  r e s u l t  
i n  practice.  In  so doing, however, it i s  important t o  properly prescribe t h e  
s t i f f n e s s  of t h e  i so l a t ed  blade control. This question wil l  b e  taken up i n  
greater  d e t a i l  i n  Section 4. 

3 .  	Dif fe ren t  Types of Flufier Differing with Respect t o  
Bl-&-e-Vibrat.__ 

The problem of determining t h e  conditions f o r  occurrence of f l u t t e r  i s  
solved usual ly  by means of d i f f e r e n t i a l  equations of bending and t o r s i o n a l  
(binary) vibrat ions of t h e  blade (see Sect.6). These equations permit obtaining 
t h e  parameters of d i f f e ren t  types of f l u t t e r  which d i f f e r  by t h e  blade vibrat ion 
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modes. The c r i t i c a l  rpn and other parameters of f l u t t e r  obtained from solving 
t h e s e  equations a r e  q u i t e  complex functions of t h e  i n i t i a l  r o t o r  parameters. 
Therefore, an analysis  of t hese  r e l a t i o n s  i s  conveniently begun with t h e  simplest 
pa r t i cu la r  case. I n  f a c t ,  f l u t t e r  i n  which blade v ib ra t ion  i n  t h e  flapping plane 
occurs mainly with t h e  fundamental v ib ra t ion  mode of t h e  blade i s  most wide
spread i n  practice.  Bending s t r a i n s  of t h e  blade i n  t h i s  case have t h e  charac
t e r  of an admixture t o  t h e  v ib ra t ion  mode and do not determine t h e  phenomenon. /354 
Therefore, i n  t h i s  case a l l  r e l a t i o n s  of i n t e r e s t  t o  t h e  designer can be  ob
tained from examination of a r o t o r  model with blades t h a t  have absolute flexural 
r i g i d i t y  and execute flapping vibrat ions about t h e  flapping hinges. This type 
of f l u t t e r  w i l l  henceforth be cal led "flapping f lu t te r"  i n  contrast  t o  "bending 
f l u t t e r " ,  whose c h a r a c t e r i s t i c s  cannot be  determined without regard f o r  t h e  
f l e x u r a l  deformations of t h e  blade. 

4. 	 Character is t ics  of-the Torsional Vibration Modes of 
a Blade and Possible Correlated Assumptions 

The r e l a t i o n  between t o r s i o n a l  r i g i d i t y  of t h e  blade and t h e  r o t o r  control  
system i n  most modern hel icopters  i s  such t h a t ,  i n  t o r s i o n a l  vibrations,  t h e  
blade t u r n s  mainly as a consequence of deformations of t h e  controls  (Fig.4.1). 

io 
1.0 

0 

Fig.4.l Typical Natural Vibration Modes 
of a Blade i n  Torsion ( t h e  Curves Refer 

t o  Three Different Helicopters). 

I n  t h i s  case, t h e  s e t t i n g  angle cp 
of t h e  blade element over i t s  
length, especial ly  at t h e  most 
e f f ec t ive  portion from F = 0.5 t o  
t h e  blade t i p ,  vary so in s ign i f i 
cant ly  t h a t  i n  f l u t t e r  calcula
t i o n s  we  can s e t ,  with a su f f i 
c i en t  degree of accuracy, 

cp =const. (1.1) 

The acceptance of t h i s  l a w  
of angle d i s t r i b u t i o n  cp i s  equi
valent t o  t h e  assumption t h a t  t h e  
blade i s  absolutely r i g i d  i n  
t o r s i o n  and executes t o r s i o n a l  
vibrat ions only as a consequence 
of deformations of t h e  control. 

To have t h i s  assumption lead t o  t h e  smallest possible error ,  we w i l l  introduce 
i n t o  t h e  calculat ions t h e  equivalent value of t h e  hinge s t i f f n e s s  of t h e  con
t r o l s  which takes  i n t o  account t h e  e l a s t i c i t y  of t h e  blade i t se l f .  

Calculations made t o  substant ia te  t h i s  assumption show t h a t  it can be  suc
cessful ly  used f o r  a l l  r o t o r s  f o r  which t h e  values of t h e  angle (Y < 0.4 - 0.5 
(see Fig.k.l), which probably encompasses almost a l l  ex i s t ing  helicopters.  

It should a l so  be  noted t h a t  t h e  described character of t h e  r e l a t i o n  be
tween to r s iona l  r i g i d i t y  of t h e  blade and i t s  attachment causes t h e  axis about 
which t h e  blade elements i n  t o r s i o n a l  vibrat ions are turning t o  come close t o  
t h e  axis of t h e  axial hinge. Hence, t h e  posi t ion of  t h e  axis of blade s t i f f n e s s  
i n  t h e  examined cross sect ion l o s e s  i ts  significance.  This circumstance permits 
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t h e  approximate assumption t h a t ,  i n  t o r s i o n a l  vibrations,  t h e  blade elements 
t u r n  about t h e  axial hinge. 

5. Assumptions on Blade Osci l la t ions i n  t h e  Plane of Rotation /355 
There e x i s t s  a d e f i n i t e  coupling between blade vibrat ions i n  t h e  flapping 

plane and i n  t h e  plane of rotat ion.  This coupling i s  due t o  two types of forces.  
The stronger i s  t h e  coupling created by Coriolis 
forces.  The weaker i s  t h e  coupling due t o  aero
dynamic forces. 

Let u s  examine i n  some d e t a i l  t h e  forces 
-yLw	

coupling vibrat ions i n  t h e  flapping plane and i n  
t h e  plane of rotat ion.  

cr During vibrat ions i n  t h e  flapping plane, 
Coriolis forces  a r i s e  which act  i n  t h e  plane of 
r o t  a tion 

Q, = -2a,yy'm, (1.2) 

x& where
J: -

r 5 = r a t e  of displacement of t he  blade ele\qk=-2wyfm ments i n  t h e  flapping plane (Fig.4.2); 
y'= angle of i nc l ina t ion  of t h e  blade axis 

Fig.4.2 Coriolis Forces upon def lect ion o f  t h e  blade from t h e  
Acting on a Vibrating plane of ro t a t ion ;  

Blade. m = m a s s  of t h e  blade element. 

During blade vibrat ion i n  t h e  plane of rota
t i on ,  var iable  Coriol is  forces  a r e  s e t  up which act  i n  a d i r ec t ion  close t o  t h e  
d i r ec t ion  o f  centr i fugal  forces.  These forces  s t r e t ch  t h e  blade and therefore  
should be taken i n t o  account i n  d i f f e r e n t i a l  equations of blade vibrations,  
along with centr i fugal  forces.  

The Coriolis forces  ac t ing  i n  t h e  d i r ec t ion  of t h e  blade axis can be  deter
mined by t h e  formula 

NK =-2oxm, 
(1.3) 

where f is  t h e  r a t e  of displacement of t h e  blade elements during vibrat ions of 
t h e  blade i n  t h e  plane of r o t a t i o n  (Fig.4.2). 

The Coriol is  forces  determined by eqs.(l.2) and (1.3) r e l a t e  t h e  blade v i 
b ra t ions  i n  t h e  flapping plane and plane of ro t a t ion .  

The aerodynamic forces  create  an analogous coupling. 

If, i n  t h e  flapping plane, var iable  aerodynamic forces  associated with a 
change i n  t h e  value cy a c t  on t h e  blade, then t h e  component of these forces  
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Q = @ T  (1.4) 

w i l l  cause blade v ib ra t ion  i n  t h e  plane of r o t a t i o n  [ the  value of $ enter ing 
eq. (1.4) determines t h e  angle of inflow] . 

During blade v ib ra t ion  i n  t h e  plane of ro t a t ion ,  t h e  aerodynamic forces  
ac t ing  i n  t h e  flapping plane will vary as a function of  any va r i a t ion  i n  t h e  
relative veloci ty  U. 

Thus, t h e  presence of t h e  described couples r equ i r e s  t h a t  blade vibrat ions 
i n  t h e  plane of r o t a t i o n  be  taken i n t o  account a l s o  i n  f l u t t e r  calculations.  
However, calculat ions and experiments show t h a t  blade vibrat ions i n  t h e  plane of 
r o t a t i o n  have an in s ign i f i can t  e f f ec t  on t h e  c r i t i c a l  numbers of revolut ion of 
f l u t t e r .  Therefore, i n  a l l  calculat ions of f l u t t e r ,  blade vibrat ion i n  t h e  
plane of r o t a t i o n  can be disregarded. We must a l s o  t a k e  i n t o  account t h a t ,  i n  
t h e  absence of t h r u s t  at  t h e  blade, when t h e  angle of inflow Q i s  equal t o  zero 
(such a posi t ion i s  possible f o r  an untwisted f l a t  blade) and t h e  blade i s  not 
deflected from t h e  plane of r o t a t i o n  so t h a t  y '  = 0, t h e  terms of t h e  coupling /356
determined by eqs.(l.2) and (1.4) are absent. Thus, i n  t h i s  case t h e r e  i s  no 
coupling between vibrat ions i n  t h e  indicated plane. 

I6 .Determination- of Aerodynamic Forces. .Acting on 
a Vibrating P r o f i l e  

The occurrence of diverging vibrat ions i n  f l u t t e r  i s  caused by aerodynamic 
forces  ac t ing  on t h e  blade prof i le .  Therefore, t h e  b a s i s  on which these  aerody
namic forces  are determined i s  very important. 

I n  performing p r a c t i c a l  calculat ions of f l u t t e r ,  t h e  method of determining 
aerodynamic forces  based on t h e  "steady-state hypothesis" i s  widely employed. 
I n  t h i s  hypothesis, it i s  assumed t h a t ,  during v ib ra t ions  of t h e  prof i le ,  it i s  
acted on by loads t h a t  are t h e  same as those created i f  t h e  flow pa t t e rn  formed 
at  a given in s t an t  of time w e r e  t o  be  time-invariant. The use of t h e  "steady
s t a t e  hypothesis" f o r  calculat ing r o t o r  f l u t t e r  y i e l d s  qu i t e  s a t i s f a c t o r y  re
s u l t s  which a r e  i n  good agreement with experiments. Therefore, our e n t i r e  ac
count w i l l  be  based on t h e  r e s u l t s  obtained under appl icat ion of t h e  "steady
state hypothesis". Refinements t h a t  can be made by t ak ing  unsteady flow i n t o  
consideration will not be  examined here. 

The use of t h e  "steady-state hypothesis" leads t o  t h e  following well-known 
formulas [see f o r  example (Ref .29 ,  32, 33)] f o r  determining aerodynamic loads 
ac t ing  on-a v ib ra t ing  p r o f i l e  of u n i t  length: 
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where 
T = aerodynamic force per Unit length act ing on t h e  vibrat ing p r o f i l e  

i n  a d i r ec t ion  perpendicular t o  t h e  r e l a t i v e  flow veloci ty  U;  
gger= t o r s i o n a l  moment per un i t  length of aerodynamic forces  act ing rela

t ive  t o  t h e  axis passing at a dis tance xg from t h e  p r o f i l e  leading 
edge; 

cp = angle of blade p r o f i l e  s e t t i n g  i n  t h e  examined sections;  
$ = ra te  of displacement of t h e  blade elements i n  t h e  flapping plane; 
xo = distance between p r o f i l e  leading edge and f l exura l  a x i s ,  i.e., up 

t o  t h e  point where t h e  elements of t h e  blade start twist ing under 
appl icat ion of a torque; 

of = distance between p r o f i l e  focus or  a.c. and flexural axis of t h e  
blade; i n  some formulas below [see eqs.(2.13) and (5.2)] we w i l l  

(Jfa l s o  use t h e  designation of% -R *  
Equations (1.5) are obtained f o r  a plane-parallel flow. Therefore, t h e i r  

use f o r  determining t h e  hel icopter  blade loading i s  approximate a l s o  i n  t h i s  
sense, since t h e  flow past  t h e  blade markedly d i f f e r s  from plane-parallel. 

It i s  convenient t o  make a s l i g h t  transformation of eqs.(l.5) when using /357
them f o r  t h e  hel icopter  blade, by introducing ce r t a in  addi t ional  s implif icat ions 
and refinements. The r e l a t i v e  veloci ty  U of t h e  flow past t h e  p r o f i l e  can be 
approximately equated t o  i t s  component U, p a r a l l e l  t o  t h e  plane of r o t a t i o n  of 
t h e  rotor .  It must a l so  be considered t h a t  t h e  other component of t h i s  veloci ty
U, directed perpendicular t o  t h e  veloci ty  U, d i f f e r s  from $ by t h e  amount of t h e  
veloci ty  of t h e  a i r  stream flowing through t h e  rotor .  Therefore. f o r  a hel i 

(1.6)
n

",e,= _ _16 eb3U,+- of T .  

Fig.4.3 Posit ion of t h e  Aero- Therefore, it can be neglected without re-
dynamic Center on t h e  Mach s u l ting i n  substant i a l  e r r o r s. 
Number, for a NACA 230 Profi le .  

I n  calculat ions of f l u t t e r  under condi
t i o n s  of axial flow past  t h e  r o t o r  i n  hover

ing f l i g h t  or  i n  operation of t h e  rotor under ground conditions, t h e  aerodynamic 
loads can be determined on t h e  b a s i s  of t h e  l i nea r  dependence of t h e  aerodynamic 
coeff ic ient  on t h e  angle of a t tack.  This assumption i s  a l s o  included i n  
eqs.(l.5) and (.16). However, under conditions of forward f l i g h t ,  especial ly  i n  
regimes close t o  s t a l l i n g ,  t h i s  assumption becomes qu i t e  inaccurate. Therefore, 
a method permitting r e j e c t i o n  of t h i s  assumption w i l l  be  discussed below i n  Sec
t i o n  7. Refined formulas for  calculat ing aerodynamic loads f o r  t h i s  case w i l l  
a l so  be  derived i n  t h e  same Section. 
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A s  i s  known, t h e  Mach number M has a strong influence on t h e  aerodynamic 
cha rac t e r i s t i c s  of a p ro f i l e .  To calculate  f l u t t e r  of a hel icopter  r o t o r  it i s  
especial ly  important t h a t  M have a subs t an t i a l  e f f e c t  on t h e  posi t ion of t h e  
p r o f i l e  focus which, as w i l l  be shown below, g rea t ly  a f f e c t s  t h e  c r i t i c a l  revo
lu t ions  of f l u t t e r .  Therefore, i n  calculat ions f o r  each blade radius,  we must 
t ake  t h e  posi t ion of t h e  aerodynamic center corresponding t o  t h e  l o c a l  value of 
M at t h i s  radius.  Figure 4.3 gives t h e  posi t ion of  t h e  a.c. as a function of t h e  
Mach nunber, f o r  a NACA 230 prof i le .  

When calculat ing f l u t t e r  i n  forward f l i g h t  it must be  taken i n t o  account 
t h a t  t h e  l o c a l  Mach number va r i e s  r e l a t i v e  t o  t h e  r o t o r  azimuth. This, i n  turn,  
leads t o  f luc tua t ions  of t h e  posi t ion of t h e  p r o f i l e  focus during each revolu
t i o n  of t h e  blade. I n  approximate calculations,  t h i s  circumstance can be  disre
garded. 

When using t h e  calculat ion method presented i n  Section 7, f luctuat ions of 
t h e  a.c. relative t o  azimuth can be accounted f o r  without d i f f i c u l t y ,  which i s  
one of t h e  important advantages of t h i s  method. 

Section 2. 	 Flapping F l g t t  er- of -an s o l a t e d  Blade with /358
A x i a l  Flow past  t h e  Rotor 

1. Blade Model 

The parameters of f lapping f l u t t e r  can be determined with su f f i c i en t  re l i 
a b i l i t y  from a calculat ion based on t h e  following assumptions: 

1) The blade i s  absolutely r i g i d  i n  bending and v ib ra t e s  i n  t h e  flapping 

F e a t h e r i n g  hinge axis 


Fig.4.4 Blade Model Used i n  t h e  
Calculation. 

plane l i k e  a so l id  body as a 
consequence of turning about t h e  
flapping hinge. 

2) The blade i s  absolutely 
r i g i d  a l so  i n  to r s ion  and exe
cutes  t o r s i o n a l  vibrations,  
r o t a t i n g  l i k e  a so l id  body about 
t h e  feather ing hinge of t h e  hub 
as a consequence of deformation 
of t h e  control,  presence o f  an 
automatic p i t ch  control  mecha
nism, and i n s t a l l a t i o n  of a f lap
ping compensator. 

These assumptions lead t o  
t h e  p o s s i b i l i t y  of calculat ing 
a blade model with two degrees 
of freedom, determined by t h e  

var iables  p and cp (Fig.k.4). This model i s  usual ly  cal led "semirigid". 
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_ _ _ _  _ _ _2. Derivation of D i f f e ren t i a l  Equations of F l u t t e r  

I n  t h i s  Subsection we w i l l  derive t h e  d i f f e r e n t i a l  equations of f l u t t e r  f o r  
a model of an i so l a t ed  blade. It w i l l  be  shown below, i n  Section 4, t h a t  i n  many 
cases t h e  t h e o r e t i c a l  invest igat ions of f l u t t e r  of a r o t o r  as a whole can be re
duced t o  an examination of t h e  f l u t t e r  of an isolated blade. Therefore, it i s  
expedient t o  evaluate f i rs t  t h e  e f f e c t  of various f a c t o r s  on t h e  f l u t t e r  of an 
isolated blade and t o  determine l a t e r  ( i n  Sect .4) i n  what manner and i n  what 
cases these  r e s u l t s  can be  extrapolated t o  a r o t o r  as a whole. 

Let us  construct; t h e  d i f f e r e n t i a l  equations of torsional-flapping vibrat ions 
of an i so l a t ed  blade. These equations can be derived by equating t o  zero t h e  
sum of t h e  moment of a l l  forces  act ing on t h e  blade during i t s  vibrat ions rela
t i v e  t o  t h e  flapping and feathering hinges of t h e  hub. A s  usual, we will examine 
s m a l l  v ibrat ions f o r  which a l l  terms of t h e  second order r e l a t i v e  t o  s m a l l  dis
placements of t h e  blade can be neglected. 

To avoid needless complication of t h e  equations, l e t  u s  assume t h a t  t h e  
distance from t h e  axis of r o t a t i o n  t o  t h e  flapping hinge i s  equal t o  zero (ro = 
= 0). Then, t h e  condition of equilibrium o f  t h e  moments o f  a l l  forces  r e l a t i v e  
t o  t h e  flapping hinge can be wri t ten as 

R R Rs m (rp- a i )  rdr +w2 s m (r? - a?) rdr =s T rdr, 
0 0 0 

where /359
B = angle of r o t a t i o n  of  t h e  blade r e l a t i v e  t o  t h e  flapping hinge; 
cp = angle of r o t a t i o n  of t h e  blade r e l a t i v e  t o  t h e  feathering hinge; 
m = m a s s  per un i t  length of t h e  blade element; 
o = distance from t h e  axis of t h e  feather ing hinge t o  t h e  center of 

gravi ty  of t h e  blade element; 
T = aerodynamic load per un i t  length determined by eq.(1.6). 

The i n t e g r a l s  entering t h e  left-hand s ide of eq.(2.1) can be expressed i n  
terms of t he  moments o f  i n e r t i a  of t h e  blade r e l a t i v e  t o  t h e  horizontal  hinge 
Ih.h and t h e  centr i fugal  moment of i n e r t i a  of t h e  blade I,f : 

R 

fhsh=jmr2dr, 

K 
f = jmradr. 
cf 0 

On introducing these  designations i n t o  eq.( 2.1) and r e f e r r i n g  a l l  terms of 
t h i s  equation t o  , t h e  expression can be r ewr i t t en  i n  t h e  form 

Re +w2(3--!& ((p+w2?) =1 1T rdr. ( 2 . 3 )
%h 'h.h 

For t h e  regime of axial flow past  t h e  ro to r ,  t h e  v e l o c i t i e s  entering 



eq.(1.6) can be equated t o  

U, =or, 


U,=oRA-rP, I (2.4) 


where A is  t h e  relative rate of flow through t h e  rotor. 

Subst i tut ing eqs.(2.4) i n t o  eq.(1.6), and then eq.(1.6) i n t o  eq.(2.3), we 
obtain 

(2.5) 

where yo i s  t h e  mass cha rac t e r i s t i c  of t h e  r i g i d  blade [see eq.(2.U)]. 

The values of t h e  coe f f i c i en t s  b.12, c12, d,,, and d,, w i l l  be  given below 
[see eq.(2.14)]. 

The moment of ex te rna l  forces, relative t o  t h e  feather ing hinge, loading 
t h e  system t h a t  controls  t h e  angle of blade se t t i ng ,  can be wr i t t en  as 

M C ~ n=-((f+w2'P) /=.A +(@+ 1.f -M ~ P+ 
R R (2.6) 

-t- w2 -k ma=&, 
0 0 


where 
Iaah= moment of i n e r t i a  of t h e  blade r e l a t i v e  t o  t h e  feathering o r  axial 

hinge ; 
I, = moment of i n e r t i a  of t h e  blade per u n i t  length r e l a t i v e  t o  t h i s  

axis;  
W a e r  = moment of aerodynamic forces  per u n i t  length r e l a t i v e  t o  t h e  axial  

hinge with t h i s  moment being determined by eqs.(l.6): 
Mi, = moment due t o  f r i c t i o n  forces  i n  t h e  axial hinge of t h e  hub. 

The moment ac t ing  on t h e  control system, M,,, can be expressed i n  terms /360
of r i g i d i t y  or s t i f f n e s s  and deformation of t h e  control  system: 

where 
y = angle of r o t a t i o n  of t h e  blade r e l a t i v e  t o  t h e  feathering hinge due 

t o  deformations of t h e  control  system; 
C C O ,  = s t i f f n e s s  of t h e  control  system. 

I n  order t o  express t h e  value of y i n  terms of t h e  s e t t i n g  angle of t h e  
blade sections, we put 
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where 
8 = angle of s e t t i n g  of t h e  blade sect ions prescribed by t h e  control 

system; 
N = flapping compansator. 

The angle 8 i s  determined from t h e  expression 

e =eo -el sin 9 -e2 cos +, 

where 
8,, = angle of blade s e t t i n g  a t  t h e  root f o r  B = 0; 

and �I2 = angles of cycl ic  p i t ch  control. 

It follows from eq.( 2.8) t h a t  

(2.9) 


y=y+xp-e. (2.10) 

Subs t i t u t in  y i n t o  eq.( 2.7) and then eq.( 2.7) i n t o  eq.( 2.6) and r e fe r r ing  
a l l  terms of eq.t2.6) t o  t h e  moment of i n e r t i a  of t h e  blade r e l a t i v e  t o  t h e  
axial hinge I*.,,,we obtain 

R I? (2.11) 

Here ptv i s  t h e  frequency of na tu ra l  vibrat ions i n  twist or t o r s ion  of an abso
l u t e l y  r i g i d  blade i n  compliant control: 

( 2.12) 

Subst i tut ing i n t o  eq.( 2.11) t h e  value of Sn,,, from eq.(1.6) and taking t h e  
r e su l t an t  equation together with eq.( 2.5), we obtain a system of d i f f e r e n t i a l  
equations of binary vibrat ions of a r i g i d  blade: 

R (2.13) 
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The coe f f i c i en t s  enter ing eqs.( 2.13) can be  determined by t h e  following /361
formulas: 

c,2=-- mradr =ioc2,, 

I? 


b 3 r d r + - c p  X1 
2 

0 

R 

X 1b2raf (-$-T)d r ]+df,, 
0 


R 

R 

b,, =1 +Lca br2afdr,  
2 fa.h 

i - ' a h  . 
0-


'h.h 

The coe f f i c i en t s  of eq.( 2.14) entering t h e  d i f f e r e n t i a l  equation completely 
determine t h e  behavior of t h e  blade i n  vibration. Certain comments are neces
sary r e l a t i v e  t o  these  coeff ic ients .  

The damping f ac to r  d,, of f lapping vibrat ion of t h e  blade i s  determined 
only by aerodynamic forces since t h e  moment of f r i c t i o n  forces  i n  t h e  flapping 
hinge i s  r e l a t i v e l y  s m a l l .  A qui te  subs t an t i a l  addi t ion d,, due t o  f r i c t i o n  i n  
t h e  feathering hinge enters  t h e  damping coeff ic ient  of t h e  to r s iona l  vibrat ions 
of t h e  blade dzz, i n  addi t ion t o  aerodynamic damping. The e f f ec t  of f r i c t i o n  i n  
t h e  feathering hinge will be  discussed i n  greater  d e t a i l  i n  Section 3 of t h i s  
Chapter. 

The coeff ic ient  d,, entering t h e  equation i s  s m a l l  and not e s s e n t i a l  f o r  
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t h e  f i n a l  r e s u l t s  of t h e  calculation. Therefore, it can be disregarded i n  
p rac t i ca l  calculations.  

-r -
I f  t h e  r a t i o  of t h e  moments of i n e r t i a  i g  = -h < -I then we can /362

I h . h  1000 ' 
a l so  neglect t h e  coeff ic ient  cI2. I n  so doing, t h e  system of equations (2.13) 
i s  simplified even more. 

It i s  important t o  note t h a t  t h e  e f f e c t  of t h e  posi t ion of t h e  center of 
gravi ty  of t h e  blade element will appear i n  t h e  calculat ion only upon a change 
i n  t h e  coeff ic ient  

CZl =--1nro dr. 
Ia.h 

3. Part icular  Solution of t h e. . - _ _ _  _ _Dif fe ren t i a l  Equation 

It i s  not d i f f i c u l t  t o  demonstrate t h a t  t h e  expressions 

B' =ao-al- cos 9- --b ,  sin+, 
(2.16)

'p* = p0-'pI cos+- y1sin 

a r e  a pa r t i cu la r  solut ion of t h e  system of d i f f e r e n t i a l  equations (2.13) and de
termine t h e  undisturbed motion of t h e  blade. I f  t h e  swashplate of t h e  automatic 
pi tch control i s  s e t  i n  a neutral  posi t ion and i f  = O 2  = 0, then t h e  particu
lar solut ion of t hese  equations i s  const i tuted by t h e  expressions 

=a,, 
'?*=yo. 

4. Dif fe ren t i a l  Equation of Disturbed Motion. .  . -

Let us  subs t i t u t e  i n t o  eq.(2.l3) 

(2.18) 


where Bd and cp, a r e  t h e  angles of de f l ec t ion  of t h e  blade from a posi t ion cor
responding t o  i t s  undisturbed motion. 

Then, bearing i n  mind t h a t  p* and cp* represent t h e  pa r t i cu la r  solut ion of 
eqs.( 2.13), we obtain a system of d i f f e r e n t i a l  equations of disturbed motion of 
t h e  blade: 



I n  these  equations, t h e  subscript  of t h e  va r i ab le s  B and cp,  designating 
t h a t  t h e s e  variables refer only t o  disturbed motion, i s  dropped for simplicity.  

5 .  Notation of D i f f e r e n t i a l  Equations i n  Matrix- ~ .Form 

It i s  convenient t o  write d i f f e r e n t i a l  equation (2.19) i n  t h e  following
m a t r i x  form: 

c2 +~d+ ( A  +&B)x=o. (2.m) 

Here, C i s  t h e  i n e r t i a  m a t r i x :  

D i s  t h e  damping matrix: 

A i s  t h e  s t i f f n e s s  m a t r i x :  

B i s  t h e  m a t r i x  of cen t r i fuga l  and aerodynamic forces: 

where 	bZl = cZ1. 

X i s  t h e  vector function: 

6. 	 Solution of D i f f e ren t i a l  Equations- - of_Blade_Vibrations 

Sett ing,  i n  t h e  system of  equations (2.19), 

we obtain t h e  following cha rac t e r i s t i c  equation: 

/363 
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Here f o r  simplifying t h e  calculations,  t h e  values of h and IJI a r e  referred 
t o  t h e  frequency of na tu ra l  t o r s i o n a l  vibrat ions of t h e  blade p t v ,  i.e., 

The coe f f i c i en t s  enter ing t h e  cha rac t e r i s t i c  equation (2.22) have t h e  
following form: 

Let us examine t h e  behavior of t h e  roo t s  of t h e  cha rac t e r i s t i c  equation /36r, 
(2.22) fo r  d i f f e ren t  ro to r  parameters. 

I n  t h e  major portion of t h e  rpm range of p rac t i ca l  i n t e r e s t ,  t h e  motion of 
t h e  blade i s  determined by two p a i r s  of roots: 

Figures 4.5 and 4.6 show t h e  dependence of t h e  real  and imaginary p a r t s  of 
these r o o t s  on t h e  r o t o r  rpm and on t h e  blade balancing. I n  both graphs, we 
plotted,  on t h e  abscissa, t h e  r o t o r  rpm r e l a t e d  t o  t h e  frequency of na tu ra l  
vibrat ions of t h e  blade i n  to r s ion  ptw, expressed i n  o s c i l l a t i o n s  per minute: 

-
n =rtlp

tu' 

The values of E coincide i n  magnitude with t h e  values of t h e  r e l a t i v e  
angular veloci ty  
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Fig.4.5 Imaginary Part  of t h e  Roots 
of t h e  Character is t ic  Equation as a 
Function of Angular Velocity, f o r  
Different Values of t h e  Coefficient 
c21. [ In  t h i s  diagram, as we l l  as 
i n  Fig.4.6, we ind ica t e  t h e  absolute 
value of (without t h e  minus 

sign). I 

where ptw i s  expressed i n  rad/sec. 

Therefore, we will henceforth use 
t h e  designations n and E on an equal 
footing . 

The r o o t s  of t h e  cha rac t e r i s t i c  
equation determine t h e  l a w  governing 
t h e  motion of t h e  blade after some 
extraneous ac t ion  ( i n  practice,  t h i s  
may be  - f o r  example - a gust of wind) 
unbalances t h e  blade. I n  t h i s  case, 
t h e  value of t h e  r e a l  par t  of t h e  root-
q determines t h e  r a t e  a t  which t h e  
amplitude of t h e  v ib ra t ions  varies,  
whereas t h e  imaginary pa r t  5 determines 
t h e i r  frequency. The negative r ea l  
pa r t  of t h e  root  corresponds t o  damping 
o s c i l l a t i o n s  of t h e  blade. When t h i s  
quant i ty  i s  posit ive,  vibrat ions of an 
amplitude increasing i n  time wil l  be  
generated . 

The f irst  pa i r  TI, shown i n  
Figs.4.5 and 4.6 by broken curves, de
termines t h e  motion i n  which def lect ion 
of t h e  blade r e l a t i v e  t o  t h e  flapping 
hinge i s  predominant. The second pair  
of r o o t s  X I ,  , shown by so l id  curves, 
determines t h e  motion with an appreci
able  r o t a t i o n  of t h e  blade r e l a t i v e  t o  
t h e  feather ing hinge which i s  due t o  
deformation o f  t h e  controls. 

This second motion i s  of g rea t e s t  
i n t e r e s t  since, a t  c e r t a i n  blade balancing, t h e  real  p a r t  of t h e  root  T2 passes 
i n t o  t h e  area of pos i t i ve  values ( see  Fig.4.6), which corresponds t o  vibrat ions 
of increasing amplitude, which a r e  known as f l u t t e r .  /365 

The values of t h e  r o t o r  rpm at which = 0 a r e  usual ly  cal led " c r i t i c a l  
rpm of f l u t t e r " .  

When q2< 0, t h e  blade executes damping osc i l l a t ions .  I n  t h i s  case, t h e  
value of 42 determines t h e  magnitude of forces  t h a t  produce damping of t h e  blade 
vibrat ions and cons t i t u t e s  a c r i t e r i o n  for t h e i r  s t a b i l i t y .  It follows from 
Fig.4.6 t h a t  t h e  damping forces  begin t o  decrease long before t h e  c r i t i c a l  
f l u t t e r  rpm. This decrease i s  observed even when f l u t t e r  cannot a r i s e  no matter 
what t h e  r o t o r  rpm but t h e  margin f o r  blade balance i s  i n s u f f i c i e n t l y  narrow. 
A decrease i n  aerodynamic damping, and hence of s t a b i l i t y  of blade vibrations,  
i s  undesirable and may have an adverse e f f e c t  on t h e  cha rac t e r i s t i c s  of hel i 
copter c o n t r o l l a b i l i t y. 
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Fin.4.6 t ea l  P a r t  of t h e  Roots of t h e  Characterist ic-
Equation as a Function of Angular Velocity, for 

Different Values of t h e  Coefficient cZ1. 

The p e c u l i a r i t i e s  of t h e  behavior of t h e  first pa i r  of roo t s  hr w i l l  be  
examined below i n  Subsection 8.  

of t h e7. Determination _ _  _..C r i t i c a l  F l u t t e r  Rpm 

To determine t h e  c r i t i c a l  f l u t t e r  rpm, it i s  possible t o  derive an ana
l y t i c a l  expression i f ,  i n  t h e  cha rac t e r i s t i c  equation, we s e t  

-
) . = i p , = i p  fl"* C&=O)) 

(2.26)-	 __  
o=wf lu .  

Then, t h e  cha rac t e r i s t i c  equation (2.22) reduces t o  a biquadratic equation:
/366 

-4
UflU-2Li;/,+ M =0, ( 2.27) 

where 
2L = CI ( ~ C Z - J ~ I B Z )4A I  (AIDz-BICZ) 

C?-I-Ai ( J ~ I D I-BICI) ' I  (2.28) 
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from which we can determine t h e  c r i t i c a l  f l u t t e r  rpm 

The vibrat ion frequency i n  f l u t t e r  i s  determined from t h e  expression 

8 .  Blade Divergence 

A study of t h e  graphs i n  Fig.,!+.& ind ica t e s  t h e  behavior of t h e  first pa i r  
of r o o t s  TI. 

Beginning with a c e r t a i n  r o t o r  rpm, t h e  imaginary pa r t  of t h i s  pa i r  vanishes 
and t w o  real  r o o t s  appear. The presence of real  r o o t s  i nd ica t e s  aperiodic mo
t i o n  of t h e  blade. 

With a fu r the r  increase i n  rpm, one of t hese  r o o t s  Ill passes i n t o  t h e  
region of pos i t i ve  values, which characterizes t h e  appearance of aperiodic in
s t a b i l i t y  at  t h i s  rpm, known as blade divergence. 

The value of t h e  r o t o r  rpm a t  which xIl = 0 i s  known as t h e  “ c r i t i c a l  rpm 
of divergence” and can be determined by t h e  formula 

Usually, t h e  c r i t i c a l  divergence rpm i s  higher than t h e  c r i t i c a l  f l u t t e r  
rpm and t h e  m a x i ”  r o t o r  rpm. However, i n  a number of spec ia l  cases, blade 
divergence i s  a decis ive f ac to r .  For example, t h e  p o s s i b i l i t y  of t h e  occurrence 
of divergence does not permit using negative values f o r  t h e  flapping compensator. 
A t  K = 0, t h e  p o s s i b i l i t y  of occurrence of divergence i s  already qu i t e  real, and 
a t  small negative values of K t h e  blade becomes aperiodical ly  unstable. This 
circumstance must be  taken i n t o  account when designing t h e  r o t o r  hub, especial ly  
when de f l ec t ion  of t h e  blade relative t o  t h e  drag hinge kinematically leads t o  
a decrease i n  t h e  values of K t o  below zero. 

9. Parameters Characterizing - -~ _----_ _Blade Balance (Effect ive 
Blade Balance) 

To evaluate a blade from t h e  point of view of possible f l u t t e r ,  it i s  con
venient t o  introduce several  concepts characterizing t h e  posi t ion of t h e  c.g. 
of blade elements over t h e  blade length. The. quant i ty  
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i s  cal led blade balance i n  a given section. 

I f  balancing of t h e  sect ions i s  constant over t h e  blade length, then t h e  /367
value of t h e  coeff ic ient  cZ1 enter ing t h e  equations w i l l  be  d i r e c t l y  r e l a t e d  
with t h e  magnitude of t h i s  balance. The f l u t t e r  cha rac t e r i s t i c s  of a blade i n  
t h i s  case can be  characterized by t h e  value of t h e  balance of i t s  sections. 

I n  practice,  however, balancing of blade sect ions lengthwise i s  always dif
ferent.  Therefore, it .is convenient t o  evaluate i ts  f l u t t e r  cha rac t e r i s t i c s  by 
means of t h e  so-called e f f ec t ive  balancing. 

The e f f ec t ive  balancing of t h e  blade i n  question i s  defined as t h e  balanc
ing of some equivalent blade with an i d e n t i c a l  r o t a t i o n  o f  t h e  centers  of gravi
t y  over t h e  length and having t h e  same value of t h e  coeff ic ient  cZ1. It i s  con
venient t o  .assume t h e  planform and m a s s  d i s t r i b u t i o n  over t h e  length of t h e  
equivalent blade as being i d e n t i c a l  t o  those of t h e  blade i n  question. I n  t h i s  
case, t h e  e f f ec t ive  balancing of t h e  examined blade can be determined by t h e  
expression 

R 

For blades having t h e  a x i s  of t h e  feathering hinge at  a dis tance constant 

i n  percent of t h e  chord from t h e  leading edge xo = 
xo 

= const, it i s  convenient 

t o  characterize t h e  e f f ec t ive  balancing of t h e  blade by t h e  value of balancing 
of an equivalent blade r e l a t i v e  t o  i t s  leading edge 

Since t h e  posi t ion of t h e  axis of t h e  feathering hinge has only a s l i g h t  
e f f ec t  on t h e  values of t h e  c r i t i c a l  f l u t t e r  rpm, it i s  convenient t o  reckon 
e f f ec t ive  balancing from t h e  leading edge a l so  i n  cases i n  which t h e  condition 

X O  = const i s  not s a t i s f i e d .  Then, t h e  e f f ec t ive  balancing can be determined 

by t h e  expression 
R r mar dr 

t 2.35) 

The e f f ec t ive  balancing of manufactured blades can be determined only by 
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cu t t ing  t h e  blade and experimentally determining t h e  balancing of i t s  individual  
segments. 

10. 	Dependence of C r i t i c a l  F l u t t e r  R p n  on B l a d e  Balancing 
and Values of t h e  Flapping Compensator Coefficient 

To i l l u s t r a t e  t h e  e f f e c t  of various parameters on t h e  c r i t i c a l  f l u t t e r  rpm, 
Figs.4.7, 4.8, and 4.9'give t h e  r e s u l t s  of calculat ions performed by eq.( 2.29). 
The curves r e f e r  t o  d i f f e ren t  values of t h e  flapping compensator coeff ic ient  ).t 

and t o  t h r e e  values of t h e  posi t ion of t h e  feather ing hinge axis z9 a t  a constant 
posi t ion of t h e  p r o f i l e  focus. 

The graph shows t h a t  a s h i f t  of t h e  c.g. toward t h e  leading edge, j u s t  as a 
decrease i n  t h e  flapping compensator, w i l l  improve t h e  f l u t t e r  cha rac t e r i s t i c s  
of t h e  blade, whereas a s h i f t  of t h e  c.g. toward t h e  t r a i l i n g  edge and an in
crease i n  t h e  flapping compensator w i l l  lead t o  a decrease i n  t h e  c r i t i c a l  
f l u t t e r  rpm. These r e s u l t s  coincide qua l i t a t ive ly  with experimental data. 

Fig.4.7 C r i t i c a l  F l u t t e r  and Divergence Fig.4.8 C r i t i c a l  F l u t t e r  and Diver-
Rpm as a Function of Effect ive Blade gence R p  as a Function of Effect ive 

Balancing, f o r  50 = 0.18. Blade Balancing, f o r  Eo = 0.23. 

A comparison of t h e  r e s u l t s  of calculat ions performed f o r  t h ree  d i f f e ren t  /369
posi t ions of t h e  feather ing hinge axis shows t h a t  t h e  e f f e c t  of t h i s  parameter 
on t h e  c r i t i c a l  f l u t t e r  rpm i s  incomparably weaker than t h e  e f f ec t  of blade 
balancing. Consequently, t h e  c r i t i c a l  f l u t t e r  r p  depends mainly c)n t h e  mutual 
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posi t ion of t h e  centers of gravi ty  of 
t h e  blade elements and of t h e  p r o f i l e  
focus. Therefore, a s h i f t  of t h e  a.c. 
of t h e  p r o f i l e  r e l a t i v e  t o  t h e  chord i s  
j u s t  as e f f ec t ive  as a s h i f t  of t h e  
blade balance. 

11. Blade ..~. - Arrangement 

The presented dependences of t h e  
c r i t i c a l  rpm on t h e  balancing permit 
necessary conclusions with respect t o  
blade arrangement. It follows from t h e  
above calculat ions t h a t  t h e  bes t  way t o  
improve t h e  f l u t t e r  cha rac t e r i s t i c s  of 
a blade i s  t o  s h i f t  i t s  centers of 
gravi ty  as much as possible toward t h e  
leading edge and t o  use aerodynamic pro
f i l e s  which, i n  operating f l i g h t  regimes, 
have t h e i r  aerodynamic centers as far 
rearward as possible. This measure has 
a favorable e f f e c t  even when t h e  blade 

Fig.4.9 C r i t i c a l  F l u t t e r  and D i - spar is  sh i f t ed  toward t h e  leading edge 
vergence Rpm as a Function of Ef- t o  c rea t e  forward balance, together with 
f ec t ive  Blade Balancing, f o r  t h e  feather ing hinge axis which of ten is  

r;, = 0.28. 	 associated with t h e  axis of t h e  spar. 
The arrangement of t h e  blade shown i n  
Fig.4.10 i s  an example of such a solution. 

However, it must be borne i n  mind t h a t  t h e  statement as t o  t h e  r e l a t i v e l y  
weak influence of t h e  posi t ion of t h e  feathering hinge a x i s  on t h e  f l u t t e r  
cha rac t e r i s t i c s  i n  comparison with blade balancing holds t r u e  only when t h e  

va r i a t ion  i n  these parameters i s  

P 

Fig.4.10 Blade Arrangement with Feather
ing Hinge Axis and Spar Shifted toward 

t h e  Leading Edge. 

of t h e  same order of magnitude. 
I n  practice,  a s h i f t  i n  t h e  posi
t i o n  of t h e  feathering hinge can 
be  performed i n  appreciably wider 
l i m i t s  than a s h i f t  i n  blade 
balancing. Therefore, t h i s  should 
be  regarded as s t i l l  another means 
of influencing t h e  blade f l u t t e r  
character is t ics .  

The blade whose arrangement 
i s  shown i n  Fig.4.11 can serve as 
an example f o r  t h e  case i n  which 
a change of t h e  posi t ion of t h e  
feather ing hinge i s  used as a 
means of improving t h e  f l u t t e r  
char a c teristics. 
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12. Ef fec t  of Control R ig id i ty  

A highly important parameter 
greatly influencing t h e  f l u t t e r  
speed i s  t h e  magnitude of t h e  fre
quency of n a t u r a l  blade vibrat ion 
i n  t o r s i o n  o r  t w i s t  ptw. I n  t h e  
ideal ized blade scheme examined 
here, t h e  magnitude of t h i s  fre
quency i s  completely determined by 
t h e  hinge r i g i d i t y  of t h e  system 
control l ing t h e  angle of r o t o r  
s e t t i n g  coo11 I n  pract ice ,  how
ever, t h e  magnitude of t h i s  fre-

Fig.4.11 Arrangement of Blade with ’ quency i s  influenced a l s o  by to r -
Turned Feathering Hinge Axis. s iona l  deformations of t h e  blade 

i tself .  Therefore, t o  t ake  i n t o  
account t h e  t o r s i o n a l  r i g i d i t y  of 

t h e  blade it i s  proposed t o  use, i n  calculat ions by t h e  approximate method pro
posed here, t h e  value ptw calculated with regard t o  deformation of both t h e  con
t r o l s  and t h e  blade. 

We see from t h e  d i f f e r e n t i a l  equations of blade vibrat ions res.( 2.19)] t h a t  
t h e  c r i t i c a l  f l u t t e r  rpm ( f l u t t e r  speed) and frequency of vibrat ions i n  f l u t t e r  

%if-	 zone of possible
f l u t t e r  a t  l o w  
c o n t r o  1 rigidity 

Fin.4.12 Boundaries between Zones 
i n w h i c h  F l u t t e r  i s  Impossible and 
t h e  Zone i n  which it Arises a t  

Small Control Rigidity.  
o - Rotor blades f o r  which no 

f l u t t e r  was obserGed 
- Rotor blades f o r  which 

t h e r e  was f l u t t e r .  
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. 	 a r e  d i r&t ly -p ropor t iona l  t o  t h e  
quant i ty  ptw Therefore, i n  a l l  calcu
l a t i o n s  whose r e s u l t s  a r e  presented i n  
t h e  above graphs, t h e  f l u t t e r  speed i s  
r e fe r r ed  t o  ptw and i s  characterized 
by t h e  r e l a t i v e  quan t i t i e s  

13. Conditions f o r  Absence of F l u t t e r  

The character of t h e  dependence of 
f l u t t e r  speed on various parameters 
shows t h a t  t h e  creat ion of t h e  neces
sary f l u t t e r  cha rac t e r i s t i c s  does not 
r equ i r e  a shuDx”ulous change of a l l  
parameters. Production of t h e  necessary 
cha rac t e r i s t i c s  i s  possible upon satis
fying even one of t h e  t w o  following 
conditions : 

The first condition i s  t h e  
creat ion of  a s u f f i c i e n t l y  high t o r -

/371 
s iona l  r i g i d i t y  of t h e  blade and i t s  
attachment t o  t h e  control system, so 
t h a t  
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Here, n,,, i s  t h e  maximum possible r o t o r  rpm. It i s  su f f i c i en t  t h a t  k l  = 

= 4 - 5 .  

When t h e  condition (2.37) i s  sa t i s f i ed ,  t h e r e  i s  no need t o  secure any spe
c i f i c  t ransverse blade balancing. It can be a rb i t r a ry ,  and t h e r e  i s  no need f o r  
introduction of spec ia l  counterweights i n t o  t h e  design. 

The second condition i s  t h e  creat ion of a su f f i c i en t ly  forward blade balanc
ing so t h a t  

Here, El i m  i s  some l imi t ing  blade balancing at  which f l u t t e r  i s  impossible 
no matter how s m a l l ,  say, t h e  to r s iona l  r i g i d i t y  of t h e  blade attachment t o  t h e  
control. 

Figure 4.12 gives t h e  calculated value of t h e  l i m i t  balancing Xlim.as a 
function of t h e  value of t h e  flapping compensator and posi t ion of t h e  feather ing 
hinge axis xg. This balancing divides t h e  e n t i r e  area of parameters i n t o  two 
zones, i n  one of which f l u t t e r  cannot occur even a t  very low control  r i g i d i t y .  

Exciting F l u t t e r  

The calculat ion methods t h a t  reduce 
t o  a determination of f l u t t e r  parameters 
are ' left  without an explanation of t h e  . -vmechanism of act ion of aerodynamic forces  

L e t  u s  examine t h e  blade model which w a s  described i n  Subsection 1 of t h i s  
Section. For s implif icat ion of t h e  problem, we will l i m i t  ourselves t o  t h e  



par t i cu la r  case where t h e  aerodynamic center coincides with t h e  axis of t h e  
feather ing hinge and where of = 0. We can a l s o  disregard t h e  dependence of t h e  
force T on $, which does not have any pa r t i cu la r  meaning. Then, t h e  aerody- /372
namic forces  ac t ing  on t h e  p r o f i l e  can be represented i n  t h e  form 

1T =-ca ebU2a; (2.39)2 y 

where w i s  t h e  angle of a t tack of t h e  blade element. 

The moment of t h e  aerodynamic forces  T act ing r e l a t i v e  t o  t h e  flapping 
hinge can be wr i t t en  as 

where 
k = - 1 capw2sbr3dr. 

2 y 
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We will assume t h a t  t h e  blade executes vibrat ions r e l a t i v e  t o  t h e  flapping 
hinge according t o  t h e  l a w  

P =  Po sin pt. (2.43) 

I n  t h i s  notation, t h e  time reference point i s  taken from t h e  i n s t a n t  at 
which B = 0. 

F i r s t ,  we will examine t h e  case i n  which t h e  blade does not execute tor
s iona l  vibrations.  The angle of s e t t i n g  of i t s  elements w i l l  be  considered as 
equal t o  zero and constant i n  time. I n  t h i s  case, t h e  angle of a t tack of t h e  
blade elements w i l l  vary according t o  t h e  l a w  (Fig.4.13) 

-
a=acospt ,

where 
-
a= --Po -P . 

0 

The moment of t h e  aerodynamic forces  r e l a t i v e  t o  t h e  flapping hinge w i l l  
vary by t h e  same l a w  

M,, =M COS p i .  (2.46) 

I n  accordance with eq.(2.41), t h e  s ign of M will  coincide with t h e  sign 
of cy .  

I f  < 0, as occurs i n  t h e  case i n  question, then t h e  moment relative t o  
t h e  fl?pping hinge always a c t s  o p p o s i t e t o  t h e  angular ve loc i ty  of blade vibra
t i o n s  B ( see  Fig.4.13) and does negative work i n  blade displacements. 



--- 

The magnitude of t h i s  work during t h e  vibrat ion period can be calculated 
by t h e  formula 

2 m  

(2.47) 

2nwhere T = -
P 

i s  t h e  period of blade vibration. 

The s ign of t h e  work A coincides with t h e  s ign of which, i n  turn,  coin- /373
cides with t h e  s ign of Z. I n  t h e  examined case, A < 0. 

This means t h a t  t h e  air stream flowing past  t h e  blade absorbs t h e  work ex
pended t o  maintain blade vibrations.  Thus, i n  t h e  presence of aerodynamic forces  
t h e  blade w i l l  v ib ra t e  with a constant amplitude Be only i f  energy equal t o  t h e  
magnitude of work calculated by eq.(2.47) i s  furnished t o  it from without. 
Otherwise t h e  k i n e t i c  energy of t h e  blade and, together with it, t h e  amplitude 
of o s c i l l a t i o n s  pa, w i l l  diminish and t h e  o s c i l l a t i o n s  w i l l  decay. 

A d i f f e r e n t  picture  may be  produced i n  t h e  presence of t o r s i o n a l  blade vi
brations.  Torsional vibrations of t h e  blade a r i s e  as a consequence of deforma
t i o n s  of t h e  control  system and kinematic coupling across t h e  flapping compen
sator .  Deformations of t h e  control system a r i s e  from aerodynamic and i n e r t i a  
forces  act ing on t h e  blade during i t s  flapping vibrations.  

Centrifugal and i n e r t i a  forces  a r i s i n g  during .flapping vibrat ions of t h e  
blade c rea t e  a moment r e l a t i v e  t o  t h e  feather ing hinge due t o  t h e  presence of 
an a r m  between t h e  centers of gravi ty  of t he 'b l ade  element and t h i s  axis 

The aerodynamic forces  create  a moment on t h e  a r m  between t h e  p r o f i l e  focus 
and t h e  feather ing hinge axis of 

maor= 
2 
1 caewpiJ0 br20j dr cos p t  . (2.49)y 

0 

A t  of = 0, t h i s  moment i s  equal t o  zero. Therefore, as a consequence of 
flapping v ib ra t ions  on ly  t h e  moment m, n b  w i l l  a c t  on t h e  blade. Under t h e  
e f f ec t  of t h i s  moment, t h e  blade pi tch control  i s  deformed and t h e  blade begins 
t o  execute t o r s i o n a l  vibrations.  However, t h e  phase of t h e  t o r s i o n a l  vibrat ions 
w i l l  not coincide with t h e  phase of t h e  flapping vibrations.  Phase s h i f t  of t h e  
t o r s i o n a l  vibrat ions i s  caused by damping forces  act ing i n  t h e  control  system 
directed opposite t o  t h e  vibrations.  These forces  are caused by forces  of aero
dynamic damping determined by eq.(2.&O) and by t h e  moment of f r i c t i o n  ac t ing  i n  
t h e  feather ing hinge of t h e  blade. The d i r ec t ion  of phase s h i f t  of t h e  t o r s i o n a l  
vibrat ions depends on t h e  s ign of t h e  external  moment m i n e r  t. 

The l a w  according t o  which t h e  blade executes t o r s i o n a l  vibrat ions 
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(Fig.4.u) can be wr i t t en  as 
-

'p =T cos p t  +y sin pt. (2-50) 

Here, it is  assumed t h a t  t h e  i n i t i a l  s e t t i n g  of t h e  blade elements i s  equal 
t o  zero. 

The angle of a t t ack  i n  t h i s  case will vary according t o  t h e  l a w  

a=iicospt +tTsinpt, 
where 

The appearance of a sinusoidal component i n  t h e  l a w  of change of t h e  angle 
of a t t ack  3 and, along with t h i s ,  t h e  s inusoidal  component of t h e  moment r e l a t i v e  
t o  t h e  flapping hinge, does not influence t h e  energy t r a n s f e r  during blade /374

vibrations.  Actually, a check on t h e  

Ip 

Fig.4.14 Damping Forces Acting on 
a Vibrating P r o f i l e  i n  t h e  Presence 

of Torsional Vibrations of t h e  
Blade. 

it becomes equal t o  zero, whereas when 

work done by t h e  sinusoidal component 
o f  t h e  moment i n  blade displacements 
r e l a t i v e  t o  t h e  horizontal  hinge will 
show t h a t  it i s  equal t o  zero: 

A =iM sin p t  ppocos p t  dt =O. (2.52) 
0 

The magnitude of t h e  cosinusoidal 
component of t h e  angle of a t tack &, as 
follows from eq.( 2.51), l a r g e l y  depends 
on t h e  s ign and magnitude of F. 

When Cp < 0, t h e  work absorbed by 
t h e  a i r  stream flowing past t h e  blade 
increases  which causes a r i s e  i n  t h e  
r a t e  of damping of t h e  f r e e  vibrat ions 
of t h e  blade. Thus, when (p < 0, t h e  
s t a b i l i t y  of flapping vibrat ions of t h e  
blade increases.  When Cp > 0, t h e  work 
absorbed by t h e  stream past t h e  blade 
decreases and when 

t h e  cosinusoidal component of t h e  horizontal  hinge moment i s  directed along t h e  

404 



. 
angular ve loc i ty  of t h e  flapping vibrat ions B .  This l eads  t o  "resonant build-up" 
of t h e  blade. The k i n e t i c  energy of blade vibrat ions begins t o  increase, which 
leads t o  a r i se  i n  t h e  v ib ra t ion  amplitude. Such a type of o s c i l l a t i o n  at  
amplitude build-up i s  known as f l u t t e r .  

Thus, t h e  occurrence of f l u t t e r  i s  associated with t h e  magnitude and s ign 
of t h e  component of t o r s i o n a l  vibrat ions F. 

L e t  u s  examine how t h e  quantity @ changes under t h e  e f f ec t  of an external 
moment varying by t h e  sige l a w  i n  conformity with eq.( 2.48). Figure 4.15 shows 
t h e  dependence of and (p on t h e  vibrat ion frequency p of t h e  external  moment 
m i n e r t .  A s  usual during vibrat ions close t o  resonance, t h e  component (p which i s  
i n  90° phase with t h e  external  forces  f irst  increases, whereas t h e  v ib ra t ion  
component coinciding i n  phase with t h e  external  forces  changes i t s  s ign i n  
resonance, passing through zero. 

Thus, t h e  value of (p increases  especial ly  upon approaching resonance with 
t h e  frequency of na tu ra l  blade v ib ra t ion  i n  tors ion.  Therefore, f l u t t e r  always

/375occurs with a frequency close t o  but s l i g h t l y  below t h e  frequency of torsion. 
Usually t h e  frequency of f l u t t e r  amounts t o  about 0.8 ptw. 

It follows from t h e  foregoing t h a t  f l u t t e r  occurs as a consequence of t h e  
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Fig.k.15 Variation i n  t h e  Torsional 
Vibration Components (p and during 

Blade Vibration Frequency. 

following causes: The t o r s i o n a l  moment 
due t o  i n e r t i a  forces  ac t ing  during 
flapping vibrat ions of t h e  blade leads 
t o  t h e  appearance of t o r s i o n a l  blade 
vibrations.  I n  so doing, t h e  t o r s i o n a l  
vibrat ions with a 90' phase s h i f t  re la
t i v e  t o  t h e  flapping vibrat ions increase 
e special ly  strongly at  frequencies 
close t o  t h e  frequency of t h e  na tu ra l  
vibrat ions of t h e  blade i n  torsion. 
This component of t h e  t o r s i o n a l  vibra
t i o n s  leads t o  exc i t a t ion  of flapping 
vibrat ions of t he  blade. A s  soon as 
t h i s  exc i t a t ion  [first t e r m  i n  
eq.( 2.55)] becomes stronger than t h e  
forces  damping t h e  flapping vibrat ions 
[second term i n  eq.(2.55)], f l u t t e r  
will occur. 

Fromthe expression fo r  t h e  co
sinusoidal component of t h e  angle of 
a t t ack  

it i s  also possible t o  t r a c e  t h e  e f f e c t  
of r o t o r  rpm on f l u t t e r .  Actually, t h e  
second term i n  t h i s  formula r ap id ly  
decreases with increasing r o t o r  rpm, 
whereas does not g rea t ly  depend on 
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t h e  r p  since t h e  ex te rna l  t o r s i o n a l  moment hnerti s  determined m a i n l y  by t h e  
v ib ra t ion  frequency [see eq.(2.48)] because of t h e  f a c t  t h a t ,  during f l u t t e r ,  p” 
usual ly  is  by a f ac to r  of 5 - 8 greater  than w”. The va r i a t ion  i n  Cp with respect 
t o  r o t o r  rpm i s  r e l a t e d  mainly with an increase i n  aerodynamic damping at  increas
ing  w. 

Thus, on t r a c i n g  t h e  mode of va r i a t ion  of t h e  quan t i t i e s  enter ing eq.( 2.55) 
with t h e  r o t o r  rpm, it wil l  be found t h a t ,  at  some value of w, t h e  cosinusoidal 
component of t h e  angle of a t t ack  F changes i n  s ign and becomes posit ive.  This /376
l eads  t o  t h e  appearance of f l u t t e r ,  beginning with some specif ied r o t o r  rpm. A 
rearward s h i f t  of blade balancing leads t o  an increase i n  t h e  absolute value of 
m i n e r t  [eq.(2.49)] and hence t o  an increase on F. I n  t h i s  case, as follows from 
eq.(2.55), f l u t t e r  a r i s e s  a t  smaller w. 

I n  t h e  same manner, it i s  possible t o  t r a c e  t h e  e f f e c t  of various other 
parameters on t h e  f l u t t e r  speed. However, t h e r e  i s  no need f o r  t h i s  s ince t h i s  
has already been done above with su f f i c i en t  d e t a i l .  

Section 3 .  Consideration of F r i c t ion  Forces during F l u t t e r~ 

_ _  -~- .during- F u e r1. Character of the-Effectof F r i c t ion  Forces - -

The occurrence of f l u t t e r  leads t o  t h e  appearance of o s c i l l a t o r y  motions i n  
t h e  hinges of t h e  r o t o r  hub and i n  t h e  hinge control. Therefore, t h e  f r i c t i o n  
forces  ac t ing  i n  t h e s e  hinges have a subs t an t i a l  e f f e c t  on t h e  c r i t i c a l  rpm and 

on t h e  nature of generation of f l u t t e r .  
O f  primary importance i n  t h i s  case i s  
f r i c t i o n  i n  t h e  feather ing hinge of t h e  
blade loaded by a cen t r i fuga l  force, i n  
comparison with which t h e  f r i c t i o n  i n  
a l l  other hinges can be neglected. 

Experiments show t h a t  forces  act-
Fig.4.16 Recording of t h e  Moment ing i n  t h e  feather ing hinge a r e  similar 
of F r i c t i o n  i n  t h e  Feathering i n  character t o  forces  of dry Coulomb 
Hinge during Torsional Blade f r i c t i o n  [eq.(h.l6) 3. The introduct ion 

Vibrations. of t hese  forces  i n t o  t h e  calculat ion 
makes t h e  problem of f l u t t e r  essential
l y  nonlinear. Therefore, i n  simplified 

calculat ions it i s  n a t u r a l  t o  use any of t h e  possible methods of l i n e a r i z a t i o n  
of f r i c t i o n  forces.  A more exact solut ion t o  t h i s  problem without such l i n e a r i 
zat ion w i l l  be  given i n  Section 7 of t h i s  Chapter. 

A s  i s  known, l i n e a r i z a t i o n  of  f r i c t i o n  forces  leads t o  t h e  dependence of 
t h e  damping coeff ic ient  on t h e  amplitude of o sc i l l a t ions .  Here t h e  nature of 
f l u t t e r  generation, described on t h e  b a s i s  of t h e  calculat ion changes a t  in
creasing amplitude, approaching t h a t  observed i n  experiments on hel icopters .  
These r e s u l t s  permit explaining numerous p e c u l i a r i t i e s  i n  t h e  development of 
f l u t t e r  i n  full-scale experiments. The p o s s i b i l i t y  of i n t e rp re t ing  these  char
a c t e r i s t i c s  appreciably f a c i l i t a t e s  t h e  conduction of tests. 



2. Linearization of F r i c t ion  Forces- ____ - . . --

Let us  use t h e  energy method of l i nea r i za t ion  of f r i c t i o n  forces. For t h i s ,  
we will replace t h e  moment of f r i c t i o n  act ing i n  t h e  feathering hinge of t h e  
blade by some equivalent moment whose magnitude i s  proportional t o  t h e  rate of 
angular blade displacement 

The value of t h e  coeff ic ient  yfr i s  determined from t h e  condition of equali
t y  of t h e  work done during t h e  v ib ra t ion  period by t h e  moment of f r i c t i o n ,  

AP =4 4 ,  yflU (3.2) 

and by an equivalent moment whose magnitude is  proportional t o  t h e  v ib ra t ion  /377
r a t e  

A,* =r,, Pflu$l"* (3.3) 
where 

Mi, = constant ( i n  magnitude) moment of f r i c t i o n  ac t ing  i n  t h e  feathering 
hinge, always opposite t o  t h e  'rate of r e l a t i v e  displacement; 

( p f l u  = 	amplitude of t o r s i o n a l  blade vibrat ions i n  t h e  feathering hinge
during f l u t t e r ;  

p f l u  = frequency of blade vibrat ions during f l u t t e r .  

The moment of f r i c t i o n  ac t ing  i n  t h e  feathering hinge can be  considered 
proportional t o  w2, since i t s  magnitude i s  determined mainly by t h e  centr i fugal  
force 

Mfr =apw2. (3.4) 

In  a number of cases, however, t h i s  dependence i s  disturbed as a conse
quence of the. following circumstances: 

1) The bearing i s  i n s t a l l e d  with appreciable prestressing. I n  t h i s  case, 
t h e  load act ing on the  bearing i s  determined not only by centr i fugal  force but 
a l so  by t h e  i n i t i a l  tension. 

2) The design of t h e  packing glands i s  such t h a t  they have an appreciable 
moment of f r i c t i o n  regardless  of t h e  magnitude of t h e  effect ive cen t r i fuga l  force. 

3) The use of too heavy a lubricant  i n  t h e  bearing c rea t e s  an appreciable 
addi t ional  moment due t o  t h e  generation of viscous f r i c t i o n .  The appearance of 
r e l a t i v e l y  l a r g e  viscous f r i c t i o n  forces  i s  of ten observed a t  low negative t e m 
peratures of t h e  ambient air .  

A l l  t he se  f a c t s  have an influence on t h e  f l u t t e r  speed but  introduce no 
fundamental features i n t o  t h e  pa t t e rn  of t h e  phenomenon. Therefore, i n  t h e  
following account we w i l l  t ake  eq.(3.4) as t h e  basis .  

The coeff ic ient  + r  entering eq.(3.4) i s  determined from t h e  expression 
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afr = f k S a z  , (3.5) 
where 

Saar = s t a t i c  moment of t h e  blade relative t o  t h e  axis of ro t a t ion ;  
rbe = r ad ius  of t h e  t h r u s t  bearing;

f = coe f f i c i en t  of f r i c t i o n  i n  t h e  bearing. 

The values of t h e  f r i c t i o n  coe f f i c i en t s  f a r e  usual ly  qu i t e  s t ab le  and 
amount t o  about 0.003 f o r  b a l l  and 0.006 f o r  r o l l e r  bearings. 

After equating eqs.(3.2) and (3.3), we obtain t h e  expression f o r  determining 
t h e  coeff ic ient  yf : 

With t h i s  method of l i nea r i za t ion ,  consideration of t h e  f r i c t i o n  forces  
leads t o  only one change i n  t h e  i n i t i a l  equations (2.19), namely of t h e  coeffi
c ient  dzz standing f o r  t h e  f irst  de r iva t ive  of t h e  angle of r o t a t i o n  of t h e  
blade i n  t h e  hinge, which i s  supplemented by some addi t ion d f r .  

I n  an invest igat ion of flapping f l u t t e r  with a blade r i g i d  i n  tors ion,  t h i s  
supplement should be determined by t h e  formula 

(3.7) 

3 .  Determination ~ of F l u t t e r  Speed with __ - -.. Fr ic t ion  /378___Consideration- of ~ 

Equation (3.7) derived above, which determines t h e  magnitude of t h e  addi
t i o n  term due t o  f r i c t i o n  forces  t o  one of t h e  coe f f i c i en t s  of t h e  equations of 
blade vibrat ion dzz, i s  distinguished by a highly important character is t ic .  
This addi t ion depends on t h e  amplitude of blade v ib ra t ion  i n  t h e  feathering 
hinge during f l u t t e r  'pilu. Consequently, t h e  c r i t i c a l  r p  a t  which t h e  ampli
tude of o s c i l l a t i o n s  t h e o r e t i c a l l y  remains constant i n  time depend on t h e  ampli
tude of f l u t t e r  o sc i l l a t ions .  

Figure 4.17 shows such a dependence f o r  t h r e e  values of blade balancing ob
tained i n  a calculat ion of flapping f l u t t e r .  Along t h e  abscissa  i n  t h i s  diagram 
i s  l a i d  out t h e  amplitude of angular blade vibrat ions i n  t h e  feathering hinge 
'pil u ,  and along t h e  ordinate  t h e  c r i t i c a l  f l u k t e r  rpn re fe r r ed  t o  t h e  frequency
of na tu ra l  vibrat ions o f  t h e  blade i n  t o r s i o n  G I u .  

These curves determine t h e  amplitude of t h e  o s c i l l a t o r y  regime, which forms 
t h e  boundary between o s c i l l a t i o n s  with amplitude build-up and damping osc i l l a 
tions. 

For a l l  p r a c t i c a l  purposes, t h i s  means t h a t  f o r  f l u t t e r  t o  occur some 
i n i t i a l  impetus i s  needed leading t o  de f l ec t ion  of  t h e  blade from a posit ion of 
equilibrium by an angle determined by these  curves, usually cal led t h e  excita-



t i o n  threshold. 

Fig.4.17 C r i t i c a l  F l u t t e r  Rpm as a 
Function of t h e  Vibration Amplitude 

(Pr l u  

quencies. 

If t h e r e  i s  no such impetus present, 
f l u t t e r  will not occur a t  a l l  no matter 
what t h e  r o t o r  rpm'might be., 

For a comparison, Fig.4.17 shows 
t h e  c r i t i c a l  rpm f o r  t h e  case i n  which 
t h e  moment of f r i c t i o n  i n  t h e  feather
ing hinge i s  MI,  = 0.. 

4. 	 Effect  of Forced Motion i n  t h e  
Feathering Hinge 

Quite a d i f f e ren t  picture  of t h e  
occurrence of f l u t t e r  i s  observed when 
forced motion i s  present i n  t h e  feather
ing hinge of t h e  hub caused by t i l t i n g  
of t h e  swashplate of t h e  automatic 
pi tch control  or by forced flapping 
vibrat ions of t h e  blades a r i s i n g  i n  
f l i g h t  during oblique flow past t h e  
rotor .  I n  t h i s  case, t h e  vibrat ions 
i n  t h e  feather ing hinge following t h e  
occurrence of f l u t t e r  a r e  generated by 
a complex l a w  consisting of two osci l 
l a t o r y  motions with d i f f e ren t  fre-

Figure 4.18 shews, as an example, t h e  na t t e rn  of t h i s  motion observed 
during f l u t t e r  under conditions of ground tests when forced motion i s  present i n  
t h e  feather ing hinge caused by t i l t i n g  of t h e  swashplate of t h e  automatic pi tch 
control (curve (ifor) and t h e  motion caused by f l u t t e r  ( G f l u ) .  /379 

-
- Oscillation period - _  

Fig.4.18 Character of F l u t t e r  i n  t h e  Presence of 
Forced Motion i n  t h e  Feathering Hinge. 

For convenience of fu r the r  discussion, we plot ted t h e  rate of v ib ra t ion  i n  
t h e  feather ing hinge r a t h e r  than t h e  displacements. 

The work of t h e  f r i c t i o n  forces  ac t ing  i n  t h e  feather ing hinge can be  
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determined by t h e  expression 

where t h e  moment of f r i c t i o n  Mi, i s  always directed opposite t o  t h e  rate of 
angular displacement of t h e  blade $. 

If t h e  ra te  of angular motion $ i s  t h e  sum of two o s c i l l a t o r y  motions 

(3.9) 

then t h e  work of t h e  f r i c t i o n  forces  can always b e  represented as consis t ing of 
two works, i n  each of t hese  motions 

where 

t 

Here, t h e  moment of f r i c t i o n  - as usual - i s  directed opposite t o  t h e  ra te  
of t o t a l  motion $5. 

The simultaneous presence i n  t h e  feather ing hinge of two o s c i l l a t o r y  mo
t i o n s  of d i f f e ren t  frequency always leads t o  t h e  appearance of time segments 
during which t h e  f r i c t i o n  force coincides i n  d i r e c t i o n  with t h e  rate of one of 
t hese  motions, i n  t h i s  case doing posi t ive work. I n  Fig.4.18 t h e  area segments 
corresponding t o  t h e  pos i t i ve  work of f r i c t i o n  forces  i n  displacement of one of 
t h e  composite motions of a frequency p f l u  are hatched. A s  a r e s u l t ,  t h e  ove ra l l  
magnitude of work of t h e  f r i c t i o n  forces  during t h e  v ib ra t ion  period i n  dis
placement of each of t h e  composite motions decreases i n  comparison with t h e  case 
where t h e r e  i s  no concomitant motion. A s  applied t o  our case, t h i s  means t h a t  
t h e  work expended fo r  damping f l u t t e r  vibrat ions markedly drops because an ap
preciable portion of  t h e  f r i c t i o n  forces  i s  expended by forced motion. This 
drop can be characterized by a spec ia l  coeff ic ient  which represents  t h e  - r a t i o  /380 

where 
A f l u  = work of f r i c t i o n  forces  during t h e  v ib ra t ion  period i n  displace

ments of t h e  component of motion caused by f l u t t e r ,  which i s  of 
i n t e r e s t  here; 

Ai, = work of f r i c t i o n  forces  during t h e  same period when t h e r e  i s  no 
concomitant forced motion. 

Figure h.19 shows t h e  dependence of t h e  coeff ic ient  on t h e  amplitude 



r a t i o  of t h e  ve loc i ty  components of o sc i l l a to ry  motion (-1. 
- - _  

A t  t h e  values of 	 Pi 1 u = 1.5 - 2.5 of i n t e r e s t  t o  us, t h e  coeff ic ient  Kflu
Pior 

depends l i t t l e  on t h e  r a t i o  of t hese  frequencies. 

If t h e  value of t h e  c o e f f k i e n t  y f r  i s  determined i n  t h i s  case, as w a s  done 
above,from t h e  condition of equal i ty  of work [see eq.(3.6)], then eq.(3.7) t akes  
t h e  following form: 

It follows from t h i s  expression t h a t  t h e  c r i t i c a l  f l u t t e r  rpn depending on 
t h e  coefficient d,, is  r e l a t e d  with t h e  amditude of forced motion i n  t h e  axial 
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Fig.4.19 De endence of t h e  
Coefficient %,,,on t h e  Ampli
tude Ratio of t h e  Velocity 
Components of Osci l la tory 

Motion. 

hinge cpf o r  , since d, , depends on t h e  quantity 
A, With consideration of t h e  nonlinear 

shown i ndependence & = (e) 
Fig.4.19, t h i s  r e l a t i o n  becomes r a the r  com
plex. However, consideration of t h i s  de
pendence r a d i c a l l y  changes t h e  character of 
t h e  conditions necessary f o r  t h e  occurrence 
of f l u t t e r .  

F i g w e  4.20 gives t h e  values of c r i t i c a l  
f l u t t e r  rpm at  d i f f e ren t  magnitudes of t h e  
osc i l l a to ry  blade motion i n  t h e  featherjrng 
hinge cp, o r ,  calculated with consideration of 
t h i s  nonlinear dependence as applied t o  flap
ping f l u t t e r .  The calculat ion w a s  made only 
f o r  one value of blade balancing and d i f f e ren t  
amplitudes of forced motion i n  t h e  feathering 
hinge T i o r  

The curves plot ted i n  Fig.4.20 permit a 
number of i n t e re s t ing  conclusions. 

F i r s t  of a l l ,  it follows from these curves t h a t ,  i n  t h e  presence of forced 
motion i n  t h e  feather ing hinge, f l u t t e r  occurs at c e r t a i n  revolutions of t h e  
ro to r  and i ts  appearance i s  not due t o  t h e  e f f e c t  of any extraneous influence i n  
t h e  form of some i n i t i a l  impetus. I n  t h i s  case, t h e  r p  of f l u t t e r  onset is 
smaller, t h e  greater t h e  amplitude of forced motion i n  t h e  feathering hinge q 0 , .  
This f a c t  i s  responsible f o r  t h e  dependence of t h e  c r i t i c a l  f l u t t e r  r p  i n  
f l i g h t  on a l l  parameters of t h e  f l i g h t  regime t h a t  determine t h e  amplitude of 
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cpfor,  and primarily on the helicopter balancing and t h e  f ly ing  speed. I n  ground 
tests, t h i s  leads t o  dependence of t h e  c r i t i c a l  rpn on t h e  posi t ion of t h e  con
t r o l  s t i ck .  

A second important cha rac t e r i s t i c  of f l u t t e r ,  following from t h e  curves 

0 



(see Fig.h.X)), i s  t h e  appearance of two d i f f e r e n t  types of f l u t t e r  which d i f f e r  
by t h e  character of t h e  increase i n  vibrat ion amplitude upon any change i n  r o t o r  
rpm* 

Upon an increase in  rpm t o  values corresponding t o  t h e  points  a,, a,, a3, 
f l u t t e r  w i l l  s e t  i n  with an amplitude smoothly increasing with increasing r o t o r  

Fig.4.20 Variation i n  C r i t i c a l  
F l u t t e r  Rpm with Vibration Ampli
tude i n  t h e  Feathering Hinge c p f l  u, 
at Different Magnitudes of Forced 

Motion. 

"hard f l u t t e r " .  

rpm. If, a f t e r  t h e  occurrence of 
such osc i l l a t ions ,  which are usual ly  
cal led "sof t  f lut ter" ,  t h e  r o t o r  
rpm remains unchanged, then t h e i r  
amplitude will remain constant f o r  
as long as desired. 

Osc i l l a t ions  of t h i s  type have 
been repeatedly ob served i n  ground 
and f l i g h t  s tud ie s  of f l u t t e r  i n  
hel icopters .  A decrease i n  r o t o r  
rpm a f t e r  t h e  occurrence of "sof t  
f l u t t e r "  leads t o  cessation of 
o s c i l l a t i o n s  at t h e  same rpm a t  
which f l u t t e r  began. 

Upon an increase i n  r o t o r  rpm 
t o  values determined by t h e  points  
b, and b,, o s c i l l a t i o n s  are generated 
whose amplitude increases  i n  t i m e  
without an increase i n  ro to r  r p .  
Osc i l l a t ions  of t h i s  type are called 

Probably, t h e  l imi t ing  values of t h e  v ib ra t ion  amplitudes obtainable i n  
t h i s  case a r e  determined by t h e  nonlinear nature of t h e  change i n  aerodynamic 
forces  r e l a t i v e  t o  t h e  angle of attack. This branch of t h e  curve i n  Fig.4.X) i s  
shown approximately by a dashed l i ne .  

When "hard f l u t t e r "  occurs during ground t e s t s  of a helicopter,  t h e  in
crease i n  blade vibrat ions can be stopped ( t o  prevent an accident) only by a 
marked decrease i n  r o t o r  rpm. The generation of such o s c i l l a t i o n s  i n  f l i g h t  may 
lead t o  ser ious consequences. 

A decrease i n  r o t o r  rpm after t h e  onset of "hard f l u t t e r "  leads t o  cessa
t i o n  of  vibrat ion at an rpm corresponding t o  t h e  point k, which, as a ru l e ,  i s  
smaller than t h e  values corresponding t o  al and a,. 

Thus, t o  s top "hard f l u t t e r "  t h e  r o t o r  rpm should be  decreased t o  values 
lower than those at  which f l u t t e r  began. 

A t  small amplitudes of forced motion i n  t h e  axial hinge, t h e  occurrence of 
"hard f l u t t e r "  i s  possible on ly  after some ini t ia l  impetus, j u s t  as i n  t h e  case 
when forced motion i s  absent. 

The rpm corresponding t o  t h e  point nl should be considered t h e  most /382 



probable rpm f o r  t h e  start of "hard f l u t t e r "  since, i n  t h i s  case, t h e  magnitude 
of t h e  necessary impetus i s  minimal. 

I n  calculat ing t h e  c r i t i c a l  rpm f o r  t h e  onset of f l u t t e r ,  corresponding t o  
al, a2, a3 i n  Fig.4.20, addi t ional  s implif icat ions can be  made i n  eq.(3.l2). 

A s  follows from Fig.4.19, when -%lL < 0.5, t h e  value of t h e  coeff ic ient  
-	 V t o r  

A i l u  can be determined by t h e  formula: 

If t h e  frequency of forced motion i s  pior = mu,(m being t h e  order of t h e  
harmonic of t h i s  motion with respect t o  r o t o r  rpm), then we can write 

I n  t h i s  case, eq.(3.12) takes  t h e  following form: 

The value of t h e  equivalent moment of f r i c t i o n  i s  here proportional t o  t h e  
r a t e  of angular displacements and does not depend on t h e  vibrat ion amplitude of 
f l u t t e r  cpf l u  : 

I n  other words, t h e  moment of f r i c t i o n  act ing i n  t h e  feathering hinge i n  
t h e  presence of forced motion i n  t h i s  hinge a f f e c t s  small o s c i l l a t i o n s  of t h e  
blade i n  t h e  same manner as a l i nea r  vibrat ion damper, whose moment i s  propor
t i o n a l  t o  t h e  r a t e  of r e l a t i v e  displacement. This conclusion per ta ins  not only 
t o  t h e  feather ing or  axial  hinge of t h e  blade but i s  generally val id  f o r  a l l  
mechanisms with f r i c t i o n .  

It a l so  follows from Fig.4.20 t h a t  f r i c t i o n  i n  t h e  feathering hinge, even 
i n  t h e  presence of forced motion, increases  t h e  c r i t i c a l  f l u t t e r  r p  i n  compari
son with t h e  case where M i ,  = 0 and represents  a use fu l  f ac to r  from t h i s  point 
of view. Therefore, t o  improve t h e  f l u t t e r  cha rac t e r i s t i c s  of a r o t o r  it i s  
possible t o  use f r i c t i o n  dampers i n  t h e  feathering hinges. O f  course, t h e  use 
of such dampers i s  possible only when t h e  hel icopter  has a s u f f i c i e n t l y  powerful 
and reliable booster control. 



Section 4. 	 Rotor,F l u t t e r A t h  . @nsACer&ion_of G.oupling of 
Blade Vibrations through t h e  A u t o ~ a ~ ~ c ~ ~ f & - c ; o ~ r o l  

1. Forms of Rotor F l u t t e r  @served i n  Helicopter.. Experiments 

A s  mentioned above, t h e  occurrence of f l u t t e r  i n  a hel icopter  sets up vibra
t i o n s  of a l l  r o t o r  blades. These o s c i l l a t i o n s  begin simultaneously despi te  t h e  
f a c t  t h a t  t h e  parameters of individual  blades making up t h e  r o t o r  generally 
d i f f e r  somewhat. Consequently, t h e  simultaneous occurrence of f l u t t e r  cannot be 

Plane of longitudinal 


automatic 

pitch control 


Fig.4.21 Diagram of Rotor Hub. 

t h e  motion of t h e  r e t r e a t i n g  blade with 

explained by t h e  coincidence of t h e  
c r i t i c a l  rpm of individual  blades. 
Furthermore, it has been noted in almost 
a l l  experiments on hel icopters  t h a t  t h e  
vibrat ions of a l l  blades are s t r i c t l y  
synchronized so t h a t  each advancing 
blade dupl icates  t h e  motion of t h e  re-

/383 
t r e a t i n g  blade with some l a g  i n  time. 
The v ib ra t ion  amplitudes of d i f f e ren t  
blades increase simultaneously so t h a t  
t h e i r  magnitude on t h e  d i f f e ren t  blades 
i s  approximately iden t i ca l .  F l u t t e r  of 
one individual  blade of t h e  ro to r  of a 
given hel icopter  i s  p rac t i ca l ly  never 
observed. 

This type of vibrat ions i n  f l u t t e r  
i s  ascr ibable  primarily t o  t h e  coupling 
of individual  r o t o r  blades through t h e  
automatic p i t ch  control  (Fig.4.21) . 

The v ib ra t ion  mode of t h e  ro to r  i n  
which each advancing blade dupl icates  
some l a g  i n  time i s  usually called 

cycl ic  vibrat ion mode. Such modes are  very o f t en  encountered i n  s tudies  of 
hel icopter  r o t o r  vibrat ions.  Therefore, they should be  examined i n  greater  de
ta i l .  

- -Rotor  VibratLoG2. Ana1;ytical Expression for c;Yclic M o d e s f  . .  -

For cycl ic  modes of f l u t t e r ,  dist inguished by t h e  f a c t  t h a t  each advancing 
blade dupl icates  t h e  motion of t h e  r e t r e a t i n g  one, we can construct an analyti
c a l  expression determining t h e  l a w  of va r i a t ion  of t h e  blade motion parameters 
i n  time. 

I f  we f ix  t h e  point of reference i n  time such t h a t  for t = 0 we have &=., = 
= 0, then t h i s  expression can be wr i t t en  i n  t h e  following manner: 

PN= POe*fsin ( p i  -N A ~ ~ ) ,  (4.11 

where 
PN = flapping angle of t h e  n-th blade; 
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Bo = angle determining t h e  magnitude of blade def lect ion a t  t h e  i n i t i a l  
reference time, f o r  t = 0; 

q = exponent determining t h e  time rate of change of vibrat ion amplitude; 
p = frequency of o s c i l l a t i o n s  i n  f l u t t e r ;

N m = phase s h i f t  of vibrat ions f o r  two successive blades. 

Equation (4.1) i s  used fo r  determining t h e  motion of blades with numbered 
N = 0, 1, 2, ..., zb - 1(zb being t h e  number of blades of t h e  ro to r )  . 

For a blade with N = zb, t h e  l a w  of change of var iables  should coincide 
with t h e  l a w  of motion of t h e  blade having N = 0. Proceeding from t h i s  assump
tion,  t h e  phase s h i f t  A$m should be  a multiple of t h e  azimuth angle between /384
t h e  blades, i.e., 

A+,=m-. 	233 (4.2)zb 

A t  c r i t i c a l  f l u t t e r  rpm, f o r  q = 0, t h e  vibrat ions of a l l  blades t ake  place 
at constant and i d e n t i c a l  amplitude but with d i f f e ren t  vibrat ion phases. The 
ana ly t i ca l  expression f o r  t h e  l a w  of change of var iables  a t  c r i t i c a l  f l u t t e r  
rpm can be obtained by subst i tut ing eq.(4.2) i n t o  eq.(4.1) and s e t t i n g  q = 0: 

PN=Posin (4.3) 

It follows from eq.( 4.3) t h a t  t h e  v ib ra t ion  phase d i s t r i b u t i o n  fo r  blades 
i n  cycl ic  modes may d i f f e r  depending on t h e  quant i ty  m. The quantity m i s  
cal led t h e  order of t h e  vibrat ion mode and may vary from m = 0 t o  m = zb - 1. 
A t  m - zb, t h e  v ib ra t ion  mode of t h e  ro to r ,  as follows from eq.(4.3), w i l l  coin
cide with t h e  mode having t h e  order m = 0. I n  l i k e  manner, fo r  m > zb a l l  modes 
w i l l  be repeated.. Thus, f o r  any ro to r  t h e r e  can be zb d i f f e ren t  vibrat ion modes 
corresponding t o  d i f f e ren t  orders m varying from m = 0 t o  m = q, - 1. 

Equations (4.1) and (4.3), derived above f o r  determining t h e  modes cf r o t o r  
vibration, were constructed only f o r  t h e  var iable  &.However, a l l  other para
meters characterizing blade motion vary i n  t h e  same manner. Nevertheless, a 
ce r t a in  vibrat ion phase usually exists between them and t h e  variable B N .  There
fore,  i n  many cases it w i l l  be convenient t o  represent t h e  l a w  of change of 
variables i n  a compl'ex form. With respect t o  t h e  var iable  B N ,  this can be 
wr i t t en  as 

(4.4)
where 

It should be  noted t h a t ,  i n  forward f l i g h t  of a helicopter,  t h e  blade exe
cutes a l s o  forced vibrat ions of cycl ic  modes since, i n  f l i g h t ,  each advancing 
blade dupl icates  t h e  motion of t h e  r e t r e a t i n g  blade. However, unlike vibrat ions 
i n  f l u t t e r ,  t h e  forced blade vibrat ions i n  f l i g h t  are s t r i c t l y  synchronized 
r e l a t i v e  t o  t h e  r o t o r  rp ,  so t h a t  each harmonic of vibrat ions of an order m 
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w i l l  correspond t o  t h e  v ib ra t ion  mode having t h e  same order: 

PN=IJmsinm (4.5) 

Here, m corresponds t o  t h e  order of t h e  harmonic of forced vibrations.  

3. c;Yclic VibratioLModes i n  Specif ic  Cas= agd C o g t r a  Loads 

The divis ion of vibrat ions i n t o  cyc l i c  modes i s  convenient i n  t h a t  only 
ce r t a in  r o t o r  control  loops a r e  loaded i n  t h e  presence of each such mode. 
Therefore, t h e  c r i t i c a l  f l u t t e r  rpm i s  determined by t h e  r i g i d i t y  of t h a t  con
t r o l  loop which i s  loaded i n  t h e  presence of t h e  pa r t i cu la r  vibrat ion mode under 
consideration. O f  p r a c t i c a l  i n t e r e s t  a r e  only those r o t o r  v ib ra t ion  modes /385
t h a t  correspond t o  t h e  smallest control r i g i d i t y  and hence t o  t h e  lowest c r i t i c a l  
f l u t t e r  rpm. 

L e t  u s  study t h e  manner of generation of cyc l i c  v ib ra t ion  modes during 
f l u t t e r ,  i n  a spec i f i c  case - f o r  example - f o r  a four-blade rotor .  

With a v ib ra t ion  mode of zero order (m = 0), a l l ' f o u r  blades vibrate  with 
i d e n t i c a l  phases and load only t h e  	col lect ive p i t ch  control. This form of 

f l u t t e r  i s  cal led in-phase f l u t t e r .  The con
t r o l  r i g i d i t y  r e fe r r ed  t o  t h e  axial hinge, 

P o s i t i o n  of c o n i n g  P o s i t i o n  of  c o n i n g  and hence t h e  c r i t i c a l  in-phase f l u t t e r  rpm,
a x i s  d u r i n g  a x i s  b e f o r e  o n s e t  

of f l u t t e r  	 depend only on t h e  r i g i d i t y  of t h e  co l l ec t ive  
p i t ch  control  loop. 

P The vibrat ion mode of t h e  f irst  order% ( m  = l), j u s t  as t h a t  of t h e  t h i r d  (m = 3 ) ,  
i s  of g rea t e s t  i n t e r e s t  since on hel icopters
it corresponds usual ly  t o  t h e  smallest con-

Ro t o r  cone  t r o l  r i g i d i t y  and hence t o  t h e  lowest values 

f l u t t e r* of c r i t i c a l  f l u t t e r  rpm. Vibrations of t hese  

\\ modes are characterized by t h e  f a c t  t h a t  only  
t h e  moment loading t h e  la te ra l  and longi
t u d i n a l  control  loops i s  applied t o  t h e  
swashplate of t h e  automatic pi tch control. 

Fig.4.22 Posit ion of Coning 
Axis i n  Antiphase F lu t t e r .  The opposite blades i n  modes of t h e  

f irst  and t h i r d  order o s c i l l a t e  i n  opposite 
phases. Therefore, t h i s  mode of f l u t t e r  i s  

usually cal led antiphase f l u t t e r  . 
The coning angle of t h e  ro to r  i n  antiphase modes of f l u t t e r  does not change. 

Therefore, t h e  motion of t h e  blades i n  these modes i s  conveniently character
ized by t h e  motion of t h e  coning a x i s  (Fig.4.22). I n  v ib ra t ions  of t he  first-
order mode, t h e  cone of t h e  ro to r  i s  def lected r e l a t i v e  t o  t h e  o r ig ina l  axis 
through an angle B and r o t a t e s  about it with an angular veloci ty  p1 = pilu - w 
opposite t o  t h e  r o t o r  rotat ion.  
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Both t h e  d i r e c t i o n  and magnitude of t h i s  angular veloci ty  vary i n  t h e  
third-order mode: p3 = p r l u  + W. 

The v ib ra t ion  frequency of t h e  variable forces  i n  nonrotating p a r t s  of t h e  
control  system, j u s t  as t h e  v ib ra t ion  frequency of t h e  fuselage during f l u t t e r ,  
coincides i n  magnitude with t h e  angular ve loc i ty  of r o t a t i o n  of t h e  coning a x i s ,  
which cons t i t u t e s  t h e  b a s i c  difference between these  modes. 

If t h e  dynamic r i g i d i t y  of t h e  nonrotating p a r t s  of t h e  control  did not 
depend on t h e  frequency of fo rces  applied t o  it, then t h e  values of t h e  c r i t i c a l  
f l u t t e r  rpn corresponding t o  modes of t h e  f i rs t  and t h i r d  order would be identi
cal. However, i n  a l l  experimental invest igat ions of f l u t t e r ,  only vibrat ions of 
one of t hese  modes, most o f t en  of t h e  third-order ( m  = 3) ,  a r e  usually en
countered. I n  several cases, i n  pa r t i cu la r  when t h e  control  system includes 
i n e r t i a  dampers, t h e  f i rs t -order  vibrat ion (m = 1) i s  observed i n  f l u t t e r .  This 
i s  explained by t h e  f a c t  t h a t  t h e  dynamic r i g i d i t y  of t h e  nonrotating pa r t  of 
t h e  control, operated by t h e  i n e r t i a  inherent t o  i t s  components, depends on t h e  
vibrat ion frequency. Consequently, t h e  hinge control  r i g i d i t i e s  corresponding 
t o  modes of t h e  f irst  and t h i r d  order on a helicopter d i f f e r  somewhat i n  magni
tude. Accordingly, t h e  c r i t i c a l  f l u t t e r  rpm a l so  d i f f e r s .  These considera- /386
t i o n s  w i l l  be supplemented i n  Section 8.6. 

m =o m = l  m=2 m=.7 

N-0 

N-1 

N-2 

N-3 

Fig.&. 23 Vibration Phase Distr ibut ion i n  Different Modes 

of F lu t t e r ,  f o r  a Four-Blade Rotor at  2 = 1.75. 
W 

During second-order v ib ra t ion  modes (m = 2), t h e  opposite blades i n  each 
pa i r  have an i d e n t i c a l  phase, and t h e  phases of t hese  p a i r s  d i f f e r  by ha l f  a 
period. The forces  applied t o  t h e  control  during vibrat ions of t h i s  mode are 
locked on t h e  swashplate of t h e  automatic p i t ch  control  whose r i g i d i t y  mainly 
determines t h e  hinge control  r i g i d i t y  for  t h i s  case. Since t h i s  r i g i d i t y  i s  
usually s u f f i c i e n t l y  high, t h e  p o s s i b i l i t y  of f l u t t e r  with t h i s  mode, which i s  
usually cal led t h e  p l a t e  mode of f l u t t e r ,  is  improbable within t h e  operating rpn 
of t h e  rotor .  
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The curves (Fig.4.23) plot ted on t h e  b a s i s  of eq.(4.3) permit judging t h e  
character of t h e  phase d i s t r i b u t i o n  by blades i n  a l l  these  modes f o r  a four-
blade rotor .  

4. 	 Dif fe ren t i a l  Equations of Rotor F l u t t e r  with Consideration 
of Coupling of Blade Vibrations . .through -t h e  Automatic 
Pi tch Control 

Each r o t o r  blade, during vibration, generates a moment ac t ing  on t h e  blade 
pi tch control system. The magnitude of t h i s  moment, taken r e l a t i v e  t o  t h e  
feather ing hinge ax is  of t h e  hub, can be wri t ten i n  conformity with eqs.(2.19) as 

where N = 0, 1, 2, ..., zb - 1 i s  t h e  numeral of t h e  blade. 

Here we have used t h e  same notations as those given i n  Section 2 i n  deriv
ing  t h e  d i f f e r e n t i a l  equations of flapping f l u t t e r  of an i so l a t ed  blade with 
axial flow past  t h e  rotor .  Now, t h e  number of equations has increased zb times, 
i.e., as many times as t h e r e  a r e  blades i n  t h e  ro to r .  

If o s c i l l a t i o n s  of individual  r o t o r  blades a r e  i n  no way r e l a t e d  and i f  /387
each blade i s  attached t o  t h e  hub as an i so l a t ed  en t i t y ,  then, a f t e r  substi tu
t i o n  of 

i n t o  eq.(4.6), we obtain equations coinciding with eqs.( 2.19). 

However, hel icopters  usual ly  do not have such r o t o r  designs. 

Generally, as a consequence of interference,  t h e  e l a s t i c  angle of r o t a t i o n  
of each blade i n  t h e  feather ing hinge 

follows t h e  deformations of individual r o t o r  control  loops, which i n  t u r n  are 
determined by t h e  t o t a l i t y  of forces  a r i s i n g  from a l l  r o t o r  blades. 

For t h e  conventional r o t o r  control  system, t h i s  r e l a t i o n  can be represented
i n  t h e  form 

where, as before, N = 0, 1, 2, ..., zb - 1. 
Here, 

y C a p= angle of r o t a t i o n  of t h e  blade according t o  deformations of  t h e  
co l l ec t ive  pi tch control; 
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yx and yz = amplitude values of t h e  angles of blade twist as a consequence
of deformations of t h e  l a t e r a l  and longitudinal controls  re
spec tive ly; 

y ( N )a . p  = angle of r o t a t i o n  of t h e  n-th r o t o r  blade as a consequence of 
deformation of t h e  swashplate of t h e  automatic pi tch control  
under t h e  e f f ec t  of forces  completely balanced on t h e  p l a t e ;
it i s  assumed t h a t ,  i f  a l l  external  forces  are balanced on t h e  
swashplate, i ts  deformation obeys t h e  condition 

where $'a:! i s  t h e  azimuth of t h e  N-th blade reckoned from t h e  plane of t h e  
longitudinal control  with respect t o  t h e  swashplate spider (see Fig.4.21); t h i s  
azimuth i s  r e l a t ed  with t h e  blade azimuth by t h e  expression 

where 
ost = angle of stagger of t h e  ro to r  hub spider; 

A$,, ,  = control angle of advance;
5 = blade angle of l a g  during r o t a t i o n  about t h e  drag hinge; i n  

Fig.4.21 t h e  blades are shown i n  a posi t ion where 5 = 0; 

I f  t h e  r o t o r  has three or less blades, then t h e  quantity y::; should be 
s e t  equal t o  zero, since i n  t h i s  case t h e r e  i s  no combination of forces which 
could be balanced completely on t h e  swashplate. 

For a four-blade ro to r ,  a l l  values of y::; a r e  equal i n  modulus, i.e., when 
N = 0, 1, 2, 3 

This equal i ty  i s  not observed for  a greater  number of blades. /388 
If we introduce t h e  concepts of r i g i d i t y  of various control loops r e fe r r ed  

t o  t h e  axial hinge of t h e  blade, then t h e  hinge moment act ing on t h e  blade due 
t o  t h e  control can be expressed i n  terms of these  r i g i d i t i e s  and deformations 
of t h e  corresponding control  runs: 

where c e a p ,  c,, c,, and c a S p  are t h e  r i g i d i t i e s  of t h e  col lect ive pi tch control, 
lateral  and longi tudinal  controls, and swashplate respectively,  referred t o  t h e  
feathering hinge of t h e  blade. 



The form of notat ion of eq.(&.l3) assumes t h a t  t h e - r i g i d i t y  c C a premains 
constant regardless  of t h e  type of combinations of f o r c e s  locked on t h e  swash-
p l a t  e. 

The values of t h e  deformations of d i f f e r e n t  control  loops r e fe r r ed  t o  t h e  
feather ing hinge can be expressed i n  terms of t h e  angles of r o t a t i o n  of indi
vidual blades yN i f  we represent eqs.(4.9) as a system of equations r e l a t i v e  t o  
t h e  unknowns ye,p ,  yx , yz, and ys. p .  The solut ion of t h e  system (4.9) y i e l d s
th.e following expressions f o r  deformations of individual  control  loops: 

When 

For a four-blade rotor ,  yb!: can be determined by t h e  formula 

For a number of blades q,> 4, t h e  quant i ty  yiy: i s  determined by t h e  
expression 

m=z, - 2  

(4.16) 

Subst i tut ing eqs.(4.14) and (4.16) i n t o  eq.(4.13), we obtain t h e  expres
sions for t h e  hinge moment from t h e  control for a blade with t h e  numeral N: 

m=zb - 2  

2nm+% 2 cos- 2rim N 2 Y N C o s  -N .  
‘b *b ‘bm =2 N 

Subst i tut ing eq.(4.17) i n t o  eq.(4.6) and examining t h i s  equation to
gether with t h e  first equation of t h e  system (2.19), we obtain a system of dif-
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f e r e n t i a l  equations of coupled blade vibrat ions at e a 1  flow past  t h e  rotor :  



m=zL - 2  

where 

The system of equations (4.18) i s  a system of ordinary d i f f e r e n t i a l  equa
t i o n s  r e l a t i v e  t o  t h e  unknown functions BN and T ~ N ,  with periodic time-variant 
c o e f f i c i e n t s  together with t h e  variable 

where 
2n

A+b=-. 
* b  

5. 	 Transformation of Eqs.(4.18) i n  Par t icular  Cases where 
c;Yciic Modesare t h e  Solution of t h e  D i f f e r e n t i a l  
Equations of Rot or- F l u t t e r  

L e t  u s  check whether cycl ic  vibrat ion modes a r e  t h e  solut ion t o  t h e  d i f 
ferential  equations (4.18) of r o t o r  f l u t t e r  wr i t t en  with consideration of 
coupling between blade vibrat ions through t h e  swashplate. 

I n  t h e  general  case, t h e  r e l a t i o n  between var iables  i n  cyc l i c  vibrat ion 
modes of a r o t o r  can b e  represented i n  t h e  form 

I 




- - - - 

where /390
BO and cpo = angles of r o t a t i o n  of t h e  blade with t h e  numeral N = 0 

relative t o  t h e  flapping and feather ing hinges, which are 
unknown functions of time; 

-A t m  2nm phase angle characterizing t h e  v ib ra t ion  mode of t h e  
zb  order m. 

Subst i tut ing eqs.( 4.21) i n t o  t h e  d i f f e r e n t i a l  equations (4.18) and succes
s ive ly  varying t h e  values of m from 0 t o  z b  - 1, we f i n d  t h a t  cycl ic  vibrat ion 
modes are t h e  solut ion t o  eqs.(4.18) only f o r  values of m = 0 (in-phase f l u t t e r )  
and z - 2 2 m 2 2 ( p l a t e  mode of f l u t t e r ) .  A t  t hese  values, t h e  d i f f e r e n t i a l  
equations (4.18) are transformed i n t o  equations exact ly  coinciding with t h e  
equations of f l u t t e r  of an i so l a t ed  blade [eq.(2.19)]. Only t h e  value of t h e  
frequency of na tu ra l  vibrat ions of a blade i n  t o r s i o n  entering t h e  second equa
t i o n  of system (2.19) becomes equal t o  

during in-phase f l u t t e r  (m = 0) and 

pt, =pa.p (4.23) 

during p l a t e  f l u t t e r  ( z b  - 2 2 m 2 2), when a l l  fo rces  due t o  t h e  blades close 
t o  t h e  swashplate and t h e  l a t e r a l  and longi tudinal  controls  and co l l ec t ive  pi tch 
control  a r e  not loaded. 

A t  t h e  same time, cyc l i c  v ib ra t ion  modes a t  m = 1and m = zb - 1a r e  t h e  
solut ion t o  t h e  d i f f e r e n t i a l  equations (4.18) only i n  one pa r t i cu la r  case, when 
c, = c, . I n  t h i s  pa r t i cu la r  case, t h e  d i f f e r e n t i a l  equations (4.18) are trans
formed i n t o  equations coinciding with eq.( 2.19) f o r  an i so l a t ed  blade. Only t h e  
value of ptw i n  t h i s  case should be  equal t o  

p,, =p x  =P I .  (4.24) 

Thus, f l u t t e r  of a r o t o r  as a whole can be studied on t h e  model of an iso
l a t e d  blade having a r i g i d i t y  of attachment equal t o  t h e  r i g i d i t y  of t h e  col
l e c t i v e  p i t ch  control  c C a p ,with t h e  cycl ic  p i t ch  control  c, = c, and swash-
p la t e  c a e Ptaken separately.  

6. 	Rotor F l u t t e r  i n  t h e  Presence-ozxfferent- Rigidi ty  
of Longitudinal and- Lateral Controk_ ~ _  

To solve t h e  d i f f e r e n t i a l  equations (4.18) i n  t h e  case of c, f cz,  we can 
use t h e  following method. L e t  u s  introduce t h e  new variables:  



Successively multiplying a l l  t e r m s  of eqs.(4.18) by s i n  $brb and by /391 
cos $6;; and s d n g  them with respect t o  N, we obtain a system of ordinary d i f 
f e r e n t i a l  equations relative t o  t h e  new variables  of t h e  following form: 

The system of equations (4.26) can be solved by t h e  conventional method 
f o r  solving a system of d i f f e r e n t i a l  equations with constant coeff ic ients .  

A similar method of reducing t h e  problem t o  a system of equations with con
s t an t  coe f f i c i en t s  w a s  used by Coleman and B.Ya.Zherebtsov i n  invest igat ing t h e  
ground resonance of helicopters.  

We can show t h a t  t h e  var iables  (4.25) can be expressed by t h e  var iables  
proposed by A.P.Proskuryakov f o r  invest igat ing helicopter s t a b i l i t y .  

In h i s  works, A.P.Proskuryakov expressed t h e  angle of r o t a t i o n  of t h e  blade 
r e l a t i v e  t o  t h e  flapping hinge i n  t h e  form 

On a l t e r n a t e l y  multiplying eq.(4.27) by cos eN and s i n  $N and s d n g  with 
respect t o  N, it wi l l  be found t h a t  

I
I 

i.e., t h e  var iables  al(t)  and b l ( t )  v i r t u a l l y  coincide with t h e  var iables  1~ 
and 5 s .  
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The use of t h e  above method f o r  solving equations of hel icopter  f l u t t e r  at 
c, # c, and p # 0 w a s  proposed by L.N.Grodko. It w a s  a l s o  used by V.D.Ilfichev 
f o r  obtaining p r a c t i c a l  results. 

Section 5. Flapping F l u t t e r  of a Rotor i n  Forward Fl ight-

1. Preliminary Statements 

Experiments carr ied out on various hel icopters  showed t h a t ,  i n  forward 
f l i g h t , f l u t t e r  might set i n  e a r l i e r  than under conditions of axial flow past  t h e  
ro to r ,  f o r  example, i n  ground-testing. Therefore, a determination of 	t h e  /392

The bas i cc r i t i c a l  f l u t t e r  rpm i n  f l i g h t  i s  of appreciable p r a c t i c a l  i n t e r e s t .  
problem requir ing solut ion i n  t h i s  case is  t h e  degree t o  which t h e  c r i t i c a l  
f l u t t e r  rpm i s  lower i n  f l i g h t  than on t h e  ground. 

A v a r i e t y  of other important p r a c t i c a l  problems arises i n  t h i s  connection. 
For example, what parametric margin p r io r  t o  f l u t t e r  should be  secured under 
ground-testing conditions so  as t o  preclude t h e  p o s s i b i l i t y  of t h e  occurrence of 
f l u t t e r  i n  f l i g h t .  

A l l  t hese  problems can be solved i f  t he re  i s  an opportunity t o  calculate  
f l u t t e r  i n  forward f l i g h t ,  which permits determining, i n  pa r t i cu la r ,  t h e  de
pendence of c r i t i c a l  rpm on t h e  f ly ing  speed. 

Furthermore, d i f f i c u l t i e s  arise i n  calculat ing t h e  f l u t t e r  i n  f l i g h t .  
These r e f e r  primarily t o  subs t an t i a l  complication of t h e  d i f f e r e n t i a l  equations 
describing blade vibration. Therefore, i n  examining t h e  problem, one should 
begin with these. 

2. D i f f e ren t i a l  Equations of Blade- Oscil la t ions-
i n  Forward Fl ight  

The d i f f e r e n t i a l  equations of t o r s i o n a l  and flapping vibrat ions of a blade 
i n  forward f l i g h t  a r e  derived i n  t h e  same manner as f o r  t h e  regime with axial 
flow past t h e  ro to r .  Only t h e  values of t h e  relative v e l o c i t i e s  of t h e  stream 
flowing past  t h e  p r o f i l e  should be calculated with consideration of t h e  addition 
t e r m  due t o  forward velocity.  These v e l o c i t i e s  can be wr i t t en  i n  t h e  form 

where p = 
v cos CY . 

Substi tuting eqs.(5.1) i n t o  eqs.(l.6) and then eq.(1.6) i n t o  eqs.( 2.3) 
and (2.11), we obtain t h e  d i f f e r e n t i a l  equations of blade vjhrzt ion i n  forward 
f l i g h t  : 



Here, t h e  coe f f i c i en t s  c12, cZ1, d l l ,  dal, dza, b21, bZ2 a r e  t h e  same 
as i n  eqs.( 2.14); furthermore, we introduce t h e  following addi t ional  coeffi
cients:  
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Assuming t h a t  t h e  pa r t i cu la r  solut ion B* and cp" of eqs.(5.2) i s  found, we 
se t ,  as before (see Sect.2.4) 

B=P *+hi 

( P " p  *+Vdl 

where B, and T, are t h e  angles of de f l ec t ion  of t h e  blade from a posi t ion 
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corresponding t o  i t s  steady motion, determinable by t h e  pa r t i cu la r  solution. 

Subst i tut ing these  expressions i n t o  eqs.(5.2), we obtain t h e  following d i f 
fe ren t ia l  equations of disturbed motion of t h e  blade i n  forward f l i gh t :  

Here, t h e  subscr ipts  of t h e  var iables  Bd and (pd ,  which ind ica t e  t h a t  they 
r e f e r  t o  disturbed motion, a r e  omitted f o r  simplicity.  

3 .  Solution of Different ia l .  Equ-ations /394.-

Equations (5.4) represent a system of d i f f e r e n t i a l  equations with periodic 
coeff ic ients .  The solut ion of  such a system can be  wr i t t en  i n  t h e  form 

where t h e  functions Ts and Tv determine t h e  content of t h e  harmonic components 
of blade vibrat ion i n  f l u t t e r .  

These functions can be wr i t t en  as 

where n = 1, 2, 3 ,  ... are constant coe f f i c i en t s  determining t h e  order of t h e  
corresponding harmonics. 

The c r i t i c a l  f l u t t e r  rpm i n  t h i s  case can be  determined i f  eqs.(5.5), with 
consideration of eqs.(5.6), a r e  subst i tuted i n t o  t h e  d i f f e r e n t i a l  equations (5.4) 
and i f  t h e  coe f f i c i en t s  of l i k e  harmonic components are equated. This operation 
resu l t s  i n  t h e  formation of-a system- of a lgebraic  equations r e l a t i v e  t o  t h e  un
known Coefficients Be, To, B, , B,, (P,, and Tn. To solve t h i s  system, it i s  
necessary t o  determine t h e  r o o t s  of t h e  cha rac t e r i s t i c  equation whose order 
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depends on t h e  number of harmonic components n re ta ined i n  t h e  solution. 

The solut ion of eqs.( 5.4), with consideration of t h e  harmonics, greatly 
complicates t h e  calculat ion and a t  t h e  same time - at t h e  values of p < 0.4 
ac tua l ly  used - introduces no e s s e n t i a l  refinements i n t o  t h e  calculat ion r e s u l t s .  
Therefore, i n  p r a c t i c a l  calculat ions we usually employ e i t h e r  t h e  approximate 
method without consideration of t h e  harmonic components or else t h e  method of 
calculat ion with numerical integrat ion of t h e  equations of blade motion with 
respect t o  time. One of t h e  versions of t h i s  method w i l l  be given i n  Section 7 
of t h i s  Chapter. 

4. 	Detgrmigation of C r i t i c a l  F l u t t e r  Rpm without Consideration 
of  Harmonic Cgmwnentsof Blade Motion 

If t h e  e f f e c t  of harmonic components on t h e  c r i t i c a l  rpn i s  disregarded, 
t h e  calculat ion of f l u t t e r  i n  forward f l i g h t  i s  no more complex than under con
d i t i ons  of axial flow past t h e  rotor .  An approximate solution, neglecting t h e  
e f f ec t  of harmonic components can be obtained, i f  t h e  periodic coe f f i c i en t s  i n  
t h e  d i f f e r e n t i a l  equations (5.4) a r e  omitted%. I n  t h i s '  case, t h e  forward f ly ing  
speed i s  taken i n t o  account by introducing, i n t o  eqs.(l.6), t h e  constant par t  of 
t h e  functions depending on U,. For t h i s  it su f f i ces  t o  s e t  

Then, t h e  system of d i f f e r e n t i a l  equations of disturbed motion can be  /395
wri t t en  i n  t h e  following manner: 

1
i 

where 

For a blade of rectangular planform, t h e  coeff ic ient  bIe2 can be considered 
as approximately equal t o  -2. The coeff ic ient  bZ2 i s  s m a l l  i n  magnitude and has 
no subs t an t i a l  effect  on t h e  r e su l t s .  . 

Equations (5.8) d i f f e r  from eqs.(2.19) f o r  a regime with axial flow past  
1

t h e  ro to r  only by terms of t h e  type of (1-2 pZbT2). This permits determining 

X- This method was proposed by V.D.Iltichev. 



t h e  c r i t i c a l  f l u t t e r  rpm i n  forward f l i g h t  by eq.(2.27); .however, i n  t h e  expres
sions of ce r t a in  coe f f i c i en t s  of eq.( 2.a) enter ing t h i s  formula the re  appears 

Thus, disregarding a l l  harmonic components of blade motion, t h e  problem of 
determining t h e  c r i t i c a l  f l u t t e r  rpm i n ’  forward f l i g h t  .can be  reduced t o  solving 
t h e  system of d i f f e r e n t i a l  equations (5.8) with constant coeff ic ients .  

5. Effect of Flying Speed-on C r i t i c a l  F l u t t e r  Rpm 

The e f f ec t  of f l y i n g  speed, definable by t h e  t e r m  (1- -	1 p2bT2) i n  
2 

eqs.(5.8) proves t o  be qu i t e  weak. Figure 4.24 shows t h e  dependence of t h e  
c r i t i c a l  rpm on t h e  f ly ing  speed, determined by t h e  value of p, f o r  t h r e e  d i f 
f e ren t  values of blade balancing. 

I f  follows from t h e  graph ( see  	Fig.4.24) t h a t  t h e  c r i t i c a l  . f l u t t e r  rpm 
drops by about 5 - 10%with an increase i n  
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Fig.4.24 C r i t i c a l  F l u t t e r  Rpm 
as a Function of Flying Speed. 

f l y ing  speed t o  values of p = 0.25 - 0.3. 

I n  experiments carr ied out on hel i 
copters, t h e  e f f e c t  of speed i s  somewhat 
stronger. This can b e  explained by t h e  ef
f e c t  of t h e  following factors:  

It i s  shown above i n  Section 3 t h a t ,  
f o r  s m a l l  blade o s c i l l a t i o n s  during f l u t t e r ,  
t h e  axial hinge with f r i c t i o n  can be re
garded as a l i n e a r  damper whose eff ic iency 
i s  smaller, t h e  higher t h e  angular veloci ty  
of r e l a t i v e  displacements i n  t h i s  hinge
during forced v ib ra t ions  of t h e  blade. 
Therefore, t h e  c r i t i c a l  f l u t t e r  rpm i n  
f l i g h t  decreases with increasing r e l a t i v e  



-- 

-- 

displacements i n  t h e  axial  hinge and hence with f lying speed, since relative 
displacements usually increase with speed. Hence it follows t h a t  a l l  f ac to r s  on 
which t h e  hel icopter  balancing depends may a f f e c t  t h e  f lu t t e r ,  since balancing 
determines t h e  v ib ra t ion  amplitude i n  t h e  axial hinge with respect t o  t h e  f irst  
harmonic of r o t o r  rpm. 

Displacements of t h e  blade i n  t h e  axial hinge, with harmonics higher than 
t h e  f irst ,  may a l so  have a strong e f f ec t .  These harmonic components usually 
have smaller amplitudes of displacement but r e l a t i v e l y  high angular velocity,  
leading t o  an appreciable reduction of t h e  effectiveness of t h e  damping act ion 
of dry f r i c t i o n  i n  t h e  axial  hinge of t h e  blade. 

Thus, i n  many cases t h e  severe drop i n  c r i t i c a l  f l u t t e r  rpm i n  forward 
f l i g h t  i s  explained by a decrease i n  t h e  damping act ion of f r i c t i o n  i n  t h e  axial 
hinge. 

A no l e s s  important f ac to r  capable of subs t an t i a l ly  influencing c r i t i c a l  
revolutions of f l u t t e r  i s  t h e  va r i a t ion  i n  t h e  aerodynamic cha rac t e r i s t i c s  of 
t h e  blade p r o f i l e  i n  connection with f luctuat ions of t h e  value of t h e  Mach number 
under forward f l i g h t  conditions. A s  mentioned above, a change i n  M i n  t he  range 
from 0.5 t o  0.9 causes a marked change i n  t h e  aerodynamic cha rac t e r i s t i c s  and, 
what i s  especial ly  important f o r  f l u t t e r ,  a d i s t i n c t  s h i f t  i n  t h e  posit ion of 
t h e  p r o f i l e  focus. 

Only t h e  method employing numerical integrat ion of t h e  d i f f e r e n t i a l  equa
t i o n s  of blade motion with respect t o  time (see Sect.7) permits taking i n t o  
account t hese  f a c t o r s  with su f f i c i en t  accuracy. 

Section 6. 	 Calgulat ionof  F l u t t e r  with Consideration of 
Bendix  and Torsion of t h e  Blade 

1. Bending &nd-Torsion of  Blade during F l u t t e r  

It w a s  pointed out above t h a t ,  i n  t h e  overwhelming majority of cases, vi
b ra t ions  of t h e  blade as a so l id  body predominate i n  t h e  mode of blade vibrat ion 
i n  t h e  flapping plane during f l u t t e r .  The blade executes these  osc i l l a t ions ,  
r o t a t i n g  about t h e  flapping hinge. Torsional vibrat ions of t h e  blade occur 
mainly as a consequence of i t s  r o t a t i o n  about t h e  feathering hinge. I n  t h i s  
hinge, t h e  blade r o t a t e s  owing t o  t h e  kinematic action of t h e  swashplate of t h e

/397 
automatic pi tch control  and flapping compensator as well  as deformations of t h e  
control cables. Flexural and t o r s i o n a l  deformations of t h e  blade i t s e l f  general
l y  have no s ign i f i can t  e f f e c t  on t h e  c r i t i c a l  f l u t t e r  rpm. Nevertheless, t h e  
f l exura l  and t o r s i o n a l  deformations of t h e  blade during f l u t t e r  of t h i s  type are 
usually qu i t e  pronounced. They lead t o  smaller displacements of t h e  blade ele
ments i n  comparison with displacements during vibrat ion of t h e  blade as a s o l i d  
body, but t hese  displacements a r e  of t h e  same order. Therefore, it i s  impossible 
t o  neglect deformations of t h e  blade i t s e l f  or t o  show no i n t e r e s t  i n  them. 

I n  individual  cases, t h e  flexural deformations of t h e  blade increase and 
begin t o  have a noticeable e f f e c t  on t h e  c r i t i c a l  f l u t t e r  rpm. It i s  especial ly  
important t o  take i n t o  account blade bending i n  determining t h e  e f f ec t  of con
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centrated balancers i n s t a l l e d  on t h e  blade t o  eliminate - f l u t t e r .  

Also known are individual  cases where t h e  blade during f l u t t e r  executes 
flexural v ib ra t ions  i n  which t h e  share of t h e  flapping mode i s  qu i t e  small. It 
should be emphasized t h a t  such cases are very rare. However, f o r  jet hel icopters  
with blade-tip engines, such f l u t t e r  - usual ly  cal led "bending f lu t te r"  - con
s t i t u t e s  a ser ious danger. Subsection 8 of t h i s  Section w i l l  b e  devoted t o  an 
examination of t h i s  type of f l u t t e r .  

A s  s t a t e d  above, t h e  e f f e c t  of t o r s i o n a l  vibrat ions of t h e  blade during 
f l u t t e r  can be disregarded a t  a value of t h e  coefficient. CY < 0.4. - 0.5 (see 
Sect.l.4). I n  t h e  remaining cases, i n  pa r t i cu la r  when t h e  p i t ch  control system 
has r e l a t i v e l y  great r i g i d i t y ,  blade t o r s i o n  cannot be  disregarded. This may 
r e s u l t  i n  a very l a rge  e r r o r ,  

However, most of t h e  presently constructed hel icopters  have a coeff ic ient  
CY < 0.4. Therefore, i n  Subsection 6, we w i l l  s pec i f i ca l ly  study f l u t t e r  with 
consideration of bending but  without consideration of t o r s i o n a l  deformations of 
t h e  blade. Such an approach leads t o  a considerable s implif icat ion of t h e  d i f 
f e r e n t i a l  equations. 

I n  calculat ing t o r s i o n a l  s t r a i n s  of a blade it i s  important what method i s  
used for  determining t h e  torque due t o  bending forces  on t h e  blade. I f  t h e  
biade i s  bent i n  t h e  flapping plane, then t h e  force Q applied t o  t h e  blade i n  
t h e  plane of r o t a t i o n  c rea t e s  torque on t h e  a r m  Ay r e l a t i v e  t o  t h e  section, at  a 
r ad ius  r closer  t o  i t s  root  (Fig.k.25). Likewise, when t h e  blade i s  bent i n  t h e  

plane of r o t a t i o n  a similar 
torque on t h e  a r m  Ax i s  created 

7,, by t h e  force T ac t ing  i n  t h e  
flapping plane. 

I n  calculat ing t h e  twist ing
Y1 	 moments due t o  bending forces  

on t h e  blade, it i s  important t o  
r e c a l l  t h e  f a c t  t h a t  t h e  com-

W 
ponents of t h e  centr i fugal  

7 forces  r e l i ev ing  t h e  blade i n  
J bending a l s o  pa r t i c ipa t e  i n  t h e  

r / generation of tw i s t ing  moments. 
If we calculate  only t h e  torque 

Fig.4.25 Diagram of t h e  Occurrence of due t o  external  bending forces  
!his t ing Moments due t o  Bending Forces on t h e  blade, t h e  value will be 

on t h e  Blade. 	 much l a rge r  than t h e  ac tua l  
torque, j u s t  as t h e  moment due 
only t o  t h e  external  forces  bend

ing t h e  blade will be many times greater  than t h e  bending moment i n  t h e  blade 
section. 

Let us examine a blade element of length d r ,  bent i n  two mutually perpendic
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. 
ular planes (Fig.k.26). Equating t o  zero t h e  sum of t h e  moments of a l l  external  
forces  relative t o  t h e  tangent t o  t h e  blade a x i s  i n  a section a t  t h e  radius  r /398
and discarding a l l  t e r m s  of higher orders of smallness relative t o  dry we obtain 

-
o r  

I f ,  f o r  simplicity,  we assume t h a t  t h e  planes of m z u d "  and mini" blade 
r i g i d i t y  coincide with t h e  planes of r o t a t i o n  and flapping, then, having set 

(6.3)
and 

MY 

we obtain 
y"=-. 

E'Y 

where I, and I, are t h e  e l a s t i c  moments of i n e r t i a  of t h e  blade sect ion during 
bending i n  t h e  plane of r o t a t i o n  and flapping plane. 

Equation (6.5) w a s  first proposed f o r  calculat ions of a blade by V.N.Novak. 

It follows primarily from an examination of t h i s  formula t h a t  t h e  torque 
mor 
ar per uni t  length due t o  t h e  bending forces  on t h e  blade is  always equal 

t o  zero i f  

J x = l y ,  

i.e., i f  t h e  r i g i d i t y  of t h e  blade i n  t h e  plane of r o t a t i o n  and i n  t h e  flapping 
plane i s  iden t i ca l .  

Furthermore, by v i r t u e  of t h e  smallness of t h e  bending moments M, and My 
(as a consequence of load r e l i e v i n g b y  centr i fugal  forces, these moments a r e  by 
a f ac to r  of 8 - 12 less than t h e  moments due t o  t h e  external  forces  act ing on 

t h e  blade), t h e  torque a M t o r  per uni t  length w i l l  be qu i t e  s m a l l  i n  a l l  casesa r  
even i f  I, f I,. This conclusion i s  highly important and r e s u l t s  i n  a general  
approach t o  calculat ing torques and t o r s i o n a l  deformations of a blade, as 
follows : 

I n  each sect ion of  t h e  blade, we must determine t h e  torque relative t o  /399
t h e  f l e x u r a l  axis of the blade i n  t h e  examined sect ion due t o  forces  act ing only 
i n  t h i s  section. Then, t hese  l o c a l  tw i s t ing  moments should be  summed with 
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~4 

Y F l a p p i n g  p l a n e  
respect t o  t h e  blade length. Hence it 
follows i n  pa r t i6u la r  t h a t  t h e  a r m s  of 
t h e  fo rces  causing t h e  twist ing moments 
of t h e  blade must remain constant re-
gardless  of whether or  not t h e  blade i s  
bent. 

With regard t o  f l u t t e r  calculations,  
it follows from t h i s  conclusion t h a t  t h e  

P l a n e  of rotation 1My+dMY 	 torque per u n i t  length of t h e  blade from 
cen t r i fuga l  forces  should be calculated 
by t h e  formula 

Lr .- r
r a t h e r  t han  by t h e  frequently used 

\ MY formulas of t h e  type 

Fig.4.26 Diagram of Loading t h e  
Blade Element with Stresses i n  Two 

Mutually Perpendicular Planes. 

which holds t r u e  o n l y  f o r  a blade with an i n f i n i t e l y  g rea t  r i g i d i t y  i n  t h e  plane 
of rotat ion.  

3. Di f f e ren t i a l  Equations of Binary Blade Vibration 

Binary blade v ib ra t ions  i n  vacuum a r e  examined i n  Section 5, Chaoter I of 
Vol.11. I n  studying binary vibrat ions i n  a i r ,  we must addi t ional ly  t ake  i n t o  
account aerodynamic forces.  Using t h e  d i f f e r e n t i a l  equations of flexural 
[eq.(l.9)] and t o r s i o n a l  vibrat ions [eq.(5.6)] of a blade (see Chapt.1 of 
Vol.11) and supplementing these with i n e r t i a  terms of t h e  couple and with aero-

/r-coo 
dynamic forces  expressed by eqs.(l.6) of t h i s  Chapter, we obtain a set of d i f 
f e r e n t i a l  equations of t o r s i o n a l  blade vibrat ions i n  air: 

my +[~/y" ] "-[ ~ y ' ] '-mi4 -

I,,,!- [GT$]'+w21,cp +"eb3(/++ 
(6  .lo) 

16 
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These equations are wri t ten i n  a form pertaining only t o  disturbed motion 
of t h e  blade. The pa r t i cu la r  solut ion describing undisturbed steady motion of 
a blade wil l  not be  discussed here. 

I n  eqs.(6.10), we use t h e  following designations: 
y = displacement of t h e  blade element i n  t h e  flapping plane during 

disturbed motion of  t h e  blade; 
cp = angle of r o t a t i o n  of t h e  blade element i n  t h e  same motion; 
m = mass of t h e  blade element per unit  length; 

I, = moment of i n e r t i a  of t h e  blade element per uni t  length r e l a t i v e  
t o  t h e  feathering hinge axis; 

GT = t o r s i o n a l  r i g i d i t y  of t h e  blade; 
N = centr i fugal  force i n  t h e  blade section: 

R 

N =w2 r mrdr; 


CT = distance from t h e  center of gravi ty  of t h e  sect ion t o  t h e  feather
ing hinge axis, with t h e  direct ion from t h i s  a x i s  t o  t h e  t r a i l i n g  
edge of t h e  blade considered posi t ive;  

oc = 	distance from t h e  p r o f i l e  aerodynamic center t o  t h e  feathering
hinge ax is .  

Different ia t ion with respect t o  t h e  blade radius  i s  denoted by a prime and 
with respect t o  time by a dot. 

To solve t h i s  set of equations it i s  convenient t o  change from t h e  variable 
cp, which determines t h e  t o t a l  angle of r o t a t i o n  of t h e  blade element i n  dis
turbed motion, . t o  t h e  var iable  9 representing only t h e  e l a s t i c  angle of ro t a t ion  
of t h e  blade and correlated with cp by t h e  r e l a t i o n  

[p= 3 - y o ,  

where 
yo' = angle of r o t a t i o n  of t h e  blade i n  t h e  flapping hinge; 
u = flapping compensator. 

Let u s  subs t i t u t e  t h e  expression f o r  t h e  angle cp i n t o  t h e  d i f f e r e n t i a l  
equations of binary blade vibrat ion [eq.(6.10)1. This makes It possible t o  /ko1
rewrite them i n  a form more convenient f o r  fu r the r  transformation: 

(6.11) 
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.., - n .I-may -Zmxy0-021mxyo-=~ b ~ L / X y o-

I n  t h e  presence of a horizontal  flying speed of t h e  helicopter,  t h e  rela
t i v e  veloci ty  of t h e  flow past t h e  p r o f i l e  will b e  a periodic function of time 
and radius.  This veloci ty  can be set approximately equal t o  t h e  veloci ty  U,: 

Ux=or +V sin w t .  (6.12) 

Therefore, eqs.(d.ll) represent a system of p a r t i a l  d i f f e r e n t i a l  equations with 
coe f f i c i en t s  per iodical ly  varying i n  time. 

When t h e  f ly ing  speed of t h e  hel icopter  V equals zero, t h e  periodic coeffi
c i e n t s  of t h e  system (6.11) become constant, independent of time. 

For t h e  examined type of r o t o r s  system, eq.(6.ll) has t h e  following 
boundary conditions: 

~ o = [ ~ ~ y " l o = . ( M ~ + M f , ) ,  
M b  =[GTS'],=c,,, 8 0  -M,,, (6.13) 

where 
MQ = bending moment i n  t h e  blade roo t ;  
Mb = twist ing moment i n  t h e  blade roo t ;  
Mfr = moment of f r i c t i o n  i n  t h e  axial hinge of t h e  hub; 

c,,, = r i g i d i t y  of t h e  control  system; 
zY0 = angle of r o t a t i o n  of t h e  blade roo t  due t o  deformations of t h e  

control  system. 

4. Solution of D i f f e r e n t i a l  Equations 

The solut ion of t h e  system of d i f f e r e n t i a l  equations (6.11) can be  obtained 
by using B.G.Galerkincs method. We set 

where 
y C J )  and = modes of t h e  na tu ra l  flexural and t o r s i o n a l  vibrat ions of 

t h e  blade i n  vacuum; 
6, and yk = coeff ic ients  of flexural and t o r s i o n a l  deformations of t h e  
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blade with respect t o  t h e  j-th flexural and k-th to r s iona l  harmonic 
of na tura l  vibration. 

The coef f ic ien ts  6 ,  and yk are cer ta in  functions of time. Since e q ~ ~ ( 6 . U )  
are d i f f e r e n t i a l  equations with periodic coeff ic ients ,  t h e  coef f ic ien ts  6 j  /rcoz
and Yk should be functions of time of t h e  type 

6,=B,,eaf (1 +T )  (6.15) 

where t h e  function T determines t h e  content of harmonic osc i l l a t ions  during 
f l u t t e r  . 

If, as before i n  Section 5.4, we seek the  solution with an accuracy l imited 
only by t h e  fundamental frequency and disregard t h e  e f f ec t  of harmonic components, 
then we can omit t h e  periodic coef f ic ien ts  i n  eq.(6.11). 

Applying B.G.Galerkints method t o  t h i s  simplified system of equations, we 
obtain a system of ordinary d i f f e r e n t i a l  equations r e l a t i v e  t o  t h e  var iables  6, 
and yk. I n  m a t r i x  form, t h i s  system can be wr i t ten  a s  before (Sect.2.5) as t h e  
equation 

C X + D w k  +(A +&B) X =O. (6.16) 

Here t h e  var iable  X i s  t h e  vector function with projections 6, and yk, i.e., 

X =  (i)
, 

(6.17) 

... 


while A, B, C, and D are rectangular matrices of t h e  order z, where z i s  t h e  sum 
of t h e  number of flexural and to r s iona l  harmonics accounted f o r  i n  t h e  calcula
t ion .  

Set t ing X = X0dt i n  eq.(6.16), we  obtain a system of a lgebraic  equations 
of t h e  form 

(6.18) 

Let us then equate t h e  determinant of t h i s  system t o  zero. The resu l tan t  
algebraic equation r e l a t i v e  t o  t h e  unknown parameter A' i s  t h e  cha rac t e r i s t i c  
equation of t h e  system (6.16). The roo t s  of t h i s  equation completely charac
t e r i z e  t h e  blade motion described by t h e  system (6.11). 

To determine t h e  boundaries of f l u t t e r ,  we should set h = i p  i n  t h e  charac
t e r i s t i c  equation and f ind  t h e  corresponding values of w and p. 
w i l l  determine t h e  parameters of t h e  limits of t h e  f l u t t e r  zone. 

These values 
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An analysis  of t h e  r e s u l t s  obtained from calculat ibns shows t h a t ,  i n  t h e  
general  case, each combination of t o r s i o n a l  and flexural harmonics of blade vi
bra t ions  may correspond t o  a zone of i n s t a b i l i t y  with o s c i l l a t i o n s  having a mode 
i n  which t h e  content of t h e  harmonics of t h i s  combination predominate. However, 
with ac tua l ly  used blade parameters, a given f l u t t e r  zone by no means corre
sponds t o  each combination of harmonics. Thus, t h e  number of f l u t t e r  zones i s  
always smaller than t h e  number of combinations of flexural and to r s iona l  har
monics and can never be  g rea t e r  t han  t h e  number of t h e s e  combinations. 

For p r a c t i c a l  purposes, an important point i s  t h e  d i r e c t  dependence of t h e  
c r i t i c a l  f l u t t e r  rpm on t h e  frequency of t h e  na tu ra l  v ib ra t ions  of t h e  t o r s i o n a l  
harmonic of t h e  blade enter ing i n t o  t h e  combination i n  question. Therefore, 
combinations involving only t h e  f irst  harmonic of t o r s i o n a l  blade vibrat ion /403
give t h e  lowest values of c r i t i c a l  f l u t t e r  rpm. All other  combinations based on 
higher.  t o r s i o n a l  harmonics of t h e  blade a r e  of no p r a c t i c a l  i n t e r e s t  since t h e  
c r i t i c a l  f l u t t e r  rpm corresponding t o  these  zones i s  always higher than t h e  
operating range of i n t e r e s t  here. 

A l l  forms of f l u t t e r ,  corresponding t o  combinations of d i f f e ren t  flexural 
harmonics of t h e  blade with t h e  f i r s t  harmonic of t o r s i o n a l  vibrat ions of t h e  
blade, w i l l  be cal led t h e  p r inc ipa l  modes of f l u t t e r .  Below, we w i l l  b e  in
t e r e s t e d  only i n  t h e  p r inc ipa l  vibrat ion modes since these  modes of f l u t t e r  have 
t h e  lowest c r i t i c a l  rpm and therefore  a r e  t h e  only ones encountered i n  practice.  

5 .,	Calculation of F l u t t e r  with Considerat ionsf  
Three Degrees of Freedom 

To i l l u s t r a t e  t h e  above method, l e t  us  examine i n  greater d e t a i l  t h e  compu
t a t i o n a l  formulas f o r  t h e  case where t h e  vibrat ion mode during f l u t t e r  i s  repre
sented as combinations of t h e  zero r and t h e  first y flexural and f irst  tor
s iona l  harmonics. 

The matrices entering eq.(6.16) w i l l  b e  of t h e  t h i r d  order i n  t h i s  case, 
and t h e  vector function X w i l l  have only th ree  projections: 

x=( t). 
The coeff ic ients  of t h e  matrices A, B, C, and D w i l l  b e  referred,  as above, 

L1, and I1 standing f o r  t h e  highert o  t h e  values of t h e  coe f f i c i en t s  I h a h r  
derivat ive of t h e  variables:  

R 
Zl =1my2dr. 

0 
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Let us write out t h e  expressions for t h e  coe f f i c i en t s  of t h e  matrices: 

a) I n e r t i a  m a t r i x  C: 

'11 c12 c13 

' 2 1  c22 c23 ' 
''=(c31 '32 c33 )'

where 

R 
7. 

Cll =1 -+- mor dr, 
'hh 

R
. 

c12 =--I mor8 dr, 
'h.h 

C 2 * = l r  

R 

c~~=1 +-5Po may dr; 
1 1  

0 

b)  Damping coeff ic ient  m a t r i x  D: 

(6.22) 

where 
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i f  d,, = 
~ L l m r ~ ,  

[see eq. (3.14) I. 
r 

c) S t i f fnes s  matrix A: 

where 
R 

ccon8; f GT (8' )2 dr 
a22=4; = 0 

4 
4 3  =Pil. 

Here, pa, i s  t h e  frequency of na tura l  f l exura l  vibrat ions of t h e  first harmonic 
of a nonrotating blade. 

d) Centrifugal and aerodynamic s t i f f n e s s  m a t r i x  B: 
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(6.26) 
where 

R
1 

b33= k + c p  2-Po [ br2ydr+ -1 
p2R25 b y  dr] ; 

I1 0 2 o 

Here, k = -PJmrdr where B = y'.
I1 r 

The cha rac t e r i s t i c  equation for t h i s  case w i l l  have t h e  following form: 
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Hence, 



- - 

The r o o t s  of t h e  cha rac t e r i s t i c  equation (6.28) can be determined by means 
of any standard program avai lable  f o r  d i g i t a l  computers of any type. Such a 
program can include the  operation of computing t h e  coe f f i c i en t s  of t h e  charac
t e r i s t i c  equation d i r e c t l y  from t h e  coe f f i c i en t s  of eq.( 6.16). I n  t h i s  case, 
eqs.(6.3) need not be used. 

The values of t h e  angular veloci ty  w corresponding t o  t h e  l i m i t s  of f l u t t e r  
can be obtained a l s o  d i r e c t l y  i f ,  i n  t h e  cha rac t e r i s t i c  equation (6.28), we set 
h = i p  and equate t o  zero t h e  r e a l  and imaginary pas t s  of t h e  equation separately. 

The equations thus  obtained w i l l  have t h e  following form: 

I f ,  from t h e  equation Lz(w,  p) = 0, we determine p = f(w) and subs t i t u t e  
i n t o  t h e  equation L,(w, p) = 0, then t h e  points of i n t e r sec t ion  of t h e  obtained 
curve L1(w) = 0 w i t h  t h e  abscissa will correspond t o  t h e  limits of f l u t t e r .  

6. Calculation-of. .- . .- .- . . .  Degrees ofF l u t t e r ,with Three 
Freedom. - . . .~_. Disregarding - ~B1ad.e Torsion. . 

A l l  t h e  formulas presented above a r e  appreciably simplified i f  we assume 
t h a t  t h e  r o t o r  blade i s  absolutely r i g i d  i n  torsion. It w a s  noted above t h a t  
t h i s  assumption i s  v a l i d  f o r  a l l  r o t o r s  f o r  which t h e  t o r s i o n a l  r i g i d i t y  of t h e  
blade i s  appreciably higher t han  t h e  r i g i d i t y  of t h e  blade pi tch control  system. 
I n  t h i s  case, during t o r s i o n a l  vibrat ions t h e  blade elements r o t a t e  m a i n l y  as a 
consequence of deformations of t h e  control  system and, t o  a l e s s e r  degree, owing 
t o  deformations of t h e  blade i tself .  

Consideration of a va r i a t ion  i n  t h e  angle of r o t a t i o n  of t h e  blade with 
respect t o  length l eads  t o  a minor change of ce r t a in  coe f f i c i en t s  of eq.(6.18) 
[see eqs.(6.21), (6.23), and (6.27)]. This i s  explained by t h e  f a c t  t h a t  t h e  
magnitudes of t h e  i n t e g r a l s  enter ing t h e  expressions of t hese  coe f f i c i en t s  are 
determined mainly by t h e  blade t i p  which i s  subject t o  l a rge  aerodynamic forces, 

441 




while t h e  change i n  t h e  angle of r o t a t i o n  9 over t h e  length of only t h e  blade 
t i p  i s  insignif icant .  Therefore, t h e  assumption of constancy of t h e  angles of 
r o t a t i o n  of t h e  blade cross  sect ions over i t s  length, i n  many cases, w i l l  not 
lead t o  subs t an t i a l  errors .  A t  t h e  same time, t h i s  assumption appreciably 
s impl i f i e s  a l l  computations, s ince 9 = 1and t h e r e  is  no need t o  decompose t h e  
angle of r o t a t i o n  of each blade sect ion i n t o  9 and uyd. 

The d i f f e r e n t i a l  equations of motion f o r  t h i s  case can be  wr i t t en  i n  t h e  
following manner : 

(6.33) 


+ ( ~ 6 - x 0 ) U 4 -
R 

--w2 mray'dr=O. 
0 

The var iable  cp here represents  t h e  t o t a l  angle of r o t a t i o n  of t h e  blade 
relative t o  t h e  feather ing hinge as a consequence of deformations of t h e  control 
and as a r e s u l t  of t h e  kinematic ac t ion  of t h e  flapping compensator. 

The solut ion t o  t h i s  system of equations, j u s t  as f o r  t h e  s y s t e m  (6.10), 
can be obtained by means of B.G.Galerkinfs method, i f  we put 

where cpa i s  a function only of time and does not depend on t h e  blade radius.  

L e t  us write out t h e  computational formulas f o r  t h e  case where t h e  vibra
t i o n  mode i n  t h e  flapping plane i s  represented by means of only t h e  zero r and 
t h e  first y harmonics of t h e  na tu ra l  blade vibrat ions.  
f i c i e n t s  of t h e  matrices entering t h e  equation of t h e  form of eq.(6.16) can 

I n  t h i s  case, t h e  coef
/409

be  determined by t h e  following expressions: 

a) I n e r t i a  coeff ic ient  m a t r i x  C: 



-- 

where 
c,,=l; 

c12= -	-I R J' ma rdr; 
Ih.h 

R
cZ1= - - jma rd t ;1 

1a.h 

Cz2= 1; 
R 

c23= 1 1maydr;
Ia.h 

R 

C32= --s 1 maydr;
11 

0 

b )  Damping coeff ic iunt  m a t r i x  D: 

where 
R 

d , ,  =-1 cue-1 br3dr: 
'h.b 

R 
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. .. .. . . ._... .. .._ 

c )  Stiffness matrix A: 

where 


d) Centrifugal and aerodynamic stiffness matrix B: 


where 

b, ,  =1; 

-1 s-. ma rdr ;
b21= - f@,h 

0 

R 

b,, = 1 marpdr; 
fa.b 

r~ R 1 



The charac te r i s t ic  equations for t h i s  case w i l l  have the  sane form as  i n  /4u 
the  preceding case [see eq.(6.28)1: 

A6Ao+h6aA1+1.'(02B1+B2)+ ) b 3 0  (02C1+ C?)+)? (dD,+dD2 +D3)+ 
(6 042) 
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b 

The values of t h e  c r i t i c a l  angular v e l o c i t i e s  of a given case are deter
mined by simultaneous solut ion of two equations obtained from eq.(6.42) i f  we 

set A = ip ,  as i n  t h e  case of t h e  blade 
e l a s t i c  i n  tors ion.  

7. Calculation Results 

To i l l u s t r a t e  t h e  e f f ec t  of 
f l e x u r a l  r i g i d i t y  of a blade, Fig.4.27 
gives t h e  c r i t i c a l  f l u t t e r  rpm as a 
function of %c.g fo r  a blade of mass 
constant over its length and with 
balancing. The curves a re  plot ted f o r  
two values of flexural r i g i d i t y  of t h e  
blade. The degree of r i g i d i t y  i s  
characterized by t h e  values of t h e  fre
quency of na tura l  bending vibrat ions 
of t h e  first harmonic of a nonrotating 
blade pol . The cases invest igated a re  
those of blades with t h e  usual magni-

Fig.4.27 C r i t i c a l  F lu t t e r  Rpm as tude of flexural r i g i d i t y ,  at  
a Function of Blade Balancing, fo r  pa, /p = 0.3 ( so l id  curve) and of 
Two Values of its Flexural Rigidi ty .  pol/ptw = 3.0 which corresponds t o  a 

very r i g i d  blade (broken curve). 

The share of bending i n  the  mode of blade vibrat ions during f l u t t e r  can /k13
be estimated from t h e  r a t i o s  6,/6, plot ted fo r  a number of points  on t h e  same 
graph. The quant i ty  6,/6~ i s  equal t o  t h e  r a t i o  of t h e  blade t i p  def lec t ion  i n  
bending r e l a t i v e  t o  t h e  shape of t h e  f i rs t  harmonic t o  t h e  displacement of t h e  
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t i p  during vibrat ion of t h e  blade as a so l id  body (shape of t h e  zero harmonic) . 
It follows from these  da t a  t h a t  f o r  a blade with constant m a s s  and balancing 

over i t s  length, consideration of f l exura l  deformations with respect t o  t h e  
first harmonic does not g r e a t l y  r e f i n e  t h e  calculat ion r e s u l t s .  

8. Bending F l u t t e r  

The r e s u l t s  presented above cannot be extended t o  a l l  designs of r o t o r  
blades. I n  individual  cases, vibrat ions with primarily bending of t h e  blade 
occur during f l u t t e r .  This type of f l u t t e r  i s  usual ly  cal led "bending f lu t t e r " .  

I n  bending f l u t t e r ,  t h e  blade v ib ra t e s  i n  t h e  flapping plane with a mode 
close t o  some harmonic of t h e  na tu ra l  vibrat ion of t h e  blade i n  bending and is  
twisted with respect t o  a mode close t o  t h a t  of t h e  f irst  harmonic of t h e  na tu ra l  
vibrat ions i n  tors ion.  A s  already noted, f l u t t e r  with modes of subsequent har
monics of na tu ra l  vibrat ions of t h e  blade i n  to r s ion  i s  theo re t i ca l ly  also pos
s ib l e .  However, t h e  c r i t i c a l  rpm of such f l u t t e r  i s  several  times greater than 

t h e  m a x i "  r o to r  rpm. 

The previously examined flapping 
f l u t t e r  can be  regarded as a pa r t i cu la r  
case of bending f l u t t e r  i n  which t h e  
blade v ib ra t e s  with a mode close ' t o  t h a t  
of t h e  zero harmonic of na tu ra l  vibra
t i o n s  of t h e  blade i n  t h e  flapping 
plane. 

To each harmonic of bending vibra
t i o n s  of t h e  blade t h e r e  corresponds a 
separate f l u t t e r  zone i n  which t h e  vi
b ra t ions  are characterized by spec i f i c  
parameters inherent only t o  t h i s  zone. 
Blade vibrat ions with d i f f e ren t  modes of 
f l u t t e r  may occur qu i t e  independently. 
The mode of f l u t t e r  having t h e  lowest 
c r i t i c a l  rpm i s  p rac t i ca l ly  t h e  f irst  
t o  be detected. Most often, t h i s  form 
i s  t h e  flapping mode of f l u t t e r .  How
ever, we can mention a number of par
t i c u l a r  cases i n  which t h e  c r i t i c a l  rpm 
of some bending mode of f l u t t e r  proved 
t o  be below t h e  c r i t i c a l  rpm of t h e  
flapping mode. 

Fig.4.28 Variation of t h e  Real and 

Imaginary Pa r t s  of t h e  Roots of t h e  A s  an example, l e t  u s  discuss  

Character is t ic  Equation as a Func- f l u t t e r  of a blade with t i p  loading. 


t i o n  of Rotor Rpm. 	 This case i s  of p r a c t i c a l  i n t e r e s t  f o r  
j e t  hel icopters  with an engine i n s t a l l e d  

* For footnote see next page. 
a t  t h e  blade tip36. 
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Figure 4.28 shows t h e  change of t h e  r e a l  and imaginary par t  of t h e  r o o t s  
of t h e  cha rac t e r i s t i c  equation (6.42) with respect  t o  r o t o r  rpm. The r o o t s  of 
t h e  c h a r a c t e r i s t i c  equation (6.42) w e r e  calculated f o r  a blade with a t i p  load
ing  approximately equal t o  t h e  weight of t h e  blade i t se l f .  

Figure 4.28 i nd ica t e s  t h a t ,  i n  t h i s  case, t h e r e  a r e  two f l u t t e r  zones; t h e  
f l u t t e r  zone appearing f irst  relative t o  r o t o r  rpm i s  distinguished by a vibra
t i o n  mode having a high content of blade bending. Therefore, t h i s  zone i s  usual
l y  cal led t h e  zone of bending f l u t t e r .  

It i s  possible t o  t r a c e  t h e  manner i n  which t h e  zone with t h e  v ib ra t ion  /rc14
mode having an increasing share of bending with increasing t i p  loading begins t o  
separate from t h e  zone of  flapping f l u t t e r  as t h e  blade-tip loading gradually 
increases.  A t  c e r t a i n  loading, these zones may separate i n t o  two d i f f e r e n t  
f l u t t e r  zones. 

Figure 4.29 shows t h e  f l u t t e r  zone a t  a r e l a t i v e l y  s m a l l  t i p  loading, equal 
approximately t o  l/5 of t h e  blade weight. I n  t h i s  case, t h e  cha rac t e r i s t i c  form 
of t h e  zone of f lapping f l u t t e r  i s  d i s to r t ed  and t h e  second zone begins t o  sepa
r a t e  from it. 

Figures 4.30 and 4.31 show t h e  f l u t t e r  zones f o r  a blade with a t i p  loading 

equal t o  42% of t h e  blade weight (-:: -- 0.42) and approximately equal t o  t h e  

blade weight (* = 1.1). I n  t h e  l a t t e r  case, t h e  f l u t t e r  zone separates i n t o  
Gb 

two d i f f e r e n t  zones of flapping and bending f l u t t e r .  

Figures 4.29, 4.30, and 4.31 give t h e  values of = so61 characterizing 

t h e  vibrat ion mode on f l u t t e r  and t h e  quan t i t i e s  5 representing t h e  r a t i o s  of 
f l u t t e r  frequency t o  r o t o r  rpm: 

jj-	 P ! h  
" f l u  

It i s  of i n t e r e s t  t h a t  t h e  share of t h e  flapping mode of v ib ra t ion  i n  
t h e  bending f l u t t e r  remains r a t h e r  l a rge  i n  a l l  cases, whereas t h e  share of 

/rc16 
bending i n  t h e  flapping f l u t t e r  may be almost completely absent i n  c e r t a i n  cases. 

It should be emphasized t h a t ,  f o r  blades with t i p  loading, t h e  c r i t i c a l  
rpm of bending f l u t t e r  i s  appreciably below t h e  c r i t i c a l  r p m  of f lapping f l u t t e r ,  
and t h a t  t he re  i s  a weak dependence of c r i t i c a l  rpm on t h e  blade balancing. 
This f a c t  g rea t ly  complicates t h e  problem of developing blades fo r  j e t  hel i 
copters . 

* The r e s u l t s  of t h e  calculat ions given here ( i n  Subsects.7 and 8) were obtained 
by. V .M .Pchelkin. 
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Fig.4.29 Flu t te r  Zones with Blade Tip Loading Referred t o  

Blade Weight 	 GI 0 0.20 
Gb 

G 
I/- > L  =Q42 

Fig.4.30 F lu t t e r  Zones with Blade Tip Loading Referred t o  

Blade Weight --- 0.42.G1o 
Gb 
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Fig.4.31 F l u t t e r  Zones with Blade Tip Loading Referred t o  

Blade Weight -* 
Gl 0 -- 1.1. 
G b  

9 	 Approximate,Method of Determining t h e  Mode of-
Bending Vibrations i n  F l u t t e r  

If,  i n  t h e  first equation of  t h e  system (6.33), we discard terms of blade 
vibrat ion damping as w e l l  as t h e  s m a l l  term mc@, then we can write t h i s  equation 
i n  t h e  form 

my +[E/y"]"-[Ny']'=-	1 caQbU2y. . (6.45)2 "  

Sett ing approximately U w r ,  we can represent t h e  solut ion i n  t h e  form 

where nlui s  t h e  v ib ra t ion  frequency of f l u t t e r .  

The calculat ions of bending f lu t t e r  show t h a t  t h e  frequency p f l u  can be 
approximately set equal t o  the-frequency of na tu ra l  vibrat ion of t h e  blade i n  
t o r s ion  and twist, i.e., p f l u  = ptw.  

We assume t h a t  /rc17 



-( 

where 
6, = coe f f i c i en t s  of deformations; 

Y J, = mode of . t he  j-th harmonic of t h e  na tu ra l  blade vibration. 

Subst i tut ing eq.(6.47) i n t o  eq.(6.45) and applying B.G.Galerkints method, 
we obtain expressions f o r  determining t h e  coe f f i c i en t s  of deformation 6, : 

Here, 

where 

i s  cal led t h e  equivalent m a s s  of t h e  blade during i t s  vibrat ion r e l a t i v e  t o  t h e  
shape of t h e  j-th harmonic. 

y, = m a s s  cha rac t e r i s t i c  of t h e  blade during vibrat ion r e l a t i v e  t o  t he  
same harmonic; 

pj = frequency of t h e  j - th  harmonic of na tu ra l  vibrat ion of t h e  blade i n  
bending; f o r  t h e  zero harmonic y"), we can s e t  p~ = w. 

It follows from eq.(6.48) t h a t  t h e  share of one or another harmonic of 
bending vibrat ions i n  t h e  mode of f l u t t e r  depends primarily on two parameters: 
r e l a t i o n  of f l u t t e r  frequency and frequency of na tu ra l  vibrat ion of t h e  corre
sponding harmonic, and magnitude of t h e  i n t e g r a l  A , .  

For example, t h e  share of t h e  flapping v ib ra t ion  mode ( j  = 0) i n  t h e  mode 
of f l u t t e r  i s  smaller, t h e  higher t h e  "harmonic" of f l u t t e r ,  i.e., t h e  r a t i o  of 
f l u t t e r  frequency t o  ro to r  rpm. Here, we should note t h a t  since Ab i s  always 
greater  than zero, i.e., 

1 

A, &,7d;> 0, 
0 

then t h e  flapping mode w i l l  always be present i n  t h e  v ib ra t ion  mode during 
f l u t t e r .  This conclusion i s  r a t h e r  important and indicates ,  i n  par t icular ,  t h a t  
it would be incorrect  t o  calculate  f l u t t e r  of some vibrat ion mode without con
siderat ion of t h e  flapping mode. 

The content of t h e  first-harmonic na tu ra l  vibrat ion mode i n  bending in
creases as t h e  frequencies of t h e  n a t u r a l  vibrat ions i n  bending p1 and t h e  fre
quency of f l u t t e r  p r l u  close t o  t h e  frequency of na tu ra l  blade vibrat ions i n  
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t o r s ion  are approached. 

However, i n  t h i s  case t h e  magnitude of t h e  i n t e g r a l  A, i s  very substantial:  

The calculat ion of t h i s  i n t e g r a l  shows t h a t ,  f o r  t h e  vast majority of 
blades, t h i s  i n t e g r a l  i s  c l o s e  t o  zero so t h a t  t h e  content of t h e  first-harmonic 
na tura l  vibrat ion mode i n  t h e  v ib ra t ion  mode with t h e  frequency pflu i s  qu i t e  (418
s m a l l .  This explains t h e  r e l a t i v e l y  rare appearance of bending f l u t t e r .  

A qu i t e  d i f f e r e n t  picture  a r i s e s  when concentrated loads are mounted t o  t h e  
blade t i p .  The node of t h e  shape of t h e  f irst  harmonic i n  t h i s  case s h i f t s  
toward t h e  blade t i p  and t h e  absolute value of t h e  i n t e g r a l  A ,  begins t o  in
crease. Correspondingly, t h i s  causes an increase i n  t h e  content of t h e  f irst  
harmonic i n  t h e  v ib ra t ion  mode with a frequency p f l u .  

Having assumed approximately t h a t  t h e  v ib ra t ion  mode during f l u t t e r  can be 
calculated i n  a form of eq.(6.47) where t h e  coe f f i c i en t s  a r e  calculated by means 
of eq.(6.&8), we can develop a simplified calculat ion method f o r  bending f l u t t e r .  

Section 7. General Method of Calculation of F l u t t e r  gnd 
- -B e n d i n g o t o r  Blade during Fl ight  

1. Calculation Method and- . .i ts  .P o s s i b i l i t i e s  

A l l  methods presented above f o r  t h e  calculat ion of  f l u t t e r  were based on 
a number of assumptions which, i n  many cases, it would be  desirable  t o  discard. 
These assumptions include t h e  following: 

1) I n  t h e  calculat ion of aerodynamic forces, t h e  nonlinear dependence of 
t h e  aerodynamic coe f f i c i en t s  on t h e  p r o f i l e  angle of a t t ack  w a s  disregarded. 
Consideration of t h i s  dependence may have a subs t an t i a l  e f f e c t  on t h e  c r i t i c a l  
r p  and especial ly  on t h e  character of amplitude build-up of o s c i l l a t i o n s  i n  
f l u t t e r .  

2) I n  calculat ing t h e  aerodynamic forces  under conditions of forward f l i g h t ,
t h e  flow compressibil i ty w a s  accounted f o r  by introducing only values of c; and 
xi averaged with respect t o  t h e  ro to r  azimuth. Under conditions of forward 
f l i g h t  t hese  quan t i t i e s  per iodical ly  change with respect  t o  r o t o r  azimuth, which 
may have a noticeable e f f ec t  on t h e  c r i t i c a l  f l u t t e r  rpm. 

3) Consideration of t h e  forces  of f r i c t i o n  i n  t h e  feathering hinge, which 
- as i s  known - have a strong e f f e c t  on t h e  c r i t i c a l  f l u t t e r  rpm, w a s  qu i t e  
a r b i t r a r i l y  done, by l i nea r i za t ion  of t hese  forces.  

I n  t h i s  Section, we w i l l  derive a method f o r  calculat ing t h e  bending and 
tw i s t ing  (binary) blade vibrat ions of a hel icopter  i n  f l i g h t ,  which permits dis
carding these  assumptions. This method 'makes it possible t o  determine t h e  

45 2 



bending stresses act ing on t h e  blade i n  t h e  absence of ro to r  f l u t t e r  and a t  
s t ab le  blade vibrations.  If f l u t t e r  i s  possible i n  t h e  operating regime of t h e  
r o t o r  under consideration, then calculat ion by t h i s  method permits determining 
t h e  process of divergent blade vibrat ions and thus  invest igat ing t h e  phenomenon 
of f l u t t e r .  

The calculat ion method i s  based on t h e  approximate solut ion of d i f f e r e n t i a l  
equations of blade vibration. I n  t h i s  case, B.G.Galerkints method i s  used f o r  
determining t h e  form of blade deformations a t  some ins t an t  of time, while t h e  
method of numerical i n t eg ra t ion  of d i f f e r e n t i a l  equations i s  applied f o r  deter
mining t h e  ove ra l l  process of blade motion with respect t o  time. B.G.Galerkints 
method permits transforming t h e  system of p a r t i a l  d i f f e r e n t i a l  equations i n t o  a 
system of ordinary d i f f e r e n t i a l  equations and t o  use numerical integrat ion f o r  
solving t h i s  transformed system. 

A s  applied t o  s t r e s s  analysis,  t h e  method permits accounting fo r  t o r s i o n a l  
deformations of t h e  blade i n  calculat ing t h e  bending s t r e s s e s  i n  t h e  flapping 
plane. Under t h e  e f f ec t  of constant and var iable  external  forces  i n  f l i g h t ,  t h e  
hel icopter  blade i s  twisted through some angle .9 which . i s  time-variant and /41q
d i f f e r s  with respect t o  blade length. Torsional deformations of t h e  blade 
change t h e  angle of a t tack of i t s  sections,  which i n  t u r n  leads t o  t h e  genera
t i o n  of addi t ional  constant and var iable  aerodynamic forces. These aux i l i a ry  
forces  must be  taken i n t o  consideration when calculat ing t h e  bending s t r e s s e s  of 
t h e  blade. I f  t h i s  i s  not done, good agreement between calculat ion and experi
mental d a t a  i s  qu i t e  impossible. 

When applied t o  f l u t t e r  calculations,  t h e  proposed method i s  not too con
venient i n  p r a c t i c a l  application, since it does not permit an exact numerical 
determination of t h e  parameters characterizing t h e  l i m i t  of f l u t t e r .  The f l u t t e r  
limit can be established only i n  first approximation by v isua l  inspection of 
curves describing t h e  blade motion fo r  parameters close t o  t h i s  l i m i t ;  s i m i l a r 
ly ,  it i s  impossible t o  determine, with t h e  required accuracy, t he  margins of 
f l u t t e r  based on parameters used i n  pract ice  f o r  evaluating t h e  ro to r  from t h e  
safety angle. The described method bas i ca l ly  permits only a determination 
whether or not f l u t t e r  occurs i n  t h e  f l i g h t  regime under consideration and a de
sc r ip t ion  of i t s  evolution. 

Nevertheless, t h e  method has a number of important advantages i n  comparison 
with methods t h a t  use t h e  roo t s  of t h e  c h a r a c t e r i s t i c  equation and generally in
vest igate  f l u t t e r  only i n  a l i nea r  array. It i s  d i f f i c u l t  t o  imagine any other 
method which would permit such a complete and accurate consideration of a l l  non
l i n e a r  dependences, both i n  t h e  magnitudes of aerodynamic forces  and i n  deter
mining f r i c t i o n  forces,  as is  offered by t h i s  method i n  combination with numeri
c a l  i n t eg ra t ion  of  t h e  equations with respect t o  time. Consideration of these 
dependences i s  highly important f o r  f l u t t e r  calculations.  Therefore, it i s  
preferably used i n  control tests and check calculations,  a f t e r  determining t h e  
f l u t t e r  parameters by means of t h e  r o o t s  of t h e  cha rac t e r i s t i c  equation. 

O f  great  importance l o r  p r a c t i c a l  use i s  t h e  f a c t  t h a t  t h i s  method, without 
excessive complication of t h e  calculation, permits considering t h e  e l a s t i c  
couple between blades through t h e  automatic p i t ch  control, even a t  d i f f e ren t  
r i g i d i t y  of t h e  longi tudinal  and l a t e r a l  controls. Without consideration of 
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t h i s  couple, a calculat ion of t o r s i o n a l  deformations y f  t h e  blade cannot lay 
claim t o  accuracy. 

.2. Basic Assumpt-ions and Suggestions. 

To der ive t h e  d i f f e r e n t i a l  equations of motion of  t h e  blade, l e t  us examine 
t h e  conventional type of r o t o r  with individual  hinge attachment of each blade 
t o  t h e  hub and with control  through t h e  swashplate. I n  determining t h e  angles 
of twist of t h e  blades as a consequence of deformation of t h e  control  system, 
we w i l l  consider t h a t  t h e  r i g i d i t y  of t h e  longi tudinal  and lateral  control loops 
d i f f e r .  We will consider deformations of a l l  control  loops of both cyc l i c  and 
co l l ec t ive  p i t ch  control  including deformation of t h e  swashplate, which i s  
necessary when external  forces  generated by t h e  r o t o r  blades are locked on t h e  
p l a t  e. 

The motion of an individual  ro to r  blade wil l  be  considered t o  consist  of 
f lapping and bending vibrat ions i n  t h e  t h r u s t  plane and of t o r s i o n a l  vibrations,  
both due t o  deformation of t h e  blade and of t h e  control  system and t o  t h e  kine
matic ac t ion  of t h e  swashplate and flapping compensator. A s  above, we will dis
regard blade vibrat ions i n  t h e  plane of rotat ion.  

With respect t o  blade design, l e t  us use t h e  following s t ipulat ions:  L e t  
us consider t h a t  t h e  flexural a x i s  of t h e  blade i s  r e c t i l i n e a r  and coincides 
with t h e  feather ing hinge axis. The plane of least r i g i d i t y  of t h e  blade will 
b e  assumed t o  coincide with t h e  flapping plane, i.e., with t h e  plane going 
through t h e  axis of r o t a t i o n  of t h e  r o t o r  and perpendicular t o  t h e  axis of t h e  
flapping hinge. The flexural deformations of t h e  blade w i l l  be determined i n  /Icx)
t h i s  plane. 

The r o t o r  blade w i l l  be considered as a beam with t h e  parameters continu
ously d i s t r ibu ted  over i t s  length. 

3. Different ia l -Quat  ions-

With consideration of t h e  above s t ipu la t ions ,  t h e  d i f f e r e n t i a l  equations of 
blade v ib ra t ion  can be wr i t t en  i n  t h e  following form: 

where 
y = displacement of points  of t h e  e l a s t i c  a x i s  of t h e  blade relative 

t o  t h e  plane of r o t a t i o n  of t h e  ro to r s ;  
cp = angle between t h e  p r o f i l e  chord and plane of r o t a t i o n  of t h e  ro to r ;  
m = mass of t h e  blade per un i t  length; 

I, = moment of i n e r t i a  of t h e  blade per u n i t  length r e l a t i v e  t o  i t s  
f l exura l  axis; 

EI = flexural r i g i d i t y  of t h e  blade; 
GTt, = t o r s i o n a l  r i g i d i t y  or twist of t h e  blade; 

454 



o = distance from t h e  flexural a x i s  of t h e  blade t o  t h e  centers of 
g rav i ty  of i t s  elements, with t h e  s h i f t  of t h e  c.g. towasd t h e  trail
ing edge of t h e  blade considered as posi t ive;  

w = angular ve loc i ty  of r o t a t i o n  of t h e  ro to r ;  

r = distance from t h e  axis of r o t a t i o n  t o  t h e  examined blade element; 

N = centr i fugal  fo rce  i n  t h e  blade section: 


IP 

N =w2 J mrdr; 

r 

T = aerodynamic load per un i t  length i n  t h e  flapping plane;
W,,,, = aerodynamic torque per uni t  length relative t o  t h e  flexural axis. 

The method of determining t h e  aerodynamic loads w i l l  be described i n  Sub
sect ion 6. 

The do t s  i n  eqs.(7.l) denote d i f f e ren t i a t ion  with.respect  t o  time and t h e  
primes, with respect t o  t h e  blade radius.  I n  d i f f e r e n t i a t i n g  t h e  function cp 
with respect t o  t h e  radius  we should not introduce t h e  geometric t w i s t  of t h e  
blade i n t o  the  value of CD', assuming t h a t  cp' 
of t w i s t  of t he  blade. 

~ . -. . - ~t h e  Problem4. Boundary CondLtions of.. 

For t h e  type of r o t o r s  discussed here, 
root can be wr i t t en  i n  t h e  form 

where 

= 8' where 8 i s  t h e  e l a s t i c  angle 

t h e  bo'mdary conditions i n  t h e  blade 

(7.2) 

M e  = bending moment i n  t h e  blade root ;  
M b  = exbernal torque r e l a t i v e  t o  t h e  feather ing hinge axis due t o  

forces  ac t ing  on t h e  blade, with t h e  pitching moment considered 
as posi t ive;  

x = flapping compensator; 
mh = m a s s  of t h e  helicopter without blades;  

z [EI f 'X  = sum of forces  s t r i k i n g  t h e  hel icopter  hub from a l l  ro to r  blades
/421 

N ( t h e  index N denotes t h e  blade numeral); 
M f r  = moment of f r i c t i o n  ac t ing  on t h e  blade i n  t h e  feathering hinge

from t h e  s ide  of t h e  r o t o r  hub, with t h e  pitching moment con
sidered as posi t ive;  

ce 9 = 	equivalent r i g i d i t y  of t h e  control  system reduced t o  t h e  axial 
hinge of t h e  hub ( t h e  method of determining t h i s  r i g i d i t y  w i l l  
be  given i n  Subsect.5); 

y = angle of r o t a t i o n  of t h e  blade root i n  t h e  axial hinge of t h e  
hub, as a consequence of deformations of t h e  control  system. 
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I n  deriving t h e s e  boundary conditions, f r i c t i o n  w a s  taken i n t o  account only 
i n  t h e  axial hinge of t h e  hub loaded by cen t r i fuga l  forces.  Usually, we can 
disregard f r i c t i o n  i n  t h e  other hinges of t h e  hub and of t h e  control  system. 

With a s u f f i c i e n t  degree of accuracy, t h e  second boundary condition of 
eq.(7.2) can be replaced by t h e  condition 

yo =0. (7.3) 

-_Co&rol_ System5. Determination o f  Equivalent Rigid& ~~~ of- the. -. . -

To use t h e  t h i r d  boundary condition, we must determine t h e  magnitude of t h e  
equivalent r i g i d i t y  of t h e  control  system c e q .  This value can be determined i f  
t h e  angles of twist yN of a l l  z b  blades of t h e  r o t o r  i n  t h e  axial hinge of t h e  
hub are known. 

The angle of r o t a t i o n  of t h e  N-th blade of t h e  r o t o r  yN i s  r e l a t e d  with t h e  
deformations of t h e  individual  control  loops by formulas derived previously [see 
eq.(4.9) I: 

y N = y c . p  +Yx sinqL$))SyzCOS $ ~ ~ ’ $ y ~ ~ ) y  (7.4) 

where N = 0, 1, 2, 3, ..., z b  - 1. 

Solution of t h e  system (7.4) y i e l d s  t h e  following expressions f o r  i t s  un

h-mwn Y c . p ,  Y x ,  Y z ,  and Yip;;: 

The magnitude of t h e  hinge moment ac t ing  on t h e  blade from t h e  control  can 
be  expressed i n  terms of r i g i d i t y  and deformations of t h e  corresponding control  
cabl es 

where c g a P ,  c,, c,, and c a a P  a r e  t h e  r i g i d i t i e s  of t h e  co l l ec t ive  pi tch control, 
la teral  and longi tudinal  controls, and swashplate, respectively,  reduced t o  t h e  
axial hinge of t h e  blade. 

If we represent t h e  magnitude of t h e  hinge moment due t o  t h e  control i n  /422 
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then t h e  equivalent control  r i g i d i t y  can be determined by t h e  formula 

where t h e  vinculum denotes t h a t  t h e  given magnitude of tw i s t  per ta ins  t o  t h e  
value YN. 

. .6. Determination of Aerodynamic Forces 

To solve a system of d i f f e r e n t i a l  equations (7 . l ) ,  it i s  necessary t o  de
termine t h e  aerodynamic forces  and torque entering t h e  equation. 

It i s  known t h a t ,  during flow past t h e  blade p r o f i l e  i n  f l i g h t ,  t h e  angles 
of a t t ack  of i t s  sect ions may vary within wide l imi t s ,  even t o  the  extent t h a t  -
on t h e  r e t r e a t i n g  blade - t h e  flow passes over i t s  root p a r t s  from t h e  s ide of 
t h e  t r a i l i n g  edge. Flow-separation conditions occur at  t h e  blade t i p  i n  c e r t a i n  
regimes. A t  high f ly ing  speeds and at appreciable peripheral  r a t e  of r o t a t i o n  
of t h e  ro to r ,  t h e  e f f ec t  of flow compressibility has a considerable influence on 
t h e  magnitude of t h e  aerodynamic forces.  Therefore, a determination of aerody
namic forces  act ing on t h e  hel icopter  blade should take i n t o  account t h e  non
l i n e a r  dependence of t h e  aerodynamic Coefficients on t h e  angle of a t t ack  CY and 
t h e  Mach nymber. Correspondingly, t h e  expressions fo r  determining t h e  aerody
namic forces  should be wri t ten with consideration of t h e  p o s s i b i l i t y  of a wide 
change i n  t h e  angle3 of a t tack.  A t  t h e  same time, we can make use of t h e  gener
a l l y  employed assumption of smallness of t h e  displacements y and angles of rota
t i o n  of t h e  blade sections cp. Therefore, t o  determine t h e  aerodynamic forces  
t h e  following expressions can be used: 

%Raor=xoT+-1 eb(nzbU - b2i )U,2 
where 

cy and c, = aerodynamic lift and drag coeff ic ients ;  
m, = torque coeff ic ient  of t h e  p ro f i l e ,  with cy ,  c,, and m, deter

mined from t h e  r e s u l t s  of downwash exposure as a function of 
t h e  sect ion angle of a t tack CY and M; 

p = a i r  density;  
b = blade chord i n  t h e  examined section; 
xo = distance from t h e  leading edge t o  t h e  flexural axis of t h e  

blade; 
U, and U, = mutually perpendicular relative veloci ty  components of t h e  

flow i n  a plane normal t o  t h e  e l a s t i c  a x i s  of t h e  blades, 
with U, being p a r a l l e l  t o  t h e  plane of r o t a t i o n  of  t h e  ro to r  
and U, perpendicular t o  U,; 
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U = t o t a l  magnitude of t h e  relative ve loc i ty  of flow past  a p r o f i l e  i n  
a plane normal t o  t h e  e l a s t i c  axis of t h e  blade. 

The magnitude of t h e  relative ve loc i ty  U can be determined i n  terms of /423
i t s  components 

where 

U,=ot+ V cos uhsinqh’b; 

U ,  =OR)\-y -V cos ahcos qbp. 

Here, 
wR = t i p  speed of t h e  blade; 

V = f l y i n g  speed of t h e  hel icopter ;  
CY,, = angle of a t tack of t h e  hel icopter  r o t o r  i n  t h e  shaf t  axes, i.e., 

angle between d i r ec t ion  of f l i g h t  and plane of r o t a t i o n  of t h e  
r o t  or  ;

Jlb = azimuth angle of t h e  blade; 
f3 = y’ = angle of i n c l i n a t i o n  of t h e  e l a s t i c  axis of t h e  blade i n  t h e  flap

ping plane; 
h = ve loc i ty  of flow through t h e  r o t o r  r e fe r r ed  t o  t h e  per ipheral  

blade t i p  speed wR, with t h e  d i r e c t i o n  of h coinciding with t h e  
axis of t h e  r o t o r  sha f t ;  when t h e  flow passes through t h e  ro to r  
f r o m t h e  bottom up, A i s  considered posit ive.  

The relative ve loc i ty  of flow i s  determined by t h e  formula 

where 

Here, vind i s  t h e  induced par t  of t h e  ve loc i ty  of flow, a l s o  referred t o  wR. 

The induced ve loc i ty  vlnd i s  a var iable  with respect t o  t h e  r o t o r  disk area 
and t o  time. 

I n  a number of f l i g h t  regimes, t h e  va r i ab le  pa r t  of t h e  induced veloci ty  
increases  so much as t o  l ead  t o  t h e  occurrence of appreciable var iable  stresses 
i n  t h e  blade (see Sect .8, Chapt.1 of Vol.11). To determine s t r e s s e s  i n  t h e  
blade with consideration of t h e  var iable  f i e l d  of induced ve loc i t i e s ,  it,i s  sug
gested t o  use t h e  calculat ion method which involves calculat ion of t h e  induced 
ve loc i t i e s .  If we limit ourselves t o  a consideration of only t h e  constant com
ponent of t h e  induced velocity,  then i t s  value can be determined from t h e  formula 

(7.14) 




where 
voav and ho,, = 	components of t h e  induced veloci ty  and flow-brough ve

loc i ty ,  constant with respect t o  t h e  azimuth and average 
with respect t o  t h e  radius  of t h e  blade; 

C, = t h r u s t  coeff ic ient  of t h e  rotor:  

7eF @R)2 

Here, 
T r o t  = r o t o r  t h r u s t ;  

F = r o t o r  area. 

The angle of a t t ack  of t h e  blade sections,  needed t o  determine t h e  aerody
namic coeff ic ients ,  can be  calculated as 

a=cp+Q, 

where 
cp = angle of s e t t i n g  of t h e  blade p ro f i l e ;  
@ = angle of inflow: /424 

The angle of s e t t i n g  cp i s  a var iable  with respect t o  both blade radius  and 
time. It consis ts  of two parts:  

where 
ll = angle of r o t a t i o n  of t h e  blade i n  the  feathering hinge as a conse

quence of t h e  kinematic act ion of t h e  swashplate and t h e  flapping 
compensator, including a l so  t h e  geometric twist of t h e  blades; 

8 = 	angle of e l a s t i c  twist of t h e  blade, with t h e  angle 8 determined by 
solving t h e  system of d i f f e r e n t i a l  equations (7.1). 

The angle ll i s  determined by t h e  expression: 

Here, 
= angle of s e t t i n g  of some blade sect ion taken as t h e  point of 

reference a t  Bo = 0; t h i s  angle i s  usually cal led t h e  "indi
cator" angle of s e t t i n g  s ince i t s  value i s  o f t en  given on t h e  
instrument panel of t h e  p i l o t ;  

= geometric twist of t h e  blade; 
and = angles of cycl ic  pi tch control  caused by t i l t i n g  of t h e  swash-

p la t  e ; 
pa = angle of r o t a t i o n  of  t h e  blade i n  t h e  flapping hinge. 

The Mach number, a l s o  needed for determining t h e  aerodynamic coeff ic ients ,  
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i s  calculated by t h e  formula 
ME-U 

a, ’ 

where ago i s  t h e  speed of sound. 

Thus, eqs.(7.1) together with eq.(7.9) make up a set of p a r t i a l  d i f f e r e n t i a l  
equations with coe f f i c i en t s  representing complex nonlinear functions of vari
ables. 

7. Method of Solving t h e  Di f f e ren t i a l  Equations 

The method of solving eqs.(7.1) most convenient f o r  p r a c t i c a l  use a t  t h e  
present state of t h e  art of computer technology i s  t h e  method of numerical inte
g ra t ion  o f  t h e  equations of blade motion with respect t o  time, i n  which t h e  
blade deformations a r e  determined by B.G.Galerkin* s method. I n  t h e  formulation 
of t h e  problem adopted here, t h i s  method permits obtaining t h e  most accurate 
r e s u l t s .  

I n  determining t h e  bending s t r a i n  of a blade, it i s  na tu ra l  t o  represent 
t h e  solut ion by means of functions which a r e  na tu ra l  v ib ra t ion  modes of t h e  
hinged blade i n  vacuum. The p e c u l i a r i t i e s  i n  t h e  d i s t r i b u t i o n  of r i g i d i t y  and 
m a s s  cha rac t e r i s t i c s  over t h e  blade length and t h e  boundary conditions of t h e  
problem have already been covered by such functions. We set 

(7.21) 

mode of t h e  j- th harmonic of na tu ra l  blade bending vibrat ions;  
coe f f i c i en t s  of blade deformation with respect t o  t h e  j-th 
harmonic. 

I n  determining t h e  t o r s i o n a l  s t r a in ,  ce r t a in  d i f f i c u l t i e s  a r e  produced 
by t h e  f a c t  t h a t  t h e  deformations of the’ controls  vary substant ia l ly ,  depending

/rc25 
on t h e  d i r ec t ion  of t h e  moment of f r i c t i o n  i n  t h e  axial feather ing hinge and on 
forces  generated at  t h e  swashplate by t h e  t o t a l i t y  of  r o t o r  blades. The r e l a t i o n s  
between t h e  twist of t h e  blade root  and of a l l  i t s  longi tudinal  sect ions a l so  
vary, depending on t h e  conditions of t h e  e f f e c t  of t hese  factors .  To take t h i s  
i n t o  account, we must introduce some add i t iona l  var iable  i n t o  t h e  calculation. 

Let us study t h i s  problem i n  greater  d e t a i l .  To determine to r s iona l  de
formations by t h e  Galerkin method, j u s t  as i n  determining bending deformations, 
it i s  l o g i c a l  t o  use t h e  modes of na tu ra l  t o r s i o n a l  vibrat ions of t h e  blade i n  
vacuum. Here we can use various systems of eigenfunctions, d i f f e r i n g  by t h e  
boundary conditions i n  t h e  attachment of t h e  blade a t  t h e  root.  

The solut ion t o  eqs.(y.l) i s  simplest i f  we assign t h e  blade twist by means 
of na tura l  t o r s i o n a l  v ib ra t ion  modes, determined f o r  a blade represented as a 
beam with a fixed value of t o r s i o n a l  s t i f f n e s s  at  t h e  point of attachment 
(Fig.4.32a). This method of solut ion i s  q u i t e  common i n  practice.  However, 
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here t h e  problem bas i ca l ly  reduces t o  a calculat ion of t h e  vibrat ions of an iso
l a t e d  blade, s ince t h e  use of t h e  indicated modes precludes t h e  p o s s i b i l i t y  of 
accounting f o r  t h e  e l a s t i c  couple between t h e  blades through t h e  swashplate. 
The e f f e c t  of t h e  moment of f r i c t i o n  i n  t h e  axial hinge of t h e  hub cannot be  
f u l l y  covered, Actually, t h e  e l a s t i c  t w i s t  of t h e  blade root i s  determined by 
t h e  magnitudes of t h e  moments M!Ai ac t ing  on t h e  control  system; fythermore,  
t h e  magnitude of t hese  moments at  known moments due t o  t h e  blade M b  depends on 
t h e  d i r ec t ion  and magnitude of t h e  moment of f r i c t ion :  

Therefore, blade tw i s t  at  t h e  root,  and consequently t h e  connection between t h e  
twist of a l l  sect ions of t h e  blade length, a r e  r e l a t ed  with t h e  magnitude of t h e  
moment of f r i c t i o n .  This e f f e c t  cannot be accounted f o r  i f  t h e  indicated con
nection between t h e  twis-Ls i s  fixed by vibrat ion modes used i n  t h e  calculation. 

It follows from t h e  foregoing t h a t  t h i s  calculat ion method should be con
sidered inva l id  as applied t o  r e a l  helicopters.  It can be used only i n  indi
vidual- r a r e l y  encountered - par t i cu la r  cases. 

To take i n t o  account t h e  couple between blades through t h e  swashplate and 
t h e  e f f ec t  of t h e  moment of f r i c t i o n  i n  t h e  feather ing hinge, we could use a 
system of functions representing t h e  modes of na tura l  t o r s iona l  vibrat ions of 
t h e  blade i n  t h e  form of a f r e e  beam unattached a t  t h e  root  (see Fig.k.3Zb). 
However, owing t o  t h e  discrepancy of boundary conditions, t h e  use of such func
t i o n s  might lead t o  a solut ion of only an approximate type. Actually, t h e  modes 
of t o r s i o n a l  deformations thus  obtained w i l l  subs t an t i a l ly  d i f f e r  from t h e  real  
modes. This difference w i l l  be especial ly  pronounced i n  twist of t h e  root  por
t i o n s  o f  t h e  blade where, f o r  a f r e e  beam, t h e  torque diagram drops t o  zero, 

All these considerations necessi ta te  applying a nonorthogonal system of 
functions t o  t h i s  problem, as shown i n  Fig.4.32~. I n  t h i s  case, t h e  twist of 
t h e  blade can be represented i n  t h e  form 

where k = 1, 2, ... . 
Here, 

yo = angle of t w i s t  of t h e  blade as a consequence of deformation of /426
t h e  control  system;a") = mutually orthogonal modes of na tu ra l  t o r s i o n a l  vibrat ions of a 
blade r i g i d l y  fixed at  t h e  root ;  

yt,,= unknown coe f f i c i en t s  of t h e  t o r s i o n a l  deformations of t h e  blade. 

Thus, t h e  blade twist i s  represented by a system of orthogonal functions 
8' IC), supplemented by a function 8"' = 1nonorthogonal t o  t h i s  system. 

Equation (7.23) can be  wr i t t en  i n  t h e  form 
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where k = 0, 1, 2. 

This form of representing t h e  blade tw i s t  c rea tes  ce r t a in  complications i n  
t h e  calculation, produced by t h e  nonorthogonality of t h e  functions 8' k, . Never
the less ,  we must put up with these  complications i n  order t o  account fo r  a l l  of 
t h e  above highly important factors .  

Beam w i t h  e l a s t i c  Bean w i t h  r i g i d  
a t  t a c h n e n t  F r e e  beam a t t a c h m e n t

8 

Fig.4.32 Modes of Natural Torsional Vibrations of  a 
Beam with Various Attachments. 

8.  	!&ansformation of P a r t i a l  Di f fe ren t ia l  Equations 
i n t o  Ordinary Dif fe ren t ia l  Equations~ 

Having represented t h e  solut ion of system of d i f f e r e n t i a l  equations (7.1) 
i n  t h e  form of eqs.(7.21) and (7.;?rc), l e t  u s  apply t h e  Galerkin method. For 
t h i s ,  l e t  us  twice d i f f e r e n t i a t e  eqs.(7.21) and (7.24) and subs t i tu te  them, to
gether with t h e i r  second derivatives,  i n to  eqs.( 7.1). 

The second der iva t ives  from eqs.(7.21) and (7.24) w i l l  have t h e  following 
form: 

(7.25) 
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We then multiply t h e  first equation of t h e  system (7.1) by y' j '  and t h e  /k28
second by dk)and i n t e g r a t e  a l l  terms with respect t o  t h e  blade radius. The 
boundary conditions (7.2) should be  accounted f o r  i n  t h e  integrat ion.  This op
e ra t ion  transforms t h e  system of p a r t i a l  d i f f e r e n t i a l  equations i n t o  a system of 
ordinary d i f f e r e n t i a l  equations r e l a t i v e  t o  t h e  new va r i ab le s  6, and ytw 

For p r a c t i c a l  purposes, it i s  highly important what number of var iables  6, 
and y+ i s  used i n  t h e  calculation. Experience has shown t h a t  a s u f f i c i e n t l y  
complete answer can be obtained i f  t h e  bending s t r a i n s  a r e  represented by means 
of t h e  first four harmonics of t h e  na tu ra l  blade v ib ra t ion  and t h e  t o r s i o n a l  
s t r a i n s  by two o r  - i n  t h e  extreme case - by t h r e e  harmonics. Thus, t h e  problem 
of bending and tw i s t ing  vibrat ions of a hel icopter  blade can be solved with t h e  
use, i n  any case, of seven independent variables.  We will r e s t r i c t  t h e  fu r the r  
calculat ion t o  t h i s  number of variables.  

The system of ordinary d i f f e r e n t i a l  equations obtained from appl icat ion of 
t h e  Galerkin method i s ' w r i t t e n  out i n  t h e  form of a t a b l e  ( see  Table.4.1). 

All equations of t h i s  system represent t h e  sum of t h e  products of ce r t a in  
constant coe f f i c i en t s  and t h e  unknown functions 6, and y t w  and t h e i r  second 
derivatives.  I n  Table 4.1, t h e  coe f f i c i en t s  per ta ining t o  one equation occupy 
one row. The known constants t h a t  do not change during t h e  calculat ion a r e  
wr i t t en  out i n  t h e  squares of t h e  t ab le .  

The independent va r i ab le s  6, and yt,, and t h e i r  second der ivat ives ,  entering 
simultaneously a l l  equations of t h e  system, are extended with respect t o  t h e  
v e r t i c a l  i n  a spec ia l  row i n  t h e  upper par t  of Table 4.1. The right-hand s ides  
of t h e  equations are extended i n  a spec ia l  column next t o  t h e  t a b l e  of constants. 

The coe f f i c i en t s  of t h e  left-hand s ide of t h e  equations of t h e  system (see 
T a b l e  4.1) are determined a f t e r  calculat ing t h e  modes and frequencies of t h e  
na tu ra l  blade vibrat ions i n  bending and torsion. A s  s t a t ed  above, i n  calculat ing 
t h e  t o r s i o n a l  frequencies a blade r i g i d l y  fixed at t h e  root  i s  used. 

A number of coe f f i c i en t s  are determined d i r e c t l y  during t h i s  calculation. 
This concerns primarily t h e  frequencies of t h e  na tu ra l  v ib ra t ion  of a r o t a t i n g  
blade i n  bending pJ and i n  t o r s i o n  %, and a l s o  t h e  coe f f i c i en t s  i n t o  which t h e  
m a s s  cha rac t e r i s t i c s  of t h e  blade enter:  

After calculat ing t h e  modes and frequencies, we determine t h e  coe f f i c i en t s  
i n t o  which simultaneously enter  t h e  da t a  obtained from calculat ing t h e  blade 
i n  bending and i n  tors ion.  These are t h e  following coefficients:  
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The second, t h i r d ,  and fourth terms i n  these expressions are small i n  com
parison with t h e  f irst  and can be neglected. A t  i f j ,  t h e  f irst  t e r m s  of 
eqs.(7.27) vanish by v i r t u e  of t h e  orthogonality of t h e  functions Y ' ~ '  and y ' j ) ,  
and t h e  coe f f i c i en t s  k,, and aiJ can be assumed as approximately equal t o  zero, 
i.e., 

k , , s O ;  
aij=0. 

N e x t ,  t h e  coupling coe f f i c i en t s  are determined whose value depends mainly 
on t h e  blade balancing . 

A t  j = 1, we have 

The t e r m s  on t h e  right-hand s ide of t h e  system of equations ( see  T a b l e  4.1) 
a r e  determined by means of t h e  following expressions: 
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R 
Here, I: = Q O I k  + 1~,hp,~: .a(k)dr .  

0 
The first terms of eqs.(7.29) are those determining t h e  value of t h e  coeffi

c i e n t s  A,  and Bk.  The following terms a r e  small and can be neglected. 

9. 	 Determination of  t h e  Magnitude of t h e  Moment of. Friction-in t h e  
Feathering Hinge of t h e  Hub 

During t h e  numerical i n t eg ra t ion  of t h e  equations ( T a b l e  4.11, t h e  magnitude 
of t h e  moment of f r i c t i o n  can be  obtained from t h e  values of t h e  t o r s i o n a l  de
formations of t h e  blade determining t h e  ex te rna l  torque i n  t h e  feather ing hinge 
and from t h e  d i r ec t ion  of  blade r o t a t i o n  i n  t h i s  hinge. I n  so  doing, t h e  magni
tude of t h e  moment of f r i c t i o n  should b e  determined by a d i f f e ren t  method, de
pending on which i s  greater i n  absolute value: t h e  ex te rna l  torque i n  t h e  
feathering hinge Mhi o r  t h e  maximum possible moment of f r i c t i o n  M i , .  

The external  torque i n  t h e  feather ing hinge i s  determined by t h e  formula /4.30 

where k = 0, 1, 2, 3, ... . 
Here, 

Mb = hinge moment due t o  forces  ac t ing  on t h e  blade; 
-M,,, - ceqyo = moment r e l a t i v e  t o  t h e  feather ing hinge due t o  t h e  control  

system; i n  conformity with t h i s  notat ion t h e  pitching moment 
due t o  t h e  control i s  considered as pos i t i ve  j u s t  as i n  
eqs.(7.6), (7.71, and (7.22); 

&'"I= magnitude of t h e  hinge moment i n  blade deformations with 
respect t o  t h e  mode of t h e  k-th harmonic of na tu ra l  vibrat ions 
of t h e  blade i n  tors ion.  

Modes of na tu ra l  vibrat ion normalized i n  some manner, f o r  example, by t h e  
quantity 8;') = 1, wi l l  now be  discussed., Here, we assume t h a t  

M(O)= - c  
e4 *b 

The magnitude of t h e  maximum possible moment of f r i c t i o n  M!:x i s  usual ly  
determined experimentally i n  t h e  laboratory. I f  t h e  coeff ic ient  of f r i c t i o n  i n  
t h e  bearing f i s  known, then t h i s  magnitude can be determined by t h e  formula 

hl?" =fNo&,  
where 

NQ = centr i fugal  force act ing on t h e  bearing of t h e  axial hinge; 
r b e  = radius  of t h i s  bearing. 

If IMhi I < IM;,"" 1, then M i ,  = -Mh1 * I n  t h i s  case, t h e  blade i n  t h e  feather
ing hinge does not turn,  and & = & = 0. This condition permits determining 
immediately 90 and yo . 
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10. Sequence of Performing t h e  Calculation__ - .  - --_ 

The system of d i f f e r e n t i a l  equations (see Table 4.1) i s  wr i t t en  here i n  a 
form such t h a t  i t s  solut ion i s  conveniently found by numerical integrat ion with 
respect t o  time. During t h i s  integrat ion,  mainly t h e  right-hand s ides  of t h e  
equations w i l l  change. A l l  coe f f i c i en t s  on t h e  left-hand s ide of t h e  equations 
remain unchanged during t h e  calculation, with t h e  exception of t h e  coeff ic ient  
ce P whose magnitude i s  recalculated at  each in t eg ra t ion  step. 

The numerical solut ion of t h e  system ( see  Table 4.1). a l so  represents  t h e  
bas i c  par t  of t h e  method of calculat ing binary blade vibrat ions presented here. 

The calculat ion of blade vibrat ion by t h i s  method i s  carried out i n  t h e  
following sequence: 

1) Calculate t h e  modes and frequencies of na tu ra l  blade vibrat ions i n  
vacuum. For calculat ion by t h i s  method, it i s  necessary t o  determine t h e  first 
four harmonics of flexural vibrat ions of t h e  blade, including t h e  so-called zero 
harmonic of v ib ra t ion  of t h e  blade as a s o l i d  body, and t h e  f irst  two harmonics 
of t h e  to r s iona l  vibrat ions of a blade r i g i d l y  fixed at  t n e  root.  From re
su l t an t  vibrat ion modes, determine t h e  constant coe f f i c i en t s  of t h e  system of /431
d i f f e r e n t i a l  equations ( see  Table 4.1). In' t h e  numerical integrat ion of t h e  
equations, a l l  t hese  coe f f i c i en t s  remain unchanged with t h e  exception of t h e  co
e f f i c i e n t  c, p whose determination i s  described i n  Subsection 5. 

2) Select t h e  parameters of t h e  f l i g h t  regime p ,  w, p, a h ,  e,, el, e2 in 
which t h e  bending and tw i s t ing  vibrat ions must be calculated. 

Usually, these parameters are taken from an aerodynamic calculat ion of t h e  
ro to r  and from calculat ion of t h e  balancing cha rac t e r i s t i c s  of t h e  hel icopter .  
However, another more na tu ra l  method can be used. The calculat ion method pre
sented here can be used as a method of aerodynamic calculat ion and calculat ion 
of balancing, by adding a number of simple operations. The values of ah and 
can be obtained from t h e  calculat ion i f  t h e  values of t h r u s t  and propulsive 
force of t h e  r o t o r  and t h e  angles 81 and 8, necessary f o r  f u l f i l l i n g  t h e  f l i g h t  
regime a r e  prescribed and i f  t h e  moments on t h e  hub necessary f o r  balancing of 
t h e  hel icopter  are determined. 

3) A t  t h e  i n i t i a l  i n s t an t  of time, which i s  usual ly  r e l a t ed  with t h e  azi
muth angle gb = 0, assign a r t i t r a r y  values of t h e  var iables  and t h e i r  first 
der ivat ives  6, , ytr, 6, and yt,, To account for  t h e  coupling between t h e  blades 
through t h e  swashplate, t hese  values are assigned f o r  a l l  zb blades of t h e  ro to r .  

4)  Determine t h e  magnitudes of t h e  aerodynamic forces  necessary for calcula
t ion:  
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i=i +x I 
k I 

where t h e  value of ‘I)i s  determined by d i f f e r e n t i a t i o n  of eq.(7.19): 

q-= --e1 cosqb+-e2 sin +,-&. 
Here, 60 = E  i 3 f 3 & j ’. 

3 

5) From eqs.(7.10), (7.11), and (7.12), determine t h e  veloci ty  of flow past  
t h e  p r o f i l e  and i t s  components, and der ive t h e  angles of a t t ack  of t h e  sect ions 
from eq.(7.16). Use eq.(7.X)) f o r  determining t h e  Mach number. 

6) From t h e  polars  of t h e  p r o f i l e  fed i n t o  t h e  computer together with t h e  
i n i t i a l  data, determine t h e  values of cx,  cy, and m,. After t h i s ,  making use of 
eqs.(7.9), calculate  t h e  aerodynamic forces  per u n i t  length T and t h e  t o r s i o n a l  
moments Sn ,. 

7) From t h e  known values of T and n,,, , determine t h e  terms A, and 
enter ing t h e  right-hand s ide  of t h e  d i f f e r e n t i a l  equations ( see  Table 4.1). 

8) To determine t h e  value of ceq it i s  necessary t o  know t h e  values of 
blade twist i n  t h e  feather ing hinge yoN) f o r  a l l  zb blades of t h e  rotor .  I nt 
t h i s  case, ceq i s  determined by t h e  method presented i n  Subsection 5. 

9)  Determine t h e  value and s ign of t h e  moment of f r i c t i o n  Mi, i n  t he  
feather ing hinge ( see  Subsect .9). 

After t h i s ,  derive a l l  coe f f i c i en t s  of t h e  equations ( see  Table 4.1) and 
start with t h e  solution. 

10) The system of equations (see Table 4.1) permits determining a l l  values 
of ii’, and ;it,,i f  6,, y t w  

are known at  t h e  azimuth $b i n  question. 


and t h e  right-hand s ides  of t h e  equations A, and B, 
This f a c t  permits i t s  use i n  t h e  /432

calculat ion program i n  t h e  form of some operator of t h e  type 
.. .. 

61, y t w = w 1 *  Y,  ,+J. (7.34) 


After applying t h i s  operator, determine t h e  values g3 and .;it,, at t h e  i n i t i a l  
i n s t an t  of time. 

ll) The change t o  t h e  next i n s t an t  of time can be  accomplished by means of 
various methods of numerical i n t eg ra t ion  of d i f f e r e n t i a l  equations. 



Good r e s u l t s  are obtained by a system of formulas i n  which t h e  t r a n s i t i o n  
from t h e  in s t an t  of time t t o  t h e  time t + A t  i s  accomplished by two checks. 
This system of formulas i s  i l l u s t r a t e d  f o r  t h e  example of determining t h e  values 
of t h e  var iable  6 , .  The index pertaining t o  t h e  number of t h e  harmonic i s  
omitted f o r  simplicity.  

F i r  st check: 
& : + A t  =8t  +A t i t  $-I A t f i t ;  

2 

i : + A t  = i t  +A t i f ;  
..I 
' t + A f =  (&:+Atr  yf+Al,  $ t + A t ) .  

Determination of X a v :  

(7.35) 

Second check: 

The values of 6;: A t ,  At, 'dt: At obtained as a r e s u l t  of recalculat ion a r e  
considered f i n a l  for t h e  i n s t a n t  of t i m e  t + A t .  

Operations analogous t o  eq.(7.35) a r e  performed on t h e  coe f f i c i en t s  of t o r 
s iona l  deformations. The change-over t o  t h e  next i n s t an t  of time i s  thus  accu
ra t  e ly  accomplished. 

A simpler method of numerical integrat ion can be proposed. This will be  
presented i n  greater  d e t a i l  i n  Vol.11. 

12) The type of problem investigated i s  important f o r  t h e  sequence of 
calculation. If it i s  a question of determining t h e  p o s s i b i l i t y  of ro to r  f l u t t e r ,  
then t h e  process of numerical i n t eg ra t ion  must be  carr ied out simultaneously f o r  
a l l  r o t o r  blades and t h e  value of coq must be determined at  each in s t an t  of time. 
The coupling between blades through t h e  swashplate i s  taken i n t o  account by 
calculat ing t h e  quantity c, 9. I f  t h e  question of invest igat ing f l u t t e r  i s  not 
r a i sed  and only stresses i n  t h e  blade are being determined, t h e  problem is  great
l y  simplified.  I n  t h i s  case we can introduce i n t o  t h e  calculat ion t h e  assump
t i o n  t h a t  a l l  blades of t h e  r o t o r  dupl icate  t h e  motion of t h e  blade i n  question, 
and t h e  process of numerical i n t eg ra t ion  is performed f o r  only one blade. 

When determining cos i n  t h i s  case it i s  assumed t h a t  

469 



(7.36) 

where 
azimuth angle of t h e  blade with t h e  number N = 0 
whose motion i s  determined i n  t h e  calculation; 
coeff ic ient  of deformation of  t h e  blade with t h e  
number N = 0, not a t  t h e  azimuth $io'i n  question but  

- -);2nNat t h e  azimuth ($io)
z b  

coeff ic ient  of deformation of t h e  blade with t h e  
number N when t h e  blade with N = 0 i s  at t h e  aai
muth $io?. 

13) I n  determining t h e  s t r e s ses ,  t h e  numerical i n t eg ra t ion  i s  performed f o r  
several  rpm of t h e  r o t o r  u n t i l  a l l  values of 6, and ytwat two successively 
calculated rpm d i f f e r  l e s s  than t h e  prescribed accuracy of 'calculation. This 
will i nd ica t e  t h a t  t h e  process has converged. After t h i s ,  t h e  bending s t r e s s e s  
a t  each azimuth can be determined by t h e  formula 

(7.37) 

where 0") are t h e  bending s t r e s s e s  of t h e  blade with respect t o  a normed mode 
of na tu ra l  vibrat ions of t h e  j-th harmonic. 

Further reduction of t h e  obtained da ta  can be  performed i n  any form, de
pending on t h e  purpose of t h e  calculation. Usually, t h e  amplitude of t h e  
s t r e s s e s  i s  determined and t h e  va r i a t ion  i n  stresses with respect t o  azimuth i s  
decomposed i n t o  harmonics. 

14) I n  t h e  invest igat ion of f l u t t e r ,  t h e  r e s u l t s  can be  evaluated after 
studying t h e  e n t i r e  process of va r i a t ion  i n  t h e  deformation coe f f i c i en t s  during 
several  r o t o r  rpm. This i s  not very convenient i n  p rac t i ce  s ince it requires  
considerable graphic work f o r  p lo t t i ng  t h e  dependences 6, = f ($)  and ytw = f ( S ) .
Nevertheless, t hese  drawbacks a r e  compensated by t h e  advantages of t h i s  calcula
t i o n  method. 

The method presented here involves a l a rge  amount of work, but it i s  known 
from p r a c t i c a l  experience i n  design shops t h a t ,  i f  modern d i g i t a l  computers are 
used, t h i s  method best  meets t h e  requirements i n  designing and perfecting blades 
and permits introducing add i t iona l  refinements i n t o  t h e  r e s u l t s  of t h e  calcula
t i o n  based on an analysis  of t h e  r o o t s  of t h e  c h a r a c t e r i s t i c  equation. 

. . .  of- .F l u t t e r-Section 8. Experimental Invest igat ions - .  

1. Ground Tests f o r  F l u t t e r  

The features of hel icopter  design permit t h e  performance of f l u t t e r  analysis  
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of t h e  r o t o r  under safe conditions, with t h e  hel icopter  on t h e  ground. This 
cons t i t u t e s  a d i s t i n c t  advantage of t h e  hel icopter  over regular  a i r c r a f t .  

Ground t e s t s  f o r  f l u t t e r  are carried out f o r  d i f f e r e n t  purposes. Often 
these  purposes are purely of a research nature. I n  many cases, it i s  necessary 
t o  check o r  r e f i n e  - under ful l -scale  conditions - t h e  e f f ec t  of various para
meters on f l u t t e r  cha rac t e r i s t i c s ,  t o  evaluate t h e  p e c u l i a r i t i e s  of t h e  develop
ment and cessation of f l u t t e r  and, f i n a l l y ,  t o  simply r e f i n e  individual  moments 
i n  t h e  procedure of conducting such tests. 

Nevertheless, i n  t h e  overwhelming majority of cases these  tests are /434.
carr ied out f o r  inspection purposes. Recently, it has become t h e  r u l e  t h a t  each 
experimental hel icopter  must undergo f l u t t e r  t e s t s  before  t h e  start of f l i g h t  
tests. The a c t u a l  margins t o  t h e  onset of f l u t t e r  are established i n  these  
tests. If they prove t o  b e  too  large,  t h e  designer can reduce them, f o r  example, 
by decreasing t h e  weight of t h e  counterbalance i n  t h e  blade and thus  l ightening 
it. I n  t h e  case of i n su f f i c i en t  margins, it is  necessary t o  make some design 
modifications and recheck them i n  tests. 

The f i n a l l y  established f l u t t e r  margins on an experimental hel icopter  will 
l a t e r  serve as c r i t e r i a  f o r  evaluating t h e  cha rac t e r i s t i c s  of other hel icopters  
of t h e  same design i n  production at a series-production plant or i n  a c t u a l  
service.  

Usually, i n  developing a new hel icopter  it i s  possible t o  r e s t r i c t  t h e  t e s t 
ing t o  ground tes ts  without t h e  need f o r  addi t ional  f l i g h t  t e s t s .  I n  exceptional 
cases i n  t h e  past, it had been necessary t o  a l so  conduct f l i g h t  tests. A s  a 
ru l e ,  t h e r e  i s  no need f o r  these.  

Ground f l u t t e r  t e s t s  a r e  usually carried out i n  t h e  following manner: 

The hel icopter  i s  made fast on a spec ia l  platform so t h a t  t h e  possible oc
currence of f l u t t e r  and consequent f a i l u r e  of a par t  will not cause t h e  hel i 
copter t o  roll over. A s  i s  known, roll-over of a hel icopter  will cause t h e  
blades t o  s t r i k e  t h e  ground and almost completely wreck t h e  c ra f t .  I n  some 
cases, t he re  might be  casual t ies .  Generally, such does not happen i n  ground 
tes ts  for f l u t t e r ,  but  t h e  experimenter must always be  prepared f o r  any eventu
a l i t y. 

To begin t h e  t e s t s ,  t h e  ro to r  should b e  r e w e d  t o  t h e  maximum rpm at which 
f l u t t e r  cannot ye t  occur. Then t h e  rpm i s  gradually increased. Usually, t h i s  
increase i s  accomplished i n  s t eps  of a c e r t a i n  quantity An, so t h a t  n2 = n l  + 
+ An. Here nl i s  t h e  i n i t i a l  value of t h e  rpm and n2 t h e  new value. The quanti
t y  An i s  generally taken as about 2% of t h e  operating rpm of t h e  ro to r .  

A t  t h e  new rpm n2, t h e  r o t o r  i s  held f o r  some time (usual ly  1- 2 min) so 
t h a t  vibrat ions can proceed up t o  noticeable i n t e n s i t i e s ;  i f  f l u t t e r  does not 
occur, t h e  rpm i s  again increased by t h e  quantitysAn u n t i l  f l u t t e r  does develop. 

F l u t t e r  tests are usual ly  greatly simplified i f ,  t o  cause f l u t t e r ,  it i s  
not necessary t o  c rea t e  i n i t i a l  disturbances as it i s  required i n  hard f l u t t e r  
with an exc i t a t ion  threshold (see Sects.3.3 and 3.4). Therefore, an attempt 



should be  made i n  t h e  t e s t s  t o  c rea t e  conditions favorable f o r  t h e  occurrence of 
s o f t  f l u t t e r .  Such conditions usually a r e  present i f  a s u f f i c i e n t l y  l a rge  forced 
motion i s  generated i n  t h e  feather ing hinge. For t h i s ,  t h e  control  lever ,  and 
along with it t h e  swashplate, are deflected forward as far as possible. Usually, 
t h i s  i s  limited by t h e  f a c t  t h a t  t h e  blades begin t o  s t r i k e  t h e  supports of t h e  
v e r t i c a l  overhang guard. 

When a forced motion i s  created i n  t h e  feather ing hinge, f l u t t e r  sets i n  
e a r l i e r  with respect t o  t h e  ro to r  rpn. Thus, pu l l i ng  t h e  control  s t i ck ,  i n  a 
way, i s  a means of generating f l u t t e r .  Here, t h e  start of f l u t t e r  t e s t s  i s  as 
follows: The increase i n  rotor rpm by An i s  carr ied ou t  a t  neutral pos i t i on  of/435 
t h e  swashplate, a f t e r  which t h e  control  s t i c k  i s  pulled forward and t h e  regime 
i s  maintained with t h e  s t i c k  deflected. I f  f l u t t e r  does not occur, t h e  control  
s t i c k  i s  returned t o  t h e  neu t r a l  posi t ion and t h e  r o t o r  rpm i s  again increased, 
and so on, u n t i l  f l u t t e r  occurs. 

Upon t h e  appearance of f l u t t e r ,  i f  t h e  o s c i l l a t i o n s  bu i ld  up rapidly,  it i s  
first  necessary t o  reduce t h e  engine power sharply so  as t o  cause a r ap id  drop 
i n  r o t o r  rpm. An addi t ional  means of stopping f l u t t e r  i s  t o  r e t u r n  t h e  control 
s t i c k  t o  t h e  neu t r a l  posit ion.  

I n  f l u t t e r  t e s t s ,  it i s  of great  importance t o  achieve t h e  maximum possible 
ro to r  rpm. To prevent t h e  rpm from being l imited by t h e  engine power, t h e  r o t o r  
i s  usual ly  lightened meaning t h a t  t h e  angle of blade s e t t i n g  i s  reduced. Eirperi
ments have shown t h a t  t h e  ove ra l l  angle of blade s e t t i n g  has only a s l i g h t  in
fluence on t h e  c r i t i c a l  rpm of f l u t t e r  and thus  can be reduced without r i s k .  
However, one d e f i n i t e  l imi t a t ion  does exist. The lower t h e  angle of r o t o r  set
t ing ,  t h e  sooner w i l l  t h e  blade begin t o  s t r i k e  t h e  supports where t h e  control 
s t i c k  i s  deflected.  Furthermore, severe l ightening of t h e  r o t o r  i s  unwarranted 
so t h a t  t h e  m a x i "  rpm i n  t h e  t e s t s  i s  l imited not so much by t h e  power as by 
t h e  mechanical s t rength of t h e  engine. Therefore, t h e  angle of blade s e t t i n g  i s  
selected as maximum i n  t h e  t e s t s  but i s  kept at  a value preventing t h e  blades 
from s t r i k i n g  t h e  supports when t h e  control s t i c k  i s  def lected while maintaining 
su f f i c i en t  engine power f o r  m a x i "  possible rpm allowable for mechanical 
strength reasons. 

F l u t t e r  tests under ground conditions obviously are possible only i f  t h e  
r o t o r  cha rac t e r i s t i c s  a r e  such t h a t  f l u t t e r  will t a k e  place under these  condi
t ions.  On hel icopters  r a t ed  f o r  service, f l u t t e r  cannot occur under ground con
di t ions.  Therefore, t o  conduct ground t e s t s  f o r  f l u t t e r ,  t h e  r o t o r  parameters 
must be  disturbed somehow. This i s  usually accomplished i n  t h e  simplest way by 
dis turbing t h e  blade balance, which can be  achieved by at taching small weights 
t o  t h e  t r a i l i n g  edge of t h e  blade. Occasionally, t h e  balance i s  sh i f t ed  by coat
ing  t h e  surface of t h e  blade close t o  t h e  t r a i l i n g  edge with some kind of ma
t e r i a l w h o s e  weight w i l l  s h i f t  t h e  blade balance rearward. It i s  a l s o  possible 
t o  introduce some e l a s t i c  elements i n t o  t h e  control loop. Thus, i n  conducting 
f l u t t e r  tests, t h e  r o t o r  parameters must first be changed so as t o  make occur
rence of f l u t t e r  possible. 

When conducting t h e  tests, it is  necessary t o  provide f o r  t h e  recording of 
various parameters t o  permit an accurate determination of c r i t i c a l  rpm, fre
quency, v ib ra t ion  mode, and de f l ec t ion  of t h e  control  s t i c k  a t  which f l u t t e r  
b egan . 
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Without a determination of  these parameters it i s  impossible t o  make a suf
f i c i e n t l y  accurate evaluation of t h e  f l u t t e r  margin and t o  indicate  what para
meters should be changed t o  increase t h i s  margin. 

When conducting t h e  tests, t h e  onset of f l u t t e r  i s  detected by t h e  p i l o t  
from t h e  disturbance of t h e  blade coning angle and from t h e  increase i n  fuselage 
vibrat ions and, i n  t h e  case of r eve r s ib l e  control, a l so  from vibrat ions of t h e  
control s t i ck .  However, a l l  t hese  s igns are s u f f i c i e n t l y  d i s t i n c t  only after 
t h e  vibrat ion amplitudes reach extremely high values and conduction of t h e  tes t  
becomes dangerous. Consequently, it i s  desirable  t o  stop f l u t t e r  t e s t s  e a r l i e r ,  
before o s c i l l a t i o n s  have time t o  develop. I n  t h i s  case, t h e  p i l o t  may e a s i l y  /&
confuse f l u t t e r  with t h e  usual ly  present d i s t o r t i o n  of t h e  blade coning angle. 
This i s  promoted by vibrat ions which, as a ru l e ,  arise i n  such t e s t s  owing t o  
wind and lack of c o n t r o l l a b i l i t y  of t h e  rotor .  

I n  t h i s  case, t h e  occurrence of f l u t t e r  can be judged.only by recordings of 
various f a c t o r s  t h a t  are cha rac t e r i s t i c  f o r  vibration. To determine t h e  onset 
of f l u t t e r  and i t s  parameters, t h e  type of recordings made i n  the  t e s t s  i s  of 
great importance. It has been shown t h a t  it i s  not always easy t o  determine t h e  
onset of f l u t t e r  from a recording of t h e  flapping motion of t h e  blade i n  t h e  hub 
hinges, since f l u t t e r  vibrat ions i n  t h e s e  hinges lead on ly  t o  a d i s t o r t i o n  of 
t he  recording of t h e  flapping motion caused by de f l ec t ion  of t h e  control s t i ck .  

Th i s  i s  i l l u s t r a t e d  i n  Figs.4.33 and 4.34 which show a recording of blade 
motion i n  t h e  flapping hinge (angle p), with t h e  recording of weak f l u t t e r  shown 
i n  Fig.4.33 and of stronger f l u t t e r  i n  Fig.4.34. A s  follows from Fig.4.33, a 
determination of t h e  onset of low-amplitude f l u t t e r  would be d i f f i c u l t  from a 
recording of t h e  angle p. The same i s  t r u e  h i t h  respect t o  recording t h e  hinge 
moment M b. 

The onset of f l u t t e r  i s  best  r e f l ec t ed  i n  t h e  recording of forces  i n  t h e  
nonrotating control loops. The recording of forces  i n  t h e  longitudinal control  
P l o n g  i s  shown i n  t h e  oscillograms (Figs.4.33 and 4.34). It i s  easy t o  define 
t h e  onset of f l u t t e r  from these recordings. 

It should be mentioned t h a t  Figs.4.33 and 4.34 show t h e  recordings of ant i 
phase f l u t t e r  wi th  an order m = 3 for  a four-blade ro to r .  Consequently, t h e  
frequency of t h e  variable forces  i n  t h e  longi tudinal  control i s  governed by t h e  
r e l a t i o n  

where 

When the control  s t i c k  i s  deflected from t h e  neu t r a l  posi t ion by even t h e  
s l i g h t e s t  amount xp, t he  v ib ra t ion  frequency of t h e  blade i n  f l u t t e r  pr can no 
longer be determined from recording t h e  angle B (see Figs.4.33 and 4.34f, but  
can e a s i l y  be calculated from eq.($.l) s ince t h e  value of t h e  frequency PIonr i s  
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Fig.4.33 Oscillogram of Hinge Moment Mb,  Blade Flapping Angle B ,  Position 
of Control St ick xp, and Forces i n  Longitudinal Control Plonl li n  

t h e  Presence of Weak Flut ter .  

t i c k  

Fig.4.34 Oscillogram of Hinge Moment Mb, Blade Flapping Angle B ,  Position 
of Control Stick xp, and Forces i n  Longitudinal Control Plong i n  

t h e  Presence of Stronger Flut ter .  



r ead i ly  determined from t h e  oscillograms. 

I f ,  after occurrence of f l u t t e r ,  t h e  control s t i c k  i s  returned t o  neutral ,  
t h e  flapping motion caused by t i l t i n g  of t h e  swashplate will stop and t h e  only 
motion i n  t h e  flapping hinge w i l l  be t h a t  due t o  f l u t t e r  (see Fig.4.34). I n  
this case, t h e  frequency of f l u t t e r  can be  determined a l so  from t h e  recording 
of B.  

I n  t h e  t e s t s  whose recordings are shown i n  Figs.4.33 and 4.34, f l u t t e r  w a s  
caused by an increase i n  r o t o r  rpm and by def lect ion of t h e  control  s t i c k  by an 
amount xp. 

I n  t h e  first case (see Fig.4.33), t h e  rpn was  r a i sed  t o  nil,, = 184 and, as 
soon as weak f l u t t e r  set in,  it was  stopped again by decreasing t h e  r o t o r  rpm. 
The posi t ion of t h e  control  s t i c k  xp had not been changed. 

I n  t h e  second case ( see  Fig.4.34), t h e  rpm w a s  r a i sed  somewhat more, up t o  
n = 186, causing stronger f l u t t e r  t o  occur. A t  t h e  start, t h e  control s t i c k  w a s  
returned t o  neu t r a l  without a change i n  rpm; t h i s  caused t h e  increase i n  v i - & 
bra t ion  t o  stop, a f t e r  which t h e  rpm w a s  lowered and t h e  f l u t t e r  disappeared. 

It should be mentioned t h a t  t h e  recordings shown i n  Fig.4.33 and 4.34 cor
respond t o  r a the r  weak f l u t t e r  with a slowly increasing amplitude. Such f l u t t e r  
i s  not always observed; often,  t h e  vibrat ion amplitude increases much more 
rapidly and t h e  manipulation of t h e  control s t ick,  described above, becomes im
possible. 

A s  an example of such abruptly developing f l u t t e r ,  Fig.4.35 shows an oscil
logram of blade motion about t h e  flapping hinge for another helicopter with a 
three-blade ro to r .  To s top f l u t t e r  on t h i s  helicopter it w a s  necessary t o  reduce 
t h e  rpm as rapidly as possible. 

The f l u t t e r  vibrat ion mode whose recording i s  shown i n  Fig.4.35, i s  of t h e  
in-phase type which means t h a t  t h e  col lect ive pi tch control  i s  loaded during t h e  
vibration. This makes t h e  recording of t h e  swashplate s l i d e  vibrations,  shown 
i n  Fig.4.36, qu i t e  i n t e re s t ing .  This recording w a s  made with a CV-11 automatic 
recorder. 

The recordings shown i n  Figs.4.33 - 4.36 a r e  given only as an example and 
i n  no way exhaust a l l  possible types of f l u t t e r  observed on helicopters.  These 
types may d i f f e r  i n  modes of blade vibration, phase d i s t r i b u t i o n  of vibrat ions 
over t h e  blades (d i f f e ren t  values of m), frequencies, r a t e  and character ( s o f t  
and hard f l u t t e r )  of build-up of vibrations,  and i n  numerous other features. 
A l l  these p e c u l i a r i t i e s  must be  taken i n t o  account i n  f l u t t e r  tes ts  and i n  pro
cessing t h e  obtained recordings. 

2. F l u t t e r  Tests i n  Fl ight  

F l u t t e r  tests i n  f l i g h t  became necessary when it was found t h a t ,  during 
m a s s  service of helicopters,  t h e r e  were individual cases of f l u t t e r  i n  f l i g h t  
when such f l u t t e r  should not have been possible according t o  concepts held at  
t h a t  time. 
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Fig.k.35 Oscillogram of Blade Flapping Motion during Violent Flut ter .  
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Onset of f l u t t e r  End of f l u t t e r  


Fig.4.36 Recording of Forces i n  Collective Pitch 
Control during Violent F lu t te r .  



Tests were carried out, which showed t h a t  
t h e  c r i t i c a l  f l u t t e r  rpm i n  f l i g h t  i s  appreci
ably lower than i n  ground tests. 

The r e l a t i o n  between t h e  c r i t i c a l  rpm i n  
f l i g h t  and on t h e  ground was calculated and 
it became possible t o  define t h e  characteris
t i c s ,  checked i n  ground t e s t s ,  t h a t  were 
needed f o r  prevention of f l u t t e r  i n  f l i g h t .  
The obtained conclusions can be used i n  de
veloping new helicopter,  making f l u t t e r  tes ts  
i n  f l i g h t  f o r  each type of helicopter un
necessary. It should be  borne i n  mind t h a t  
t e s t s  with exc i t a t ion  of f l u t t e r  i n  f l i g h t  
are extremely dangerous. Such t e s t s  should 
be  performed only i f  absolutely necessary and 
should be organized with maximum safety f o r  
t h e  crew. 

Primarily, before s t a r t i n g  t h e  tes ts  t h e  
researchers should col lect  data ensuring t h a t  
abrupt development of f l u t t e r  will not occur 
i n  f l i g h t  and t h a t ,  i f  it does start, it can 
be stopped again. Such da ta  can be obtained 
i n  cases i n  which unscheduled f l u t t e r  s e t s  i n  
during f l i g h t  tes ts  or  during service on some 
helicopter of t h e  type i n  question. This 
occasionally occurs as a consequence of some 
operating error ,  f o r  example, i f  t h e  ro to r  i s  
r e w e d  t o  an rpm by far exceeding t h e  permis
s i b l e  maximum. 

Ground t e s t s  can be  used as an ind i r ec t  
c r i t e r i o n  f o r  t h e  degree of abruptness of 
f l u t t e r .  Experience has shown t h a t  t h e  rate 
of build-up of vibrat ion on t h e  ground and /4rco
i n  f l i g h t  i s  determined t o  some extent by t h e  
overal l  parameters. Therefore, i n  some cases 
da t a  of ground t e s t s  can be used as basis .  

The only r e l i a b l e  measure f o r  stopping 
f l u t t e r  i n  f l i g h t  i s  a sharp reduction i n  
rpm. Therefore, t o  ensure d e f i n i t e  stopping 
of f l u t t e r  it i s  necessary t o  have a l a r g e  
rpm excess i n  a regime where f l u t t e r  begins
i n  commrison with t h e  minimum rmn a t  which 

f l i g h t  i s  possible. During t h e  tests, t h e  p i l o t  should induce f l u t i e r  by r a i s i n g  
t h e  r p  and stop f l u t t e r  by sharply reducing t h e  rpm t o  t h e  minimum possible f o r  
continuation of t h e  f l i g h t .  

A l l  considerations r e f e r r i n g  t o  recording i n  ground tes ts  hold a l so  f o r  
f l i g h t  t e s t s ,  However, we should point out one pecu l i a r i t y  of vibrat ions during 
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f l u t t e r  i n  f l i g h t ,  which dis t inguishes  these  vibrat ions from those observed i n  
ground tests. 

I n  ground t e s t s ,  forced flapping motion i n  t h e  hinges caused by t i l t i n g  of 
t h e  swashplate takes place almost exclusively at  t h e  frequency of t h e  f irst  har
monic of t h e  r o t o r  rpm. I n  f l i g h t ,  t h e  flapping motion contains a l so  t h e  second 
and higher harmonics. Therefore, blade vibrat ion i n  flapping f l u t t e r  usually 
generated at frequencies close t o  t h e  second harmonic but generally not equal t o  
it, will lead t o  b e a t s  between t h e  second harmonic of flapping and f l u t t e r  v i 
bration. Therefore, f l u t t e r  i n  f l i g h t  i s  o f t en  perceived as beats.  

A s  a t y p i c a l  example, Fig.4.37 shows t h e  recording of f l u t t e r  i n  f l i g h t  i n  
a regime where flapping i n  t h e  axes of t h e  shaf t  cons i s t s  almost exclusively of 
t h e  second harmonic (see Fig.4.37b). This i s  explained by t h e  f a c t  t h a t  attach
ment of t h e  shaf t  was  selected such t h a t  vibrat ions of t h e  first harmonic are 
eliminated i n  cruis ing f l i g h t .  

The vibrat ions during- f l u t t e r  i n  t h i s  regime have well-defined bea t s  ( s ee  
Fig.4.37a) 

I n  a l l  other cases, i f  t h e  lower c r i t i c a l  rpm i s  disregarded, f l u t t e r  i n  &
f l i g h t  w i l l  d i f f e r  from t h a t  ob

7 

r o t o r  r p n ,  i n c l .  3-100 

-	 1-1 
feff 

Fig.4.38 Comparison of Experimental 
and Calculated Values of Vibration 
Frequency and C r i t i c a l  F l u t t e r  R p .  

not 
served on t h e  ground. 

3. 	 Comparison of Calculation and Experi
ment under Conditions of Axial Flow 
past t h e  Rotor 

I n  comparing calculat ion and ex
periment, t h e  i n i t i a l  ro to r  parameters 
used i n  t h e  calculat ion a r e  of prime 
importance, along with type of blade 
balancing, r i g i d i t y  of t h e  control 
system, and magnitude of f r i c t i o n  i n  
t h e  feather ing hinge of t h e  hub, as 
w e l l  as r e l i a b i l i t y  with which t h e  lo
cation of  t h e  p r o f i l e  focus i s  known. 
Errors  i n  determining t h e  i n i t i a l  d a t a  
na tu ra l ly  a f f e c t  t h e  accuracy of deter
mining- t h e  f l u t t e r  parameters. There
fore,  i n  comparing calculat ion and ex
periment it i s  desirable  t o  eliminate 
e r r o r s  i n  determining t h e  ini t ia l  para
meters. For t h i s ,  t h e  parameters 
should be checked experimentally. 

Balancing should be determined by weighing individual segments of t h e  blade ob
tained after cu t t i ng  it. 

To determine t h e  c o n t r d  r i g i d i t y  a spec ia l  method of measuring dynamic 
r i g i d i t y  should be  used, which Will b e  taken up i n  greater d e t a i l  i n  Section 6 .  
The use of other methods generally leads t o  misunderstandings and f a l l a c i e s  and 

4.78 



therefore  should be discarded. 

To check t h e  posi t ion of t h e  p r o f i l e  a.c. a segment of a ful l -scale  blade 
should be exposed t o  t h e  a i r  stream i n  a wind tunnel. I n  t h i s  case, it can be  
expected t h a t  deviations i n  t h e  aerodynamic cha rac t e r i s t i c s  due t o  design e r r o r s  
of t h e  blade p r o f i l e  and deformation i n  work w i l l  b e  ref ined t o  some extent. 

Figure 4.38 gives t h e  r e s u l t s  of a comparison of  calculat ion and experiment 
f o r  t h e  M i - 4  helicopter.  The so l id  curve shows t h e  t h e o r e t i c a l l y  obtained de
pendence of t h e  c r i t i c a l  f l u t t e r  rpn on t h e  e f f ec t ive  blade balancing. The 
c i r c l e s  mark t h e  experimental results. Circle 1with t h e  forwardmost blade 
balancing corresponds t o  t h e  maximum rpn obtainable with a helicopter engine. 
There w a s  no f l u t t e r  i n  t h i s  case. After attaching 0.46-kg weights t o  t h e  blade 
f laps ,  t h e  experiment w a s  repeated. There again was  no f l u t t e r  ( c i r c l e  2). 

Attachment of weights of 0.86 and 1.3 kg t o  t h e  blade f l a p  caused f l u t t e r  
at  r o t o r  rpm of n = 187 and n = 173 respect ively (squares 3 and 4 i n  Fig.4.38). 

The frequency of blade vibrat ion during f l u t t e r  i s  indicated i n  t h e  dia
gram by squares 5 and 6, which should be compared with t h e  theo re t i ca l ly  deter-
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Fig.k.39 Comparison of Experi
mental and Calculated Data i n  

Flight.  

It should be  added t h a t  t h e  

mined frequency values shown by t h e  dashed 
curve. 

After t h e  experiments, t h e  blades were 
cut i n t o  segments and t h e i r  e f f ec t ive  
balancing w a s  determined, which i s  noted on 
t h e  graph i n  Fig.4.3$. The dynamic r i g i d i t y  
of t h e  control system w a s  determined on t h e  
same helicopter.  The magnitude of f r i c t i o n  
i n  t h e  feathering hinge, which w a s  highly 
s table ,  w a s  measured i n  t h e  laboratory on 
another hub of t h e  same design. 

These da t a  indicate  sa t i s f ac to ry  (with 
an accuracy t o  within 0.5% of t h e  chord f o r  
t h e  value of e f f ec t ive  balancing) agreement 
of calculation and experiment. We note t h a t  
such a good agreement w a s  observed i n  a l l  
other experiments carr ied out on other hel i 
copters. This c rea t e s  confidence i n  t h e  
r e l i a b i l i t y  of t h e  r e s u l t s  obtained from 
calculat ion and i n  t h e  v a l i d i t y  of t h e  
i n i t i a l  assumptions, including t h a t  of t h e  
permissibi l i ty  of determining aerodynamic 
forces  by formulas based on t h e  "steady
state hypothesis". 

f l u t t e r  calculat ion pe r t a ins  t o  a case qui te  
rare i n  r o t o r  calculat ions when good agreement with experiment i s  observed. 
Probably, t h i s  i s  due primarily t o  t h e  f a c t  t h a t  even subs t an t i a l  e r r o r s  i n  de
termining t h e  magnitudes of aerodynamic forces  have no great e f f ec t  on t h e  f i n a l  
r e s u l t s  of calculat ion at  c r i t i c a l  f l u t t e r  rpn. 
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-- - . .  . - Fxperiment4. Comparison of. CalcuLation and . .  i n  Fl ight  

Comparisons of calculat ion and experiment i n  f l i g h t  do not show such good 
agreement as i n  similar comparisons of r e s u l t s  obtained under conditions of 
&a1 flow past  t h e  r o t o r  i n  ground tests.  I n  f l i g h t ,  t h e  decrease i n  c r i t i c a l  
f l u t t e r  rpm i s  f e l t  more strongly than on t h e  b a s i s  of calculation. Figure 4.39 
gives two curves obtained by calculat ion f o r  a regime with axial flow (p = 0) 
and f o r  horizontal  f l i g h t  with p = 0.25. The curves do not d i f f e r  great ly .  
Conversely, t h e  experimental r e s u l t s  d i f f e r  substant ia l ly .  I n  Fig.4.39 point 1 
marks t h e  c r i t i c a l  rpm obtained i n  a ground t e s t  with a 0.86-kg weight attached 
t o  t h e  f l a p s  while point 2 r e f e r s  t o  t h e  c r i t i c a l  f l u t t e r  rpm obtained on t h e  
same hel icopter  i n  f l i g h t  but  without weights on t h e  f laps .  The tes t  points  i n  
Fig.4.39 were obtained i n  t e s t s  l a i d  out by S.B.Bren and A.A.Dokuchayev and per
formed by t h e  p i l o t  V.V.Vinit skiy. 

The diagram ind ica t e s  t h a t  t h e  difference between t h e  f l i g h t  and ground 
tests i s  appreciably greater than t h a t  obtained by calculation. The cause f o r  
t h e  difference l i e s  i n  t h e  f a c t  t h a t ,  i n  calculations,  t h e  amplitude of t h e  /443
forced motion i n  t h e  feather ing hinge w a s  taken t o  be  t h e  same on t h e  ground and 
i n  f l i g h t ,  i.e., it w a s  assumed t h a t  i n  ground t e s t s  t h e  amplitude of t h e  angular 
v e l o c i t i e s  of blade vibrat ion i n  t h e  feather ing hinge, as a r e s u l t  of def lect ing 
t h e  control  s t i ck ,  was  t h e  same as i n  f l i g h t  as a consequence of ordinary flap
ping motion. Here, it w a s  disregarded t h a t ,  i n  f l i g h t ,  t h e  d i f f e ren t  vibrat ions 
and o s c i l l a t i o n s  with harmonics of higher orders  may noticeably reduce t h e  ef
fect iveness  of damping of o s c i l l a t i o n s  due t o  f r i c t i o n  i n  t h e  feather ing hinge. 
This assumption i s  usual ly  made t o  explain t h e  more abrupt drop i n  c r i t i c a l  
f l u t t e r  rpm i n  f l i g h t  i n  comparison with t h e  calculation. 

5.  Check f o r  F l u t t e r  

It has been noted above t h a t ,  f o r  a r e l i a b l e  elimination of t h e  p o s s i b i l i t y  
of f l u t t e r  under service conditions, t h e  hel icopter  r o t o r  should have a w e l l -
defined f l u t t e r  margin. This margin should be  checked on t h e  ground and, i f  t h e  
margin i s  below some standard value, t h e  hel icopter  should not be  allowed t o  f l y .  
I n  t h i s  approach, t h e  required margin before f l u t t e r ,  checked on t h e  ground, 
should t a k e  i n t o  account a decrease i n  c r i t i c a l  rpm i n  f l i g h t ,  possible deterio
r a t i o n  i n  f l u t t e r  cha rac t e r i s t i c s  due t o  moisture penetrating i n t o  t h e  blade, 
and other factors ,  and should secure t h e  necessary s t a b i l i t y  of blade vibrat ion 
at maxknum approach t o  t h i s  margin. 

The idea of f l u t t e r  checking w a s  first expressed by M.L.Milt who proposed 
t o  exc i t e  r o t o r  o s c i l l a t i o n s  by i n s t a l l i n g  an eccentr ic  i n  t h e  cycl ic  p i t ch  con
t r o l  system and t o  measure t h e  s t a b i l i t y  margin i n  terms of t h e  amplitude of t h e  
obtained resonance vibrations,  which should be  greater  t h e  smaller t h e  f l u t t e r  
margin. Such experiments were carr ied out and yielded i n t e r e s t i n g  r e s u l t s .  

Figure 4.40 shows t h e  experimentally obtained dependence of t h e  amplitude 
of t h e  hinge moment on t h e  exc i t a t ion  frequency of t h e  eccentr ic  f o r  various 
ro to r  rpm. The diagram shows t h a t  the' higher t h e  r o t o r  rpm and hence t h e  closer 
t o  f l u t t e r ,  t h e  g rea t e r  w i l l  be  t h e  amplitude of t h e  hinge moment. The same de
pendence i s  obtained f o r  blade balancing. During experiments on t h e  Mi-4 he l i 
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copter with a four-blade ro to r ,  we noted t h e  occurrence of two modes of resonance 
vibrat ions of frequencies p1 = pecc + n and p2 = peoc - n (pecc i s  t h e  frequency
of exc i t a t ion  from t h e  eccentric),  which agrees nicely with t h e  t h e o r e t i c a l  
notions presented i n  Section 4. The experiments confirm t h e  p o s s i b i l i t y  of using 
t h e  described method f o r  checking t h e  s t a b i l i t y  margin of t h e  rotor .  

However, some time l a t e r  a simpler method f o r  checking t h e  necessary margin 
i n  terms of blade balancing w a s  developed. This method provides f o r  checking 
t h e  helicopter on t h e  ground with blades whose balancing i s  sh i f t ed  rearward by 

a c e r t a i n  predetermined quantity. 
M6 kg-m 	 The balance i s  sh i f t ed  by means 

of spec ia l  weights placed on t h e  
t r a i l i n g  edges of t h e  blade 
during t h e  check. I f ,  on r a i s i n g  
t h e  rpm t o  a prescribed maximum, 
f l u t t e r  does not set in ,  t h e  
weights a r e  removed and t h e  he l i 
copter i s  admitted t o  service. 

The weights were o r ig ina l ly  
selected on t h e  b a s i s  of 
calculat ions and l a t e r  corrected

/Iss, 
fo r  d i f f e ren t  experiments and 
service conditions. Two magni
tudes of t h e  required margins a r e  
usually established. When t h e  

0 I DO 200 300 hel icopter  i s  released from t h e  
plant,  an increased margin i s  

Fig.4.40 Hinge Moment Amplitude as a established which can be pa r t i a l -
Function of Vibration Frequency of t h e  ly expended i n  service. There-

Eccentric. 	 fore, i n  a number of cases f l u t t e r  
check i s  a l so  introduced i n  
service, but then a smaller re

quired margin i s  established. 

The introduction of a f l u t t e r  check has proved a usefu l  measure, a f t e r  
which cases of t h e  development of f l u t t e r  i n  service completely stopped. 

6. Experimental Determination of Control System Rig id i tx  

It w a s  already pointed out above t h a t  t h e  c r i t i c a l  f l u t t e r  rpm g r e a t l y  de
pends on t h e  magnitude of t h e  control system r i g i d i t y .  It can be approximately 
assumed t h a t  t h e  c r i t i c a l  f l u t t e r  rpm i s  d i r e c t l y  proportional t o  Kn.Hence 
it i s  obvious t h a t  it i s  important t o  determine control  r i g i d i t y  as accurately 
as possible fo r  a successful calculation. How does one determine t h e  magnitude 
of t h i s  r i g i d i t y ?  When performing t h e  first calculat ions f o r  f l u t t e r ,  control  
r i g i d i t y  i s  o f t en  calculated t h e o r e t i c a l l y  by summing t h e  design r i g i d i t i e s  of 
a l l  components entering t h e  control  loop. F i r s t  measurements of t h i s  r i g i d i t y  
showed t h a t  t h e  calculated values a r e  much higher than t h e  experimental values. 
Therefore, it was  necessary t o  r e j e c t  t h e  calculat ion of control r i g i d i t y .  
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However, t h e  problem of t h e  manner of experimental determination of control  
r i g i d i t y  a l s o  proved d i f f i c u l t .  A t  first, t h e  control  r i g i d i t y  was  determined 
s t a t i c a l l y ,  i.e., by t h e  slope of t h e  dependence of t h e  magnitude of deformations 
on t h e  external load. However, t h i s  method d i d  not c l a r i f y  t h e  mode of account
ing  f o r  play i n  t h e  control  system, f r i c t i o n ,  and i n e r t i a  of t h e  components 
enter ing t h i s  system. Therefore, t h e  so-called dynamic method of determining 
control  r i g i d i t y  was  used, i n  which t h e  external forces  exerted at  t h e  control  
by t h e  blades were applied dynamically, a t  a frequency equal or  close t o  t h e  
frequency of f l u t t e r .  With t h i s  method of measurement, t h e  control r i g i d i t y ,/,!J& 
was by a f a c t o r  of 2 - 2.5 l e s s  than with t h e  s t a t i c  method. 

It i s  na tu ra l  t h a t  t h e  r e s u l t s  obtained i n  s t a t i c  analysis  cannot be  used 
for  t h e  f l u t t e r  calculations.  

What i s  t h e  simplest way of determining t h e  dynamic r i g i d i t y  of t h e  control 
system? For t h i s ,  we used t h e  following method: 

On a hel icopter  with a nonrotating r o t o r  we replaced t h e  blades by spec ia l  
weights whose moments of i n e r t i a  r e l a t i v e  t o  t h e  feather ing hinge were equal t o  
t h e  moments of  i n e r t i a  of t h e  removed blades. By  measuring t h e  na tura l  vibra
t i o n  frequency of t h i s  system, t h e  magnitude of t h e  corresponding hinge control  
r i g i d i t y  can be completely defined. These r i g i d i t i e s  can obviously be  calculated 
by means of t h e  formula 

Ccon =P 2 L p  9 (8.2) 

where 
p = one of t h e  na tu ra l  vibrat ion frequencies of t h i s  system, which 

should be considered equivalent t o  a r o t o r  with blades absolutely 
r i g i d  i n  to r s ion ;  

coon= hinge control  r i g i d i t y  corresponding t o  t h e  v ib ra t ion  mode f o r  
which t h e  frequency p i s  determined. 

The necessary values of t h e  na tu ra l  vibrat ion frequencies can be determined 
by t h e  usual method of forced vibrat ions with exc i t a t ion  by a vibrator  or  ec
centr ic .  

Since t h e  r i g i d i t y  of t h e  longi tudinal  and la teral  controls  on a hel icopter  
i s  usually not t h e  same, two d i f f e ren t  values of t h e  na tura l  vibrat ion frequency 
w i l l  correspond t o  loading of t hese  controls  [see eq.(4.19)]. 

L e t  us present t h e  values of t h e  frequencies corresponding t o  loading of 
d i f f e ren t  control loops obtained on t h e  Mi-4 hel icopter  with a nonrotating rotor:  

pr =400 +420 osc/min 

p, =440 +450 O J C / ~ ; ~  

pa.6 =590 +620 m c / m i n  

pap 
=920 +940osc/min. 



The notations used here a r e  t h e  same as those used i n  eqs.(b.l9). 

This r a i s e s  t h e  question whether t h e  control  r i g i d i t y  thus measured depends 
on t h e  amplitude of external  forces  ac t ing  on t h e  control system. To check t h i s ,  
we carr ied out experiments with t h e  maximum permissible ( i n  terms of strength) 
magnitudes of hinge moments act ing on t h e  control, approximately t h e  same as 
those which a c t  at  t h e  maximum f ly ing  speed, and witH moments lower by a f ac to r  
of 10. There was no subs t an t i a l  difference i n  t h e  value of t h e  obtained fre
quencies. 

Dynamic control  r i g i d i t y  may depend on t h e  frequency of t h e  forces  ac t ing  
i n  t h e  control cables. By changing t h e  moments of i n e r t i a  of t h e  weights in
s t a l l e d  i n  place of t h e  blades and measuring t h e  new na tu ra l  vibrat ion frequen
c i e s  of t h e  system, it becomes possible t o  define t h e  mode of va r i a t ion  of 
r i g i d i t y  with va r i a t ion  of t h e  v ib ra t ion  frequency. Figure 4.41 shows t h e  re
s u l t s  of such measurements. The abscissa gives t h e  na tu ra i  vibrat ion frequency 

f o r  t h e  control system which va r i e s  as a 
function of t h e  magnitude of t h e  moment of 
i n e r t i a  of t h e  weights, while t h e  ordinate 
gives t h e  dynamic r i g i d i t y  expressed i n  
t e r m s  of t h e  corresponding na tu ra l  vibra
t i o n  frequency i n  agreement w i t h  eqs.(4.19). 

Figure 4.41 indicates  t h e  approximate 
values of t h e  frequencies of var iable  
forces  acting' i n  t h e  nonrotating p a r t s  of

/446 
t h e  lateral and longi tudinal  controls  
during f l u t t e r  with modes of t h e  first 
(m = 1) and t h i r d  order ( m  = 3) .  These 
r e s u l t s  i l l u s t r a t e  t h e  above assumption 
( see  Sect.4.3) t h a t  t h e  magnitude of con
t r o l  r i g i d i t y  may depend on t h e  frequency 

4UU 600p osc/m/n of t h e  forces  ac t ing  i n  it. 

Fig.4.41 Control R ig id i ty  as a For comparison, Fig.4.W a l so  gives 
Function of Vibration Frequency. 	 t h e  values of t h e  s t a t i c  control r i g i d i t y  

obtained from t h e  slope of t h e  dependence 
of control  deformations on t h e  magnitude 

of e f f ec t ive  forces.  

The dynamic method described here f o r  determining control r i g i d i t y  has been 
su f f i c i en t ly  checked and can be  recommended f o r  p r a c t i c a l  use. 

7. Experiments on_DynamiiaUy Similar Models 

For conducting experiments on ful l -scale  hel icopters ,  t h e  researcher usual
l y  runs i n t o  many d i f f i c u l t i e s  having t o  do with observance of safety ru l e s ,  
s ince ful l -scale  experiments are usual ly  carr ied out by a p i l o t  or  mechanic i n  
t h e  helicopter.  This imposes ce r t a in  r e s t r i c t i o n s ,  especial ly  f o r  f l u t t e r  t e s t s  
i n  f l i g h t  where, f o r  s a fe ty  considerations, f l u t t e r  i s  usual ly  generated only 
once i n  some regime or,  i n  t h e  extreme case, three t o  four times but never more 
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often.  It i s  impossible t o  obtain any dependences f o r  t h e  parameter. 

Furthermore, t h e r e  are l imi t a t ions  t o  t h e  p o s s i b i l i t y  of invest igat ing 
various f l i g h t  regimes, due t o  t h e  cha rac t e r i s t i c s  of t h e  hel icopter  on which 
t h e  experiment i s  carr ied out. The engineer i s  almost always in t e re s t ed  i n  t h e  
f l u t t e r  margin with respect t o  rpm. However, t h e  maximum r p  achievable i n  ex
periments is  l imited by t h e  c a p a b i l i t i e s  of t h e  engine. For example, t h e  m a x i 
mum f ly ing  speed i s  l imited.  Therefore, t h e  researcher na tu ra l ly  w i l l  attempt 
t o  make wind-tunnel t e s t s  on dynamically similar models. Such t e s t s  of ten y i e l d  
i n t e r e s t i n g  r e s u l t s .  However, t h e i r  wide use i s  r e s t r i c t e d  by a number of b a s i c  
shortcomings. To estimate t h e  need f o r  such tes ts  i n  each individual case, l e t  
u s  discuss t h e  bas i c  p r inc ip l e s  underlying t h e  simulation i n  greater  d e t a i l .  

I n  producing a reduced-scale r o t o r  model, geometric s imil i tude of t h e  ex
t e r n a l  blade shape and t h e  cha rac t e r i s t i c  l i n e a r  dimensions of ro to r  blade and 
hub are of prime importance. We are thinking here of l i n e a r  dimensions deter
mining t h e  planform of t h e  blade; d i s t r i b u t i o n  of p r o f i l e s  and t h e i r  s e t t i n g  
angles over t h e  blade length; dimensions of i t s  components determining, f o r  
example, t h e  posi t ion of  t h e  feather ing hinge axis along t h e  blade length; M 
r e l a t i v e  posi t ion of other hub hinges; and many other dimensions. Next, it i s  
necessary t h a t  a l l  r e l a t i o n s  between aerodynamic, i n e r t i a ,  and e l a s t i c  forces  
remain constant. I n  t h i s  case, t h e  var iable  aerodynamic loads s e t  up at t h e  
model blade lead t o  t h e  same r e l a t i v e  deformations as on t h e  o r ig ina l  blade. 

Let us examine t h i s  i n  greater d e t a i l  f o r  t h e  example of bending vibrat ions 
of a blade i n  t h e  flapping plane. It can be demonstrated t h a t  bending deforma
t i o n s  of a blade with respect t o  some na tu ra l  v ib ra t ion  harmonic a r e  determined 
by t h e  coe f f i c i en t s  of deformation calculated by t h e  formula (see Vol.11) 

where 
pj = frequency of t h e  j-th harmonic of n a t u r a l  blade bending vibrat ion;  
yj  = mass c h a r a c t e r i s t i c  of t h e  blade i n  vibrat ions of t h e  j-th har

monic [see eq.(7.55) of Chapt.1 i n  VOI.II] 

cyJ = dimensionless coeff ic ient ,  characterizing t h e  magnitude of work 
done by t h e  aerodynamic forces  i n  displacements of t h e  blade during 
deformation with respect t o  t h e  j-th harmonic: 

Let u s  def ine t h e  mode of va r i a t ion  i n  t h e  relative coeff ic ients  of blade 
bending deformations 6”) upon a similar change i n  a l l  i t s  geometric dimensions. 
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The r e l a t i o n  between aerodynamic and i n e r t i a  parameters of t h e  blade i s  de
termined by t h e  values of t h e  m a s s  cha iac t e r i s t i c s  of t h e  blade yj . If a l l  geo
metric dimensions of t h e  blade change t h e  same number of t i m e s ,  namely, KL times, 
then, as follows from eq.(8.4), t h e  m a s s  cha rac t e r i s t i c s  of t h e  blade do not 
change. 

However, we see from eq.(8.3) t h a t ,  t o  r e t a i n  s imil i tude i n  bending de
formations, t h e  r e l a t i o n  between t h e  na tu ra l  vibrat ion frequency pj and t h e  
angular veloci ty  of r o t a t i o n  of t h e  r o t o r  w must be  retained. This requirement 
i s  equivalent t o  keeping t h e  Strouhal number constant: 

bS h =  !!
u ’

where 
p = vibrat ion frequency; 
U = veloci ty  of flow. 

The na tu ra l  v ib ra t ion  frequency p~ i s  determined by t h e  formula 

Upon a similar change i n  a l l  geometric dimensions of t h e  blade, t h e  quantity 
of t h e  e l a s t i c  moment of i n e r t i a  of i t s  sect ion I changes Kt times. I n  t h i s  
case, as e a s i l y  seen from eq.(8.7), t h e  magnitude of t h e  na tu ra l  vibrat ion f r e 
quency of t h e  nonrotating blade pol changes K L  times. Consequently, t h e  rela
t i o n  between t h i s  frequency and t h e  angular 7ielocity of r o t a t i o n  remains con
s t an t  i f  t h e  angular veloci ty  changes t h e  same number of times. 

Thus, t o  r e t a i n  s imil i tude i n  aerodynamic, i n e r t i a ,  and e l a s t i c  forces, a l l  
geometric blade dimensions must change the  same number of times (KL) and t h e  
peripheral  blade speeds must remain constant. Such dynamically similar models 
a r e  cal led Mach-similar models since s imi l a r i t y  with respect t o  t h e  Mach number 
i s  retained i n  a l l  blade sections. 

The requirement of changing a l l  geometric dimensions t h e  same number of 
times i s  eas i e s t  t o  meet by keeping t h e  blade design unchanged. Therefore, t h e  
development of such models ac tua l ly  reduces t o  t h e  development of models similar 
i n  design. This i s  a d i f f i c u l t  problem, requir ing t h e  solut ion of many highly 
complex technical  problems and t h e  organization of a spec ia l  production of s m a l l -
dimension designs. A s u f f i c i e n t l y  high accuracy i s  necessary i n  t h e i r  manu
facture.  Considerable d i f f i c u l t i e s  a l so  arise i n  developing hub hinges. It i s  
necessary t o  s t a t e  t h a t  such models are a l so  under considerable s t r e s s  relative 
t o  mechanical s t rength and do not permit much widening of t h e  regimes i n  which 
invest igat ions can be  carr ied out, i n  comparison with those on ful l -scale  heli
copters . 

Upon a reduction of t h e  geometric blade dimensions, t h e  r e l a t i o n  between 
t h e  blade weight and i t s  aerodynamic and e l a s t i c  cha rac t e r i s t i c s  drops by K L  
t i m e s .  This leads t o  a reduction of t h e  influence of t h e  blade weight para
meters i n  comparison with t h e  value for a ful l -scale  helicopter.  I n  par t icular ,  
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t h e  r e l a t i v e  overhang of t h e  blade of a nonrotating ro to r  decreases by KL times. 
The blade, so t o  speak, becomes more r i g i d  " to  t h e  eye". However, t h i s  dis
turbance of s imil i tude i s  observed only when t h e  ro to r  i s  not rotat ing.  Upon 
r o t a t i o n  of t h e  ro to r  t h e  e f fec t  of t h e  weight forces  i s  generally negligible.  
Therefore, a disturbance of t h e i r  s imil i tude has p rac t i ca l ly  no e f f ec t  on t h e  
behavior of t h e  blades. 

The d i f f i c u l t i e s  i n  developing Mach-similar and design-similar blades re
su l ted  i n  t h e i r  being used infrequently. Most often,  dynamically similar blades 
are developed with disturbance i n  s imil i tude r e l a t i v e  t o  t h e  Mach number. The 
per ipheral  blade speeds on a model are reduced i n  comparison with t h e  fu l l -
scale  blade by several  times. I n  so doing, t o  r e t a i n  t h e  r a t i o  of na tura l  blade 
v ibra t ion  frequency t o  angular veloci ty  of ro t a t ion  w, t h e  blade r i g i d i t i e s  
a r e  reduced not by 8 times, as i s  required by geometric simili tude,  but  by a 
greater  number of t i m e s ,  most of ten  by KF. I n  t h i s  case, t h e  necessary r a t i o  of 
na tura l  v ibra t ion  p j  t o  angular ve loc i ty  i s  achieved a t  per ipheral  speedsfiL 
smaller than those on a ful l -scale  helicopter.  Presumably, t h e  r e s u l t s  of tes ts  
on such models can be extrapolated i n  t o t a l i t y  t o  ful l -scale  units only at  
M < 0.4 ( see  Fig.k.3). A t  M = 0.5 - 0.9, t h e  t e s t  r e s u l t s  of such models can be 
used only f o r  qua l i t a t ive  estimates. I n  t h i s  connection, non-Mach-similar models 
are used i n  only a l imited volume for prac t i ca l  purposes. 
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